
Huffman, YEAH!

Sasha Harrison
Spring 2018

● Brief History Lesson

● Step-wise Assignment Explanation

● Starter Files, Debunked

Overview

What is Huffman Encoding?

● File compression scheme
● In text files, can we decrease the number of bits needed to store each

character?

Intuition:

"ataata" "CS106B is the best class
ever, we love computer
science!"

File 1 File 2

SMALLER LARGER

What is Huffman Encoding?

What if we could represent 'a' in fewer than 8 bits?

What is Huffman Encoding?

Let's arbitrarily use 01 to represent 'a'

This is much shorter!

What is Huffman Encoding?

"ataata"

Original File size: 48 bits New File size: 24 bits

"ataata"Encoding

How do we scale this to all characters, not just 'a' ?

Huffman Encoding

Uses variable lengths for different characters to take
advantage of their relative frequencies.

Huffman Encoding is a 5 Step Process

Huffman Tree

Step 1: Count Occurrences

Frequencies: { ' ' : 2, 'b' : 3, 'a' : 3, 'c': 1, EOF : 1 }

"bac aab a"

Step 1: Count Occurrences

Takes as input an istream containing the file to compress, returns a
Map<int, int> associating each character in the file with its frequency.

"bab aab c" { ' ' : 2, 'b' : 3, 'a' : 3, 'c': 1, EOF : 1 }

Step 2a: Sort Characters By Frequency

Key Idea: Use a PQueue of Huffman Nodes to sort characters based on
their frequency.

{ ' ' : 2, 'b' : 3, 'a' : 3, 'c': 1, EOF : 1 }

Step 2a: Sort Characters By Frequency

What is a Huffman Node? Struct provided in the starter code

Step 2a: Sort Characters By Frequency

➔ The character field has type "int", but you
should just think of it as a char.
It has three possible values:
◆ char value - regular old character.
◆ PSEUDO_EOF - represent the

pseudo-eof value
◆ NOT_A_CHAR - represents

something that's not a character

Step 2b: Build a binary Tree using the PQueue

Procedure:

1. Remove two nodes from the front of the queue
2. Create a new node, whose frequency is their

sum, and whose character field is NOT_A_CHAR
3. Add the two dequeued nodes as children of this

new node.
a. First dequeued is left child
b. Second dequeued is right child

4. Reinsert the parent node into the PQueue
5. Repeat until the queue contains only tree root.

Step 2b: Build a binary Tree using the PQueue

Takes map of frequencies as input, returns the
HuffmanNode* pointing to the root of the
encoding tree.

{ ' ' : 2, 'b' : 3, 'a' : 3, 'c': 1, EOF : 1 }

Step 3: Use Tree to Determine Encodings

The Huffman Tree tells you the encodings to use
for each character.

Example: 'b' is 1 0

Example: 'c' is 0 1 0

Hint: Create an "encoding map", Map<int,string>
mapping characters to their new encodings

map = { ' ' : 00, 'a' : 11, 'b' : 10, 'c': 010, EOF : 011 }

Step 4: Encode the File

Takes as input an istream of text to compress, a
Map associating each character to the bit
sequence to use to encode it, then writes
everything to the obitstream.

Step 4: Encode the File

Step 4: Convert to binary

That's all for compression!

Step 5: How about Decompressing?

Wait, don't you need delimiters??

1011010001101011011

Procedure:

➔ Read one bit at a time
➔ If 0, go left, if 1, go right.
➔ If you reach a leaf, print out the character

that maps to the bits you read. Then, go back to
the root of the tree.

Output: bac aca

Step 5: How about decompressing?

For a given file, how do we know what the mapping is?

➔ We include the mapping in the file.

You can easily read/write a map to streams using the << and >> operators.

Header: When you write your compressed file, write the contents of the map into
the obitstream before you write the file contents.

Putting it all together

Takes as input an ibitstream of bits, a pointer encodingTree to the encoding tree,
then writes everything to out

Putting it all together

TL;DR: Chain together all the functions you wrote to make one function that
does the whole 5 step compression process.

It should compress the given input file, and write the resulting bits into the
given output file.

Putting it all together

This should do the exact opposite of compress:

➔ Read the bits from the given input file one at a time, including your
header packed inside the start of the file

➔ Write the original contents of that file to the file specified by the output
parameter.

Optional Extension: MyMap Class

➔ If you're interested in going above and beyond, one cool extension would be
to define your own map class that mimics a HashMap
◆ More info for difference between Maps and HashMaps: Here and Here

➔ What are the advantages of a HashMap?
◆ O(1) lookup and O(1) deletion, on average ʺ(that's V fast)

➔ You can then use this map that you defined to store the character frequencies
and Huffman encodings!

Files to define:

● mymap.cpp
● mymap.h

https://www.geeksforgeeks.org/map-associative-containers-the-c-standard-template-library-stl/
https://en.wikipedia.org/wiki/Hash_table

Optional Extension: MyMap Class

General idea:

➔ Create a struct to store key value pairs (both of type 'int')
➔ As a private member variable, store an array of buckets, where each bucket is

the head of a linked list of key value pairs
➔ Define a hash function that deterministically gives you a bucket into which the

key value pair should be places
◆ More info on hash functions here

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1172/handouts/8-Hashing.pdf

Go Encode!

David A. Huffman

