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Plan for Today

e One more recursive data example
e Introduction to fractals, a powerful tool used in graphics



e fractal: A self-similar mathematical set that can
often be drawn as a recurring graphical pattern.

— Smaller instances of the same shape or pattern
occur within the pattern itself.

— When displayed on a computer screen, it can be
possible to infinitely zoom in/out of a fractal.




Fractals in nature

e Many natural phenomena generate fractal patterns:
— earthquake fault lines
— animal color patterns
— clouds
— mountain ranges
— snowflakes

— crystals
— DNA

— shells




Example fractals

e Sierpinski triangle: equilateral triangle
contains smaller triangles inside it
(your next homework)

e Koch snowflake: a triangle with smaller
triangles poking out of its sides

e Mandelbrot set: circle with
smaller circles on its edge




Coding a fractal

e Many fractals are implemented as a function that accepts x/y
coordinates, size, and a level parameter.

— The level is the number of recurrences of the pattern to draw.
— The position and size change in the recursive call; level decreases by 1

e Example, Koch snowflake:
snowflake(window, x, y, size, 1);

snowflake(window, x, y, size, 2); X\A/K

snowflake(window, x, y, size, 3);



Boxy fractal

e Where should the following line be inserted v ﬁ
in order to get the figure at right? y+
gw.fillRect(x - size / 2, y — size / 2, size, size);

void boxyFractal(GWindow& gw, int x, int y, int size, int order) {
if (order >= 1) {

// A) here

boxyFractal(gw, x - size / 2, y - size / 2, size / 2, order - 1);
// B) here

boxyFractal(gw, x + size / 2, y + size / 2, size / 2, order - 1);
// C) here

boxyFractal(gw, x + size / 2, y - size / 2, size / 2, order - 1);
// D) here

boxyFractal(gw, x - size / 2, y + size / 2, size / 2, order - 1);
// E) here

}



Stanford graphics lib

#include "gwindow.h"

gw.drawLine(x1, y1, x2, y2); draws a line between the given two points
gw.drawPolarLine(x, y, r, t); draws line from (x,y) at angle t of length r;
returns the line's end point as a GPoint
gw.getPixel(x, y) returns an RGB int for a single pixel
gw.setColor("color"); sets color with a color name string like "red", or
#RRGGBB string like "#ff00cc", or RGB int
gw.setPixel(x, y, rgb); sets a single RGB pixel on the window
gw.drawOval(x, y, w, h); other shape and line drawing functions
gw.fillRect(x, y, w, h); ... (see online docs for complete member list)
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GWindow gw(300, 200); .
gw.setTitle("CS 106B Fractals"); \\\\
gw.drawLine(20, 20, 100, 100);




e The Cantor Set is a simple fractal that begins with a line segment.

— At each level, the middle third of the segment is removed.
— In the next level, the middle third of each third is removed.

e Write a function cantorSet that draws a Cantor Set with a given
number of levels (lines) at a given position/size.

— Place CANTOR_SPACING of vertical space between levels.

e How is this fractal self-similar?
e What is the minimum amount of work to do at each level?
e What's a good stopping point (base case)?



Cantor Set solution

void cantorSet(GWindow& window, int x, int vy,
int width, int levels) {
if (levels > 9) {
// recursive case: draw line, then repeat by thirds
window.drawlLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);

cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
}

// else, base case: @ levels, do nothing

-
|%| CS 1068 Fractals

\
= e e e e

10



Cantor Set animated

Q: Which way does the drawing animate? (How could we change it?)

void cantorSet(GWindow& window, int x, int vy,
int width, int levels) {
if (levels > 9) {
// recursive case: draw line, then repeat by thirds
pause(250);
window.drawlLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);
cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
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Announcements

e Homework 2 due on today at 5PM
e Homework 1 grades will be released by your section leader soon!
e Shreya will be guest-lecturing on Monday

— My office hours will be cancelled that day (still available via email)

e Midterm Review Session on Tuesday, July 24, from 7-9PM in Gates
BO1
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Koch snowflake

e Koch snowflake: A fractal formed by pulling a triangular "bend" out
of each side of an existing triangle at each level.

