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Plan for Today 
• One	more	recursive	data	example	
•  Introduction	to	fractals,	a	powerful	tool	used	in	graphics	
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Fractals 
•  fractal:	A	self-similar	mathematical	set	that	can	
often	be	drawn	as	a	recurring	graphical	pattern.	
–  Smaller	instances	of	the	same	shape	or	pattern	
occur	within	the	pattern	itself.	

– When	displayed	on	a	computer	screen,	it	can	be	
possible	to	infinitely	zoom	in/out	of	a	fractal.	
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Fractals in nature 
• Many	natural	phenomena	generate	fractal	patterns:	

–  earthquake	fault	lines	
–  animal	color	patterns	
–  clouds	
– mountain	ranges	
–  snowflakes	
–  crystals	
– DNA	
–  shells	
–  ...	
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Example fractals 
• Sierpinski	triangle:	equilateral	triangle	
contains	smaller	triangles	inside	it			 	 	 														
(your	next	homework)	

	
• Koch	snowflake:	a	triangle	with	smaller	
triangles	poking	out	of	its	sides	

• Mandelbrot	set:	circle	with	
smaller	circles	on	its	edge	
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Coding a fractal 
• Many	fractals	are	implemented	as	a	function	that	accepts	x/y	
coordinates,	size,	and	a	level	parameter.	
–  The	level	is	the	number	of	recurrences	of	the	pattern	to	draw.	
–  The	position	and	size	change	in	the	recursive	call;	level	decreases	by	1	

• Example,	Koch	snowflake:	
snowflake(window,	x,	y,	size,	1);	
	
	
snowflake(window,	x,	y,	size,	2);	
	
	
snowflake(window,	x,	y,	size,	3);	
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Boxy fractal 
• Where	should	the	following	line	be	inserted	
in	order	to	get	the	figure	at	right?	

gw.fillRect(x	–	size	/	2,	y	–	size	/	2,	size,	size);		
	

void	boxyFractal(GWindow&	gw,	int	x,	int	y,	int	size,	int	order)	{	
		if	(order	>=	1)	{	
				//	A)	here	
				boxyFractal(gw,	x	-	size	/	2,	y	-	size	/	2,	size	/	2,	order	-	1);	
				//	B)	here	
				boxyFractal(gw,	x	+	size	/	2,	y	+	size	/	2,	size	/	2,	order	-	1);	
				//	C)	here	
				boxyFractal(gw,	x	+	size	/	2,	y	-	size	/	2,	size	/	2,	order	-	1);	
				//	D)	here	
				boxyFractal(gw,	x	-	size	/	2,	y	+	size	/	2,	size	/	2,	order	-	1);	
				//	E)	here	
				}	
}	

x+	

y+	

(0,	0)	
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Stanford graphics lib 
#include	"gwindow.h"	
	
	
	
	
	
	
	
	
	
	
GWindow	gw(300,	200);	
gw.setTitle("CS	106B	Fractals");	
gw.drawLine(20,	20,	100,	100);	

gw.drawLine(x1,	y1,	x2,	y2);	 draws	a	line	between	the	given	two	points	
gw.drawPolarLine(x,	y,	r,	t);	 draws	line	from	(x,y)	at	angle	t	of	length	r;	

returns	the	line's	end	point	as	a	GPoint	
gw.getPixel(x,	y)	 returns	an	RGB	int	for	a	single	pixel	
gw.setColor("color");	 sets	color	with	a	color	name	string	like	"red",	or	

#RRGGBB	string	like	"#ff00cc",	or	RGB	int	
gw.setPixel(x,	y,	rgb);	 sets	a	single	RGB	pixel	on	the	window	
gw.drawOval(x,	y,	w,	h);	
gw.fillRect(x,	y,	w,	h);	...	

other	shape	and	line	drawing	functions	
(see	online	docs	for	complete	member	list)	

x+	

y+	

(0,	0)	
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Cantor Set 
• The	Cantor	Set	is	a	simple	fractal	that	begins	with	a	line	segment.	

–  At	each	level,	the	middle	third	of	the	segment	is	removed.	
–  In	the	next	level,	the	middle	third	of	each	third	is	removed.	

