OKAY HUMAN.

HUH? 3

BEFORE YOU
HIT (OMPLLE,
LISTEN Up.

e

YOU KNOW WHEN YCURE
FALLING ASLEEF AND
YOU IMAGINE YOURSELF
WalkinG OR
¥ SOMETHING,

-

AND SUCDENLY YOU
NISSTER, STUMBLE,
AND JOLT Huatr?

‘:’EFH

b

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

v
DOUBLE - CHECK. YOUR
DAMN POINTERS, OKAYY

%

YEAH 5: Patient Queue!

Avery Wang

YEAH Hours Agenda

Pointers Crash Course

Intro to Priority Queues
Overview of the Assignment
How to Get Started

Tips for Parts |, II, and Il

Questions

Pointers Crash Course

ptr
0x10

Pointers Crash Course

ptr

Linked List

Front
0x20

Michael | 0x50

1

Linked List

Front

Manipulating Linked List

m Loop through list using a pointer variable (“curr”).
m Check when you’re at or close to the end of the list.
m Manipulate the list by changing “next” fields.

Double List (Section Problem)

m \Write a function that takes a pointer to the front of a
linked list of integers and appends a copy of the original
sequence to the end of the list.

{1,3,2,7}->{1,3,2,7,1,3,2, 7}

L,
/

v

Front2

doublelList (ListNode *front) {
(front ==)

ListNode *curr = front;

Check if list is empty!
Set up “curr1”

L,
/

Front2

L,
/

Front2

doublelList (ListNode *front) {
(front ==)
ListNode *curr = front;
ListNode *curr2 = ListNode (curr->data) ;

ListNode *front2 = curr?;

Deal with first
node separately

Front2

Front2

Front2

Front2

Front2

doublelList (ListNode *front) {
(front ==)
ListNode *curr = front;
ListNode *curr2 = ListNode (curr->data) ;
ListNode *front2 = curr2;
while () {
curr = curr->next;
curr2->next = new ListNode (curr->data) ;

curr?2 = curr2->next;

Create new node,
Adjust all pointers.

Front2

Front2

Front2

Front2

Front2

Front2

doublelList (ListNode *front) {
(front ==)
ListNode *curr = front;

ListNode *curr2 = ListNode (curr->data) ;

ListNode *front2 = curr2; Stop when

while (curr->next !=) { we’re at end.
curr = curr->next;

curr2->next = new ListNode (curr->data) ;

curr?2 = curr2->next;

doublelList (ListNode *front) {
(front ==)
ListNode *curr = front;
ListNode *curr2 = ListNode (curr->data) ;
ListNode *front2 = curr2;
while (curr->next !=) {
curr = curr->next;
curr2->next = new ListNode (curr->data) ;

curr?2 = curr2->next;

Why not
currl !=

Front2

doublelList (ListNode *front) {
(front ==)
ListNode *curr = front;
ListNode *curr2 = ListNode (curr->data) ;
ListNode *front2 = curr2;
while (curr->next !=) {

curr = curr->next;

curr2->next = new ListNode (curr->data) ;

curr?2 = curr2->next;

}

currl->next = front2

doublelList (ListNode *front) {
(front ==)
ListNode *curr = front;
ListNode *curr2 = ListNode (curr->data) ;
ListNode *front2 = curr2;
while (curr->next !=) {

curr = curr->next;

curr2->next = new ListNode (curr->data) ;

curr?2 = curr2->next;

}

currl->next = front2

Lexicon
HashMap
Queue

Stack Vector

Priority Queue
Deque

D Lexi
HashSet awgLexicon

Graph

Abstract Data Types (ADTSs)

Focus on functions and behavior, not how they are implemented.

Implementing ADTs

m Wed: implementing Vector m Stored data in an array.

m Managed dynamic memory.

m Many other ways to
implement, as long as it
behaves like a Vector.

Implementing ADTs

EXTERNALLY INTERNALLY

m All three implementations m Store data in completely
have identical behavior. different ways.

m Exact same methods. m Different Big-O runtimes (1)

m First In, First Out (FIFO)

Queue<Stack<string> > wordLadders;

Key Methods
enqueue
dequeue

isEmpty
clear
toString

Queue

.enqueue (“Pam”)

.enqueue (“"Dwight”)
.enqueue (“Jim”)
.enqueue (“Michael”)

.dequeue () // returns “Pam”

. dequeue () // returns “Dwight”

. dequeue () // returns “Jim”

.dequeue () // returns “Michael” Michael 36

Key Methods
enqueue

Priority Queue dequene

m Most urgent priority item is dequeued.

isEmpty
clear
toString

Priority Queue

pqg.enqueue (“Pam”, 4)
pqg.enqueue (“"Dwight”, 5)
pdg.enqueue (“Jim”, 4)
pqg.enqueue (“Michael”, 1)

pqg.dequeue () // returns “Michael”
pqg.dequeue () // returns “Pam”
pqg.dequeue () // returns “Jim”
pqg.dequeue () // returns “Dwight”

X‘

Number Name Colour Max time

Very urgent Orange 10 minutes

Urgent Yellow 60 minutes

Standard Green 120 minutes

Patient Queue

m Most urgent priority patient is dequeued.