VOLX 363

e Start with an equilateral triangle, then:

— Divide each of its 3 line segments into 3 parts of equal length.
— Draw an eq.triangle with middle segment as base, pointing outward.
— Remove the middle line segment.
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Line segment replace

e Replace each line segment as follows:

N\
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Multiple levels

e How is this fractal self-similar?
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Polar lines

// X Yy r theta
window.drawPolarLine(20, 20, 113, -45);
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Triangle in polar

e Segment 1: Segment 2: Segment 3:
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Segment in polar

e Think of a triangle side as 4 polar line segments, as below.
— What are their angles, relative to the angle of this triangle side?
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Snowflake solution

GPoint ksLine(GWindow& gw, GPoint pt, int size, int t, int levels) {
if (levels == 1) {
return gw.drawPolarLine(pt, size, t);
} else {
ksLine(gw, pt, size/3, t, levels - 1);
ksLine(gw, pt, size/3, t + 60, levels - 1);
pt = ksLine(gw, pt, size/3, t - 60, levels - 1);
return ksLine(gw, pt, size/3, t, levels - 1);

}

void kochSnowflake(GWindow& gw, int x, int y, int size, int levels) {
GPoint pt(x, y);

pt = ksLine(gw, pt, size, 0, levels);
pt = ksLine(gw, pt, size, -120, levels);
pt = ksLine(gw, pt, size, 120, levels);
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Fibonaccl exercise

e Write a recursive function ¥ib that accepts an integer N and
returns the Nth Fibonacci number.

— The first two Fibonacci numbers are defined to be 1.
— Every other Fibonacci number is the sum of the two before it.
(Don't worry about integer overflow.)

fib(1) => 1

fib(2) => 1

fib(3) => 2 T3=T3
fib(4) => 3 AREAR

fib(5) => 5 =k
fib(6) => 8 !
fib(7) => 13 5x5
fib(8) => 21

£fib(9) => 34
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Bad fib solution

// Returns the nth Fibonacci number.
int fib(int n) {

if (n <= 2) {
return 1;
} else {

return fib(n - 1) + fib(n - 2);
}
}

// what does the call stack look like?
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Memoization

e memoization: Caching results of previous expensive function calls
for speed so that they do not need to be re-computed.

— Often implemented by storing call results in a collection.

e Pseudocode template:

cache = {}. // empty

function f(args):
if I have computed f(args) before:
Look up f(args) result in cache.
else:
Actually compute f(args) result.
Store result in cache.
Return result.
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Wrapper Functions

e \We don't want the user to have to worry about the cache!
— Alternative to the default parameters we saw yesterday

e Some recursive functions need extra arguments to implement the
recursion

e A wrapper function is a function that does some initial prep work,
then fires off a recursive call with the right arguments.

— Might be good to know
e The recursion is done in the helper function
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Memoized fib solution

// Returns the nth Fibonacci number.
// This version uses memoization.
int fib(int n) { // wrapper function
Map<int, int> cache;
return fibHelper(n, cache);

}
int fibHelper(int n, Map<int, int> &cache) {
if (n <= 2) {
return 1;

} else if (cache.containsKey(n)) {
return cache[n];
} else {
int result = fib(n - 1) + fib(n - 2);
cache[n] = result;
return result;
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Tail recursion

¢ tail recursion: When a recursive call is made
as the final action of a recursive function.

— Tail recursion can often be optimized by the compiler.
e Qt Creator: "Release” mode, not "Debug" mode

— Are these tail recursive?

int mystery(int n) {
if (n < 10) {

}

b);

return n;

else {

int a = n / 10;
int b = n % 10;
return mystery(a +

int fact(int n) {
if (n <= 1) {
return 1;
} else {
return n * fact(n - 1);

¥
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Tail-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * [, * n,
int factorial(int n, int accum = 1) {
if (n <= 1) {
return accum;
} else {

return factorial(n - 1, accum * n);

¥

— Tail recursive solutions often end up passing partial computations as
parameters that would otherwise be computed after the recursive call.
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Non-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * [, * n,
int factorial(int n) {
int accum = 1;
for (int i = 1; 1 <= n; i++) {
accum *= i;
}

return accum;

— Sometimes looking at the non-recursive version of a function can help
you find the tail recursive solution.

e Often looks more like the non-recursive version, with a variable or
parameter keeping track of partial computations.

e Loop is replaced by recursive call.
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