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Section Handout #5 
This week has practice with pointers, dynamic allocation, and Linked Lists.  
 
1. A Series of Unfortunate References 
What is the output of the following code snippet? 

void  VFD(int  *duncan,  int  isadora,  int&  quigley)  {    
    isadora  +=  *duncan;  
    quigley  *=  isadora;    
    (*duncan)  =  1;    
    isadora  =  *duncan;  
}  
                    
int  main()  {  
    int  sunny  =  -­‐6;  
    int  klaus  =  21;  
    int  violet  =  2;  
    VFD(&sunny,  violet,  klaus);  
    cout  <<  sunny  <<  "  "  <<  klaus  <<  "  "  <<  violet  <<  "  "  <<  endl;  return  0;  
}  
 
2. Section Leaders, Then and Now 
Analyze the following program and draw the state of memory at the two points indicated. Be sure to differentiate 
between memory on the stack and memory on the heap, note values that haven't been initialized, and identify 
where memory has been orphaned (heap values that no longer have a pointer to them in scope). 

struct  sectionleader  {    
    int  leslie;    
    sectionleader  *colin;    
    int  *jason[2];  
};  
  
void  jeanluc()  {  
    sectionleader  chris[2];  
    sectionleader  *wesley;  
    wesley  =  &chris[1];  
    chris[0].leslie  =  152;    
    chris[0].jason[0]  =  new  int[2];    
    chris[0].jason[1]  =  &(wesley-­‐>leslie);    
    wesley-­‐>jason[0]  =  chris[0].jason[1];    
    wesley-­‐>jason[1]  =  &(chris[0].jason[0][1]);    
    *(wesley-­‐>jason[1])  =  9189;  
    chris[1].colin  =  wesley-­‐>colin  =  wesley;  
  
    //  <-­‐-­‐  1)  draw  the  state  of  memory  just  prior  to  the  call  to  tyler  
  
    tyler(chris[1],  wesley-­‐>colin);  
}  
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void  tyler(sectionleader  &anupama,  sectionleader  *&aaron)  {    
    anupama.leslie  =  465;  
    aaron-­‐>colin  =  &anupama;  
    aaron-­‐>leslie  =  830;  
    aaron-­‐>colin[0].jason[1]  =  &(anupama.colin-­‐>leslie);    
    aaron  =  &anupama;  
    aaron-­‐>leslie  =  507;  
    aaron-­‐>colin  =  new  sectionleader[2];  
  
    //  <-­‐-­‐  2)  draw  the  state  of  memory  just  before  tyler  returns  
}  
  
int  main()  {  
    jeanluc();  
}  
 
For the remaining problems, assume the following structures been declared: 

ListNode StringNode DoubleNode PointNode 
struct  ListNode  {  
    int  data;  
    ListNode  *next;  
}  

struct  StringNode  {  
    string  data;  
    StringNode  *next;  
}  

struct  DoubleNode  {  
    double  data;  
    DoubleNode  *next;  
}  

string  PointNode  {  
    int  x;  
    int  y;  
    PointNode  *next;  
}  

3. What's the Code Do? 
For each of the following diagrams, draw a picture of what the given nodes would like like after the given line of 
code executes: 

 
 
list-­‐>next  =  new  ListNode;  
list-­‐>next-­‐>data  =  3;  
 

 
 
list-­‐>next-­‐>next  =  nullptr;  

4. What's the Code?  
For each of the following diagrams, write the code that will produce the given "after" result from the given 
"before" starting point by modifying the links between the nodes shown and/or creating new nodes as needed. 
There may be more than one way to write the code, but do not change the data field of any existing node. If a 
variable doesn't appear in the "after" picture, it doesn't matter what value it has after changes are made. 

 Before After 
 

a) 
 

 

 

b) 
 

 
 

  

1   2  list   1   3  list   2  

5   3  list   4   3   5  list   4  

5   3  list   4  

4   5  list2   3  

3   5  list  



5. Is Sorted 
Write a function that takes in a pointer to the front of a linked list of integers and returns whether or not the list 
that's pointed to is in sorted (nondecreasing) order. An empty list is considered to be sorted. Consider both 
recursive and non-recursive solutions. 