Key Methods
addPatient

processPatient
upgradePatient

frontPatient
frontPriority

isEmpty
clear
toString

Priority Queue

Pq.
Pq.
Pq.
Pq.
Pq.
Pq.

Pqg.
Pqg.

addPatient (“Pam”, 4)

addPatient (“Dwight”, 5)

addPatient (“Jim”, 4)

addPatient (“Michael”, 1)
processPatient () // returns “Michael”
processPatient () // returns “Pam”

dequeue () // returns “Dwight”
dequeue () // returns “Jim”

Priorities

m Most urgent = lowest priority number

MOST URGENT @ O LEAST URGENT

Michael (1) Pam (4)

Tiebreaker and Duplicates

upgradePatient

Vector: find patient, most urgent priority, break ties by
earlier timestamp.

Linked List: find patient, most urgent priority, break ties
by order of linked list.

Heap: find patient, most urgent priority, break ties by
lexicographical order (use string comparison).

PatientQueue Constructor

// Constructor
PatientQueue ()

// Destructor
~PatientQueue ()

PatientQueue Member Methods

// adds new patient to queue
void newPatient (string name, int priority)

// returns and removes highest priority patient
string processPatient ()

// updates patient to higher priority
void upgradePatient(string name, int newPriority)

PatientQueue Member Methods

// returns name of highest-priority patient
string frontName ()

// returns priority of highest-priority patient
int frontPriority ()

// removes all patients
void clear ()

// returns the PatientQueue as a string
string toString()

PatientQueue ()
~PatientQueue ()
void newPatient (string name, int priority)

string processPatient ()

void upgradePatient (string name, int newPriority)

string frontName ()

int frontPriority () Don’t Change the Header
or Add Public Methods!

void clear ()

string toString()

The Assignment

Implement a Priority Queue in three different ways.

Unsorted Vector Sorted Linked List Binary Min-Heap

Getting Started

Tip: complete Vector implementation by tonight!

Files

Header Files
VectorPatientQueue.h
LinkedListPatientQueue.h
HeapPatientQueue.h

CPP Files
VectorPatientQueue.cpp
LinkedListPatientQueue.cpp
HeapPatientQueue.cpp

Don’t Edit (wness extensions)
patientnode.h
patientqueue.h
hospital.cpp
patientnode.cpp

VectorPatientQueue: :VectorPatientQueue() {

TODO: write this constructor

VectorPatientQueue: :~VectorPatientQueue() {
TODO: write destructor

VectorPatientQueue::clear() {
TODO: write this function

. string VectorPatientQueue:: frontName() {
TODO: write this function
€ s this is only here so it will compile

VectorPatientQu
TODO: write t unction

03 is only here s 11 compile

rite this functior

m All three are nearly identical. ool Vactorpatiantouaue: sEapty()

so it will compile

m Same public methods to implement.

VectorPatientQueue: : newPatient(string name, int priority) {
TODO: write this function

m Do not change method headers!

string VectorPatientQueue::processPatient() {
TODO: write this function

3 this is only here so it will compile

VectorPatientQueue:: upgradePatient(string name, t newPriority) {
TODO: w function

string VectorPatientQueue:: toString() {
TODO: write this function

o] this is only here so it will compile

53

#pragma once

#include <iostream>
#include <string>
#include "patientqueue.h"
using namespace std;

@
H ea el I I es class VectorPatientQueue : public PatientQueue {

public:
VectorPatientQueue();
~VectorPatientQueue();
string frontName();
Add your instance variables ALY
. int frontPriority();
. bool 7sEmpty();
Add your pr|\/ate member methOdS void nmewPatient(string name, int priority);
string processPatient();
void upgradePatient(string name, int newPriority);

Add your structs (if necessary). string fostring();

Don’t change public methods!

// TODO: add specified member variable(s)
// TODO: add any member functions necessary

Summary of Assignment

For Vector, Linked List, and Heap:

m Add instance variables.

m Implement constructor and destructor.
m Implement all 7 member methods.

m [est test, test!