	
• Write	a	function	cantorSet	that	draws	a	Cantor	Set	with	a	given	
number	of	levels	(lines)	at	a	given	position/size.	
–  Place	CANTOR_SPACING	of	vertical	space	between	levels.	

• How	is	this	fractal	self-similar?		
• What	is	the	minimum	amount	of	work	to	do	at	each	level?	
• What's	a	good	stopping	point	(base	case)?	
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Cantor Set solution 
void	cantorSet(GWindow&	window,	int	x,	int	y,	
															int	width,	int	levels)	{	
				if	(levels	>	0)	{	
								//	recursive	case:	draw	line,	then	repeat	by	thirds	
								window.drawLine(x,	y,	x	+	width,	y);	
								cantorSet(window,	x,	y	+	20,	width/3,	levels-1);	
								cantorSet(window,	x	+	2*width/3,	y	+	20,	width/3,	levels-1);	
				}	
				//	else,	base	case:	0	levels,	do	nothing	
}	



11 

Cantor Set animated 
Q:	Which	way	does	the	drawing	animate?		(How	could	we	change	it?)	
	

void	cantorSet(GWindow&	window,	int	x,	int	y,	
															int	width,	int	levels)	{	
				if	(levels	>	0)	{	
								//	recursive	case:	draw	line,	then	repeat	by	thirds	
								pause(250);	
								window.drawLine(x,	y,	x	+	width,	y);	
								cantorSet(window,	x,	y	+	20,	width/3,	levels-1);	
								cantorSet(window,	x	+	2*width/3,	y	+	20,	width/3,	levels-1);	
				}	
}		//			A.															B.															C.															D.	
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Announcements 

• Homework	2	due	on	today	at	5PM	
• Homework	1	grades	will	be	released	by	your	section	leader	soon!	
• Shreya	will	be	guest-lecturing	on	Monday	

– My	office	hours	will	be	cancelled	that	day	(still	available	via	email)	
• Midterm	Review	Session	on	Tuesday,	July	24,	from	7-9PM	in	Gates	
B01	
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Koch snowflake 
• Koch	snowflake:	A	fractal	formed	by	pulling	a	triangular	"bend"	out	
of	each	side	of	an	existing	triangle	at	each	level.	

• Start	with	an	equilateral	triangle,	then:	
– Divide	each	of	its	3	line	segments	into	3	parts	of	equal	length.	
– Draw	an	eq.triangle	with	middle	segment	as	base,	pointing	outward.	
–  Remove	the	middle	line	segment.	



14 

Line segment replace 
• Replace	each	line	segment	as	follows:	
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Multiple levels 
• How	is	this	fractal	self-similar?	
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Polar lines 
//																				x			y				r		theta	
window.drawPolarLine(20,	20,	113,	-45);	

-45	degrees	

113	
pixels	
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Triangle in polar 
• Segment	1: 	Segment	2: 	Segment	3:	
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Segment in polar 
• Think	of	a	triangle	side	as	4	polar	line	segments,	as	below.	

– What	are	their	angles,	relative	to	the	angle	of	this	triangle	side?	

1	

2	 3	

4	
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Snowflake solution 
GPoint	ksLine(GWindow&	gw,	GPoint	pt,	int	size,	int	t,	int	levels)	{	
				if	(levels	==	1)	{	
								return	gw.drawPolarLine(pt,	size,	t);	
				}	else	{	
								pt	=	ksLine(gw,	pt,	size/3,	t,	levels	-	1);	
								pt	=	ksLine(gw,	pt,	size/3,	t	+	60,	levels	-	1);	
								pt	=	ksLine(gw,	pt,	size/3,	t	-	60,	levels	-	1);	
								return	ksLine(gw,	pt,	size/3,	t,	levels	-	1);	
				}	
}	
	
void	kochSnowflake(GWindow&	gw,	int	x,	int	y,	int	size,	int	levels)	{	
				GPoint	pt(x,	y);	
				pt	=	ksLine(gw,	pt,	size,				0,	levels);	
				pt	=	ksLine(gw,	pt,	size,	-120,	levels);	
				pt	=	ksLine(gw,	pt,	size,		120,	levels);	
}	
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Fibonacci exercise 
• Write	a	recursive	function	fib	that	accepts	an	integer	N	and	
returns	the	Nth	Fibonacci	number.	
–  The	first	two	Fibonacci	numbers	are	defined	to	be	1.	
–  Every	other	Fibonacci	number	is	the	sum	of	the	two	before	it.	
	(Don't	worry	about	integer	overflow.)	

