Huffman, YEAH!

Sasha Harrison
Spring 2018

Overview

e Brief History Lesson
e Step-wise Assignment Explanation

e Starter Files, Debunked

What is Huffman Encoding?

e File compression scheme
e |n text files, can we decrease the number of bits needed to store each
character?

Intuition:
File 1 File 2

SMALLER LARGER

ASCII TABLE

Decimal Hexadecimal Binary Octal Char

Decimal Hexadecimal Binary

Octal Char

Decimal Hexadecimal Binary Octal Char

0 0 0 0

1 1 1 1

2 2 10 2

3 3 11 3

4 4 100 4

5 5 101 5

6 6 110 6

7 7 111 7

8 8 1000 10
9 9 1001 11
10 A 1010 12
11 B 1011 13
12 C 1100 14
13 D 1101 15
14 E 1110 16
15 F 1111 17
16 10 10000 20
17 11 10001 21
18 12 10010 22
19 13 10011 23
20 14 10100 24
21 15 10101 25
22 16 10110 26
23 17 10111 27
24 18 11000 30
25 19 11001 31
26 1A 11010 32
27 1B 11011 33
28 1C 11100 34
29 1D 11101 35
30 1E 11110 36
31 1F 11111 37
32 20 100000 40

[NULL]

[START OF HEADING]
[START OF TEXT]
[END OF TEXT]

[END OF TRANSMISSION]
[ENQUIRY]
[ACKNOWLEDGE]
[BELL]

[BACKSPACE]
[HORIZONTAL TAB]
[LINE FEED]
[VERTICAL TAB]
[FORM FEED]
[CARRIAGE RETURN]
[SHIFT OUT]

[SHIFT IN]

[DATA LINK ESCAPE]
[DEVICE CONTROL 1]
[DEVICE CONTROL 2]
[DEVICE CONTROL 3]
[DEVICE CONTROL 4]
[NEGATIVE ACKNOWLEDGE]
[SYNCHRONOUS IDLE]
[ENG OF TRANS. BLOCK]
[CANCEL]

[END OF MEDIUM)
[SUBSTITUTE]
[ESCAPE)

[FILE SEPARATOR]
[GROUP SEPARATOR]
[RECORD SEPARATOR]
[UNIT SEPARATOR]
[SPACE]

110000 60
110001 61
110010 62
110011 63
110100 64
110101 65
110110 66
110111 67
111000 70
111001 71
111010 72
111011 73
111100 74
111101 75
111110 76
111111 77
1000000 100
1000001 101
1000010 102
1000011 103
1000100 104
1000101 105
1000110 106
1000111 107
1001000 110
1001001 111
1001010 112
1001011 113
1001100 114
1001101 115
1001110 116
1001111 117
1010000 120

VOZZIrAT"IOTMMONTRPEAYVIAT "OOINOURWNKEO

60
61
62

1100000
1100001
1100010
1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

I~ AN Xgs<cmrn *9'0033_3"—"'70“0 QanNnoTw

[DEL]

What is Huffman Encoding?

48 characters

[|
ataata -> e11ee001 61119199‘91199991“91199691191119199191199991
L J

J

a a a a

—p \What if we could represent 'a' in fewer than 8 bits?

What is Huffman Encoding?

—» Let's arbitrarily use 01to represent 'a’

24 characters!

|
ataata -> 01 91110100 01 01 01110100 01
| I 1 1 1

d d d d

This is much shorter!

What is Huffman Encoding?

Encoding

Original File size: 48 bits New File size: 24 bits

How do we scale this to all characters, not just 'a' ?

Huffman Encoding

Uses variable lengths for different characters to take
advantage of their relative frequencies.

Char ASCll value ASCII (binary) Hypothetical Huffman
v 32 00100000 10
‘a' 97 01100001 0001
'b! 98 01100010 01110100
s 99 01100011 001100
‘e’ 101 01100101 1100

'z! 122 01111010 00100011110

Huffman Encoding is a 5 Step Process

file.txt
bac aab b

Huffman Tree

Frequencies: {' ':2, 'a':3, 'b':3, 'c':1, EOF:1}

1. Count occurrences of each char in file
1" 52, "@"83; B3, " ¥l; EQFsLl}

10

2a. Place chars, counts into priority queue

1 1 2 3 9
‘¢’ EOF ' ' 'b' 'a'

2b. Use PQ to create Huffman tree —

3. Write logic to free the tree!

4. Traverse tree to find (char — binary) encoding map
{'" ':00, 'a':11, 'b':10, 'c':010, EOF=011}

5. Convert to binary (For each char in file, look up binary rep in map)
11 10 00 11 10 00 010 1 1 10 911 00

Step 1. Count Occurrences

Frequencies: {'':2,'p':3,'a':3,'¢c':1, EOF : 1}

Step 1. Count Occurrences

Map<int, int> buildFrequencyTable(istream& input)

Takes as input an istream containing the file to compress, returns a
Map<int, int> associating each character in the file with its frequency.

"bab aab c" » {'':2,'p':3,'a':3,'c""1,EOF : 1}

Step 2a: Sort Characters By Frequency

Key ldea: Use a PQueue of Huffman Nodes to sort characters based on
their frequency.

{('':2,'p':3,'a':3,'c"1,EOF : 1}

PQUEUE:
d 1 2 3
C EOF b a

first last

Step 2a: Sort Characters By Frequency

What is a Huffman Node? Struct provided in the starter code

HuffmanNode* {
int character; // character being represented by this node
int count; // number of occurrences of that character
HuffmanNode* zero; // © (left) subtree (nullptr if empty)
HuffmanNode* one; // 1 (right) subtree (nullptr if empty)

}

Step 2a: Sort Characters By Frequency

=> The character field has type "int", but you
HuffmanNode* {

int character; should just think of it as a char.
int count; It has three possible values:
HuffmanNode* zero; € char value - regular old character.