Summary of Assignment

Unsorted Vector
Create your own struct.

Store elements in
unsorted order in a
Vector of structs.

Maintain Vector.

Sorted Linked List
Use provided struct.

Store elements in
sorted order using a
linked list.

Maintain “front” pointer.

Binary Heap
Create your own struct.

Organized in a heap
(stored as an array of
structs).

Maintain array.

v[3]

Michael

1

Unsorted Vector

Simple but slow implementation.

Vector Implementation

Empty Vector

Vector Implementation

v[O]

Pam

4

Add patient Pam, priority 4

Vector Implementation

v[O]

v[1]

Pam

4

Dwight
)

Add patient Dwight, priority 5

60

Vector Implementation

v[O]

v[1]

v[2]

Pam

4

Dwight
)

Jim

4

Add patient Jim, priority 4

Vector Implementation

v[O]

v[1]

v[2]

v[3]

Pam

4

Dwight
)

Jim

4

Michael
1

Add patient Michael, priority 1

Vector Implementation

v[O]

v[1]

v[2]

v[3]

Pam

4

Dwight
)

Jim

1

Michael
1

Upgrade Jim to priority 1

Vector Implementation

v[O]

v[1]

v[2]

v[3]

Pam

4

Dwight
)

Jim

1

Michael
1

Now we process a patient.
Do we process Jim or Michael?,

Vector Implementation

v[O]

v[1]

v[2]

v[3]

Pam

4

Dwight
)

Jim

1

Michael
1

Michael - he had priority 1 first

Vector Implementation

B You may use an int for a timestamp in your struct.
m You have to determine how to track that!

Name

Priority

Timestamp

Summary: Vector

PatientQueue ()

~PatientQueue ()

newPatient (name, priority) Use the Blg—o as a hlﬂt
as to how to implement.

processPatient ()

frontName ()

frontPriority ()

upgradePatient (name, newP) Don’t overthink it!

isEmpty ()

clear ()

toString ()

Summary: Vector

PatientQueue ()

O(1)

~PatientQueue ()

O(1)

newPatient (name, priority)

O(1)

processPatient ()

frontName ()

frontPriority ()

upgradePatient (name, newP)

isEmpty ()

clear ()

toString ()

Vector is unsorted!

Must loop over entire
vector to find patient
with minimum priority.

Summary: Vector

PatientQueue () O(1)

~PatientQueue ()

newPatient (name, priority) CONSOLE

processPatient () “{4:Pam, 5:Dwight,

frontName () 1:Jim, 1l:Michaell}”
frontPriority ()

upgradePatient (name, newP)

For Vector, order of
printing is not important

isEmpty ()

clear ()

toString ()

2

Questions?

I’'m being a little vague so you have some design choices as well!

| Michael Pam
—

1 4

Linked List

Show off your new shiny pointer skills!

Struct Given to You

name
next

struct PatientNode { priority

string name;

int priority;
] Michael
PatientNode* next;
1

Instance Variables

VectorPatientQueue : PatientQueue {

Front

PatientNode* front; |

// nothing else is allowed!!!

Linked List

m Maintain a front pointer to a linked list.
m [nitially nullptr.

Front

—

Linked List

m As patients added, keep them sorted in priority.

Linked List

m As patients added, keep them sorted in priority.
m Last patient has next pointer of nullptr.

Front

Linked List

m As patients added, keep them sorted in priority.

L

Linked List

m Keep how adding to different parts of the list require
different pointer gymnastics.

L

Linked List

m \What happens if we try to insert between two existing
patients?

L

Linked List

m \Which pointers need to be modified?

L

Linked List

m \We deal with this pointer first. Why?

L

Linked List

m Order matters! Don’t lose the rest of your list!

Linked List

m And here’s our new list.

Linked List

m |et’'s add one more.

Michael /

Linked List

m Notice that different pointers were being moved
depending on where the patient is added.

L

Linked List

m Same deal with upgrading Jim to priority 1.

Linked List

m Same deal with upgrade and removing.

L

Linked List

m And processing patient?

Linked List

m \What happens to Michael?

Michael /

Linked List

m Michael gets deleted. Don’t forget to free memory!

Draw as
you code!

Reminders

m The class should only maintain your front pointer.

_— =

\
!
!
!
!
!

Reminders

m Last node should always be a nullptr!

Reminders

m When adding or removing nodes, you should be working
from the previous node.

Reminders

m When adding or removing nodes, you should be working
from the previous node.

Toby /

Reminders

m Don’t create extra (or dummy) nodes.