	
	fib(1)	=>	1	
	fib(2)	=>	1	
	fib(3)	=>	2	
	fib(4)	=>	3	
	fib(5)	=>	5	
	fib(6)	=>	8	
	fib(7)	=>	13	
	fib(8)	=>	21	
	fib(9)	=>	34	
	...	

crawl 
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Bad fib solution 
//	Returns	the	nth	Fibonacci	number.	
int	fib(int	n)	{	
				if	(n	<=	2)	{	
								return	1;	
				}	else	{	
								return	fib(n	-	1)	+	fib(n	-	2);	
				}	
}	
	
//	what	does	the	call	stack	look	like?	
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Memoization 
• memoization:	Caching	results	of	previous	expensive	function	calls	
for	speed	so	that	they	do	not	need	to	be	re-computed.	
– Often	implemented	by	storing	call	results	in	a	collection.	

• Pseudocode	template:	
	

cache	=	{}.							//	empty	
	

function	f(args):	
				if	I	have	computed	f(args)	before:	
								Look	up	f(args)	result	in	cache.	
				else:	
								Actually	compute	f(args)	result.	
								Store	result	in	cache.	
				Return	result.	
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Wrapper Functions 
• We	don't	want	the	user	to	have	to	worry	about	the	cache!	

–  Alternative	to	the	default	parameters	we	saw	yesterday	
• Some	recursive	functions	need	extra	arguments	to	implement	the	
recursion	

• A	wrapper	function	is	a	function	that	does	some	initial	prep	work,	
then	fires	off	a	recursive	call	with	the	right	arguments.		
– Might	be	good	to	know	

• The	recursion	is	done	in	the	helper	function	
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Memoized fib solution 
//	Returns	the	nth	Fibonacci	number.	
//	This	version	uses	memoization.	
int	fib(int	n)	{	//	wrapper	function	
				Map<int,	int>	cache;	
				return	fibHelper(n,	cache);	
}	
	
int	fibHelper(int	n,	Map<int,	int>	&cache)	{	
				if	(n	<=	2)	{	
								return	1;	
				}	else	if	(cache.containsKey(n))	{	
								return	cache[n];	
				}	else	{	
								int	result	=	fib(n	-	1)	+	fib(n	-	2);	
								cache[n]	=	result;	
								return	result;	
				}	
}	
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Tail recursion 
•  tail	recursion:	When	a	recursive	call	is	made	
as	the	final	action	of	a	recursive	function.	
–  Tail	recursion	can	often	be	optimized	by	the	compiler.	

• Qt	Creator:	"Release"	mode,		not	"Debug"	mode	

–  Are	these	tail	recursive?	

int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	n;	
		}	else	{	
				int	a	=	n	/	10;	
				int	b	=	n	%	10;	
				return	mystery(a	+	
b);	
		}	
}	

int	fact(int	n)	{	
				if	(n	<=	1)	{	
								return	1;	
				}	else	{	
								return	n	*	fact(n	-	1);	
				}	
}	
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Tail-recursive factorial 
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
int	factorial(int	n,	int	accum	=	1)	{	
				if	(n	<=	1)	{	
								return	accum;	
				}	else	{	
								return	factorial(n	-	1,	accum	*	n);	
				}	
}	
	
–  Tail	recursive	solutions	often	end	up	passing	partial	computations	as	
parameters	that	would	otherwise	be	computed	after	the	recursive	call.	
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Non-recursive factorial 
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
int	factorial(int	n)	{	
				int	accum	=	1;	
				for	(int	i	=	1;	i	<=	n;	i++)	{	
								accum	*=	i;	
				}	
				return	accum;	
}	
	
–  Sometimes	looking	at	the	non-recursive	version	of	a	function	can	help	
you	find	the	tail	recursive	solution.	
• Often	looks	more	like	the	non-recursive	version,	with	a	variable	or	
parameter	keeping	track	of	partial	computations.	

• Loop	is	replaced	by	recursive	call.	