6. Count Duplicate Strings 
Write a function that takes in a pointer to the front of a sorted linked list of lowercase strings and returns the 
number of duplicates in the list. For example, suppose you are given the following list: 

{"apple",  "apple",  "apple",  "bat",  "bat",  "car",  "car",  "dog",  "dog",  "dog",  "fox",  "fox"} 

Your function should return 7 (once for each of the underlined duplicates). 

7. Remove All Threshold 
Write a function that takes a pointer to the front of a linked list of doubles, as well as a target value and a 
threshold. It should remove all values in the list that are within the threshold of the target value. For example, 
suppose you are given the following list, a target of 3.0, and a threshold of 0.3: 

{3.0,  9.0,  4.2,  2.1,  3.3,  2.3,  3.4,  4.0,  2.9,  2.7,  3.1,  18.2}  

You should remove the underlined values, yielding the following list: 

{9.0,  4.2,  2.1,  2.3,  3.4,  4.0,  18.2}  

If the list is empty or values within the given range don't appear in the list, then the list should not be changed by 
your function. You should preserve the original order of the list. 

8. Double List 
Write a function that takes a pointer to the front of a linked list of integers and appends a copy of the original 
sequence to the end of the list. For example, suppose you're given the following list: 

{1,  3,  2,  7}  

After a call to your function, the list's contents would be: 

{1,  3,  2,  7,  1,  3,  2,  7} 

Do not use any auxiliary data structures to solve this problem. You should only construct one additional node for 
each element in the original list. Your function should run in O(n) time where n is the number of nodes in the list. 

9. Split 
Write a function that takes in a pointer to the front of a linked list of integers and rearranges the elements so that 
all the negative values appear before all the non-negatives, with each group in the same relative order as the 
original list. For example, suppose you are given the following list:  

{8,  7,  -­‐4,  19,  0,  43,  -­‐8,  -­‐7,  2}  

After a call to your function, the list's contents would be: 

{-­‐4,  -­‐8,  -­‐7,  8,  7,  19,  0,  43,  2} 

You must solve this problem by rearranging the links of the list, not by editing data fields or creating new nodes. 
Do not use any auxiliary data structures to solve this problem. 

10. Reverse Recurse 
Write a recursive function that takes in a pointer to a list of integers and reverses the elements in the list. Return a 
pointer to the first element of the newly reversed list. Do not create new elements, edit data fields, or use any 
auxiliary data structures. 



11. Merge 
Write a function that given the pointers to two sorted lists of integers, and merges them into one sorted list. Return 
a pointer to the first element of the newly merged list. Your implementation shouldn't allocate any new memory, 
but should use the nodes making up the two originals. Do not use any auxiliary data structures to solve this 
problem. 

12. Draw Polygonal Path 
Write a function that takes in a GWindow object and a pointer to a list of x/y coordinate pairs. The list represents a 
"polygonal path," or a series of connected line segments, and draws the path as a series of dots and lines on the 
window. 

 

Each line should be 1 pixel thick and each dot should be 2 pixels wide. It might help to recall the drawLine and 
drawOval functions from the GWindow class: 

gw.drawLine(x1,  y1,  x2,  y2);  
gw.drawOval(x,  y,  xr,  yr);  

Note that the polygonal path can be closed (as on the left above) or open (as on the right). In the case of an open 
path, the last node in the path will have a next value of nullptr. In the case of a closed polygonal path, the last 
node will link back to the first node in the path. Your function should also be able to draw a single point. In the 
case of a null list, you should draw nothing. 

13. Braiding Lists 
Write a function that takes in the pointer to a linked list of integers and modifies the list so that it alternates 
elements between the original list and the reverse of the original list. Here are a few examples: 

Before After 
{1,  4,  2}   {1,  2,  4,  4,  2,  1}  

{3}   {3,  3}  

{1,  3,  6,  10,  15}   {1,  15,  3,  10,  6,  6,  10,  3,  15,  1}  

 
 

 