/

More Tips

m After you’ve come up with your logic, draw baby
examples (like this one) to see if it works.

m Don’t just start coding!
Front

Questions

Why don’t we need a timestamp?
s enqueuing or dequeuing faster?

We don’t know the size. How do we know we’re at the
end of a list?

-

KEEP
CALM

THEN

SEGFAULT

How to deal with
seg faults?

Did you do necessary checks if (ptr == nullptr)?
Is a pointer still pointing to deleted garbage”
Draw pictures! Stray arrows will speak for themselves.
Come to LalR, and we’ll struggle together ©

Questions to Ask

PatientQueue ()

~PatientQueue ()

O (N)

newPatient (name, priority)

O (N)

processPatient ()

frontName ()

frontPriority ()

upgradePatient (name, newP)

isEmpty ()

clear ()

toString ()

Note: the Big-O are
different.

Use it to see if you are
Implementing it
correctly!

Questions to Ask

PatientQueue ()

Does my code take care

of all cases (front,

newPatient (name, priority) .
P Y middle, back)?
processPatient ()

~PatientQueue ()

frontName ()
frontPriority () What if this is the first
upgradePatient (name, newP) F)&tk?ﬂt?

isEmpty ()

clear ()

Does my code take care
of duplicates? Ties?

toString ()

Questions to Ask

PatientQueue ()

~PatientQueue ()

newPatient (name, priority)

What if this is the last
patient?

processPatient ()

frontName ()

frontPriority ()
upgradePatient (name, newP) What if there are no

isEmpty () patients left?

clear ()

toString ()

Questions to Ask

PatientQueue ()

~PatientQueue () Does my code handle
newPatient (name, priority) dUpUCateS?

processPatient ()

frontName ()

Is my code breaking ties
correctly?

frontPriority ()

upgradePatient (name, newP)

isEmpty ()

clear () Do | make unnecessary
toString () passes (loops)?

Questions to Ask

PatientQueue ()

~PatientQueue ()

newPatient (name, priority)

Am | freeing memory
correctly?

processPatient ()

frontName ()

frontPriority ()

upgradePatient (name, newP)

isEmpty ()

clear ()

toString ()

2

Questions?

12

° /\
Binary Heap = =

22 43

Fun with arrays and heaps!

What is a Heap?

N

Kevin

22 43
m Tree-based structure

m Parents have higher priority than any of their children
m No implied ordering with sibilings

Summary: Binary Heap

PatientQueue ()

~PatientQueue ()

newPatient (name, priority) | O(log N)

Note: the Big-O are
different.

processPatient () O(log N)

frontName ()

frontPriority ()
upgradePatient (name, newP) Can yOou ﬁgure it out?
isEmpty ()

clear ()

toString ()

Summary: Binary Heap

PatientQueue () 0(1)

~PatientQueue () O (1)

newPatient (name, priority) | O(log N)

m Only instance variable
is size, capacity, and a

processPatient () O(log N)

frontName () O(1)

pointer to an
internal array of
elements.

frontPriority () O(1)

upgradePatient (name, newP) | O(N)

isEmpty () O (1)

clear () O(1)

toString () O (N)

Summary: Binary Heap

PatientQueue ()

O(1)

~PatientQueue ()

O(1)

newPatient (name, priority)

processPatient ()

frontName ()

frontPriority ()

upgradePatient (name, newP)

isEmpty ()

clear ()

toString ()

m When array is full,
resize to larger array.

m See Wed lecture.

Summary: Binary Heap

PatientQueue ()

O(1)

~PatientQueue ()

O(1)

newPatient (name, priority)

O(log N)

processPatient ()

O(log N)

frontName ()

O (1)

frontPriority ()

O(1)

upgradePatient (name, newP)

O (N)

isEmpty ()

O(1)

clear ()

O(1)

toString ()

O (N)

Are you bubbling up
or down correctly?

The log N runtime is
very important!

Summary: Binary Heap

PatientQueue ()

O(1)

~PatientQueue ()

O(1)

newPatient (name, priority)

O(log N)

processPatient ()

O(log N)

frontName ()

O (1)

frontPriority ()

O(1)

upgradePatient (name, newP)

isEmpty ()

O(1)

clear ()

O(1)

toString ()

O (N)

m \When ties occur, use
comparative

operations (<, >, ==,
=),

Only applies for the
Heap!

Summary: Binary Heap

PatientQueue ()

O(1)

~PatientQueue ()

O(1)

newPatient (name, priority)

processPatient ()

frontName ()

frontPriority ()

upgradePatient (name, newP)

isEmpty ()

clear ()

toString ()

m Only time when you
need to loop through

the entire heap.

2

Questions?