} HuffmanNode* one; € PSEUDO_EOF - represent the

pseudo-eof value
€ NOT_A_CHAR - represents
something that's not a character

Step 2b: Build a binary Tree using the PQueue

PQUEUE:
1 1 3 3
Lcl EOF 'b’ a'

Procedure:

Remove two nodes from the front of the queue
Create a new node, whose frequency is their
sum, and whose character field is NOT_A_CHAR
Add the two dequeued nodes as children of this
new node.

a. First dequeued is left child

b. Second dequeued is right child
Reinsert the parent node into the PQueue
Repeat until the queue contains only tree root.

2 2 3 S
U, NOT_A_CHAR 'b’ g’
1 1

3 3 4
'b! tat NOT_A_CHAR
2 2
o NOT_A_CHAR
1 1

- 6
NOT_A_CHAR NOT_A_CHAR
2 2 3 3
' NOT_A_CHAR 'b’ ra!

N

PQUEUE:

10
NOT_A_CHAR
4 6
NOT_A_CHAR NOT_A_CHAR
2 2 3 3
boL NOT_A_CHAR 'b’ fa
1 1

Step 2b: Build a binary Tree using the PQueue

HuffmanNode* buildEncodingTree(Map<int, int> freqTable)

Takes map of frequencies as input, returns the
HuffmanNode™ pointing to the root of the

PQUEUE:

encoding tree. ———
/\
{'":2,'p':3,'a':3,'c""1, EOF : 1} —_— 2 2 3 3
U) NOT_A_CHAR 'b' ra"
N

Step 3: Use Tree to Determine Encodings

The Huffman Tree tells you the encodings to use
for each character.

PQUEUE:
Example: 'b'"is10 1o
Example:'c'is010 . .
4 6
Hint: Create an "encoding map", Map<int,string> y{ VQ
mapping characters to their new encodings 2 2 3

map={'':00,'a':11,'b': 10, 'c": 010, EOF : 011} 1 1

Step 4. Encode the File

void encodeData(istream input,
Map<int, string> encodingMap,
obistream output)

Takes as input an istream of text to compress, a
Map associating each character to the bit
sequence to use to encode it, then writes
everything to the obitstream.

Step 4. Encode the File

obitstream: Writes one bit at a time to output.

void writeBit(int bit) Writes a single bit (mustbe 0 or 1)

— obitstream also contains the members from ostream.

e open, read, write, fail, close

Step 4. Convert to binary

e Based on the preceding tree, we have the following encodings:
{'" ':00, 'a':11, 'b':10, 'c':010, EOF:011}

— The text "ab ab cab" would be encoded as:

char lal lbl L}] Ial Ibl 1 1 lcl Ial Ibl EOF

binary i 10 00 11 10 00 010 i | 10 011

— Overall: 1110001110000101110011, (22 bits, ~ 3 bytes)

byte 1 2 3
char a b a b c a b EOF
binary (11 10 00 11 |16 00 @10 1 |1 10 @11 00

That's all for compression!

Step 5: How about Decompressing?

Wait, don't you need delimiters??

PQUEUE:
1011010001101011011 . 1911910001101011011 10
ba c¢c _a ca o
Procedure: - V\
=> Read one bit at a time m4cm 6cm
- If O, go left, if 1, go right. O N1 BN
- If you reach a leaf, print out the character = 2 - s
that maps to the bits you read. Then, go back to Vm\1 ‘ :
the root of the tree. 1 i
€ EOF

Output: bac aca

Step 5: How about decompressing?

For a given file, how do we know what the mapping is?

=> We include the mapping in the file.

{32:2, 97:3, 98:3, 99:1, 256:1}

You can easily read/write a map to streams using the << and >> operators.

Header: When you write your compressed file, write the contents of the map into
the obitstream before you write the file contents.

Putting it all together

void decodeData(ibitstream input,
HuffmanNode* encodingTree,
ostream out)

Takes as input an ibitstream of bits, a pointer encodingTree to the encoding tree,
then writes everything to out

ibitstream: Reads one bit at a time from input.

int readBit() Readsasingle 1 or 0;
returns-1 at end of file

- ibitstream also contains the members from istream.
e open, read, write, fail, close

Putting it all together

void compress(istream& input, obitstream& output)

TL;DR: Chain together all the functions you wrote to make one function that
does the whole 5 step compression process.

It should compress the given input file, and write the resulting bits into the
given output file.

Putting it all together

void decompress(ibitstream& input, ostream& output)

This should do the exact opposite of compress:

=> Read the bits from the given input file one at a time, including your
header packed inside the start of the file

=> Write the original contents of that file to the file specified by the output
parameter.

Optional Extension: MyMap Class

=> If you're interested in going above and beyond, one cool extension would be

to define your own map class that mimics a HashMap
€ More info for difference between Maps and HashMaps: Here and Here

=> What are the advantages of a HashMap?
€ O(1) lookup and O(1) deletion, on average & (that's V fast)

=> You can then use this map that you defined to store the character frequencies
and Huffman encodings!

Files to define:

® mymap.cpp
e mymap.h

https://www.geeksforgeeks.org/map-associative-containers-the-c-standard-template-library-stl/
https://en.wikipedia.org/wiki/Hash_table

Optional Extension: MyMap Class

General idea:

=> Create a struct to store key value pairs (both of type 'int')

=> As a private member variable, store an array of buckets, where each bucket is
the head of a linked list of key value pairs

=> Define a hash function that deterministically gives you a bucket into which the
key value pair should be places
€ More info on hash functions here

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1172/handouts/8-Hashing.pdf

Go Encodel

David A. Huffman

