
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	10	
Recursion	and	Fractals	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• One	more	recursive	data	example	
•  Introduction	to	fractals,	a	powerful	tool	used	in	graphics	



3 

Fractals 
•  fractal:	A	self-similar	mathematical	set	that	can	
often	be	drawn	as	a	recurring	graphical	pattern.	
–  Smaller	instances	of	the	same	shape	or	pattern	
occur	within	the	pattern	itself.	

– When	displayed	on	a	computer	screen,	it	can	be	
possible	to	infinitely	zoom	in/out	of	a	fractal.	



4 

Fractals in nature 
• Many	natural	phenomena	generate	fractal	patterns:	

–  earthquake	fault	lines	
–  animal	color	patterns	
–  clouds	
– mountain	ranges	
–  snowflakes	
–  crystals	
– DNA	
–  shells	
–  ...	



5 

Example fractals 
• Sierpinski	triangle:	equilateral	triangle	
contains	smaller	triangles	inside	it			 	 	 														
(your	next	homework)	

	
• Koch	snowflake:	a	triangle	with	smaller	
triangles	poking	out	of	its	sides	

• Mandelbrot	set:	circle	with	
smaller	circles	on	its	edge	



6 

Coding a fractal 
• Many	fractals	are	implemented	as	a	function	that	accepts	x/y	
coordinates,	size,	and	a	level	parameter.	
–  The	level	is	the	number	of	recurrences	of	the	pattern	to	draw.	
–  The	position	and	size	change	in	the	recursive	call;	level	decreases	by	1	

• Example,	Koch	snowflake:	
snowflake(window,	x,	y,	size,	1);	
	
	
snowflake(window,	x,	y,	size,	2);	
	
	
snowflake(window,	x,	y,	size,	3);	
	



7 

Boxy fractal 
• Where	should	the	following	line	be	inserted	
in	order	to	get	the	figure	at	right?	

gw.fillRect(x	–	size	/	2,	y	–	size	/	2,	size,	size);		
	

void	boxyFractal(GWindow&	gw,	int	x,	int	y,	int	size,	int	order)	{	
		if	(order	>=	1)	{	
				//	A)	here	
				boxyFractal(gw,	x	-	size	/	2,	y	-	size	/	2,	size	/	2,	order	-	1);	
				//	B)	here	
				boxyFractal(gw,	x	+	size	/	2,	y	+	size	/	2,	size	/	2,	order	-	1);	
				//	C)	here	
				boxyFractal(gw,	x	+	size	/	2,	y	-	size	/	2,	size	/	2,	order	-	1);	
				//	D)	here	
				boxyFractal(gw,	x	-	size	/	2,	y	+	size	/	2,	size	/	2,	order	-	1);	
				//	E)	here	
				}	
}	

x+	

y+	

(0,	0)	



8 

Stanford graphics lib 
#include	"gwindow.h"	
	
	
	
	
	
	
	
	
	
	
GWindow	gw(300,	200);	
gw.setTitle("CS	106B	Fractals");	
gw.drawLine(20,	20,	100,	100);	

gw.drawLine(x1,	y1,	x2,	y2);	 draws	a	line	between	the	given	two	points	
gw.drawPolarLine(x,	y,	r,	t);	 draws	line	from	(x,y)	at	angle	t	of	length	r;	

returns	the	line's	end	point	as	a	GPoint	
gw.getPixel(x,	y)	 returns	an	RGB	int	for	a	single	pixel	
gw.setColor("color");	 sets	color	with	a	color	name	string	like	"red",	or	

#RRGGBB	string	like	"#ff00cc",	or	RGB	int	
gw.setPixel(x,	y,	rgb);	 sets	a	single	RGB	pixel	on	the	window	
gw.drawOval(x,	y,	w,	h);	
gw.fillRect(x,	y,	w,	h);	...	

other	shape	and	line	drawing	functions	
(see	online	docs	for	complete	member	list)	

x+	

y+	

(0,	0)	



9 

Cantor Set 
• The	Cantor	Set	is	a	simple	fractal	that	begins	with	a	line	segment.	

–  At	each	level,	the	middle	third	of	the	segment	is	removed.	
–  In	the	next	level,	the	middle	third	of	each	third	is	removed.	

	
• Write	a	function	cantorSet	that	draws	a	Cantor	Set	with	a	given	
number	of	levels	(lines)	at	a	given	position/size.	
–  Place	CANTOR_SPACING	of	vertical	space	between	levels.	

• How	is	this	fractal	self-similar?		
• What	is	the	minimum	amount	of	work	to	do	at	each	level?	
• What's	a	good	stopping	point	(base	case)?	



10 

Cantor Set solution 
void	cantorSet(GWindow&	window,	int	x,	int	y,	
															int	width,	int	levels)	{	
				if	(levels	>	0)	{	
								//	recursive	case:	draw	line,	then	repeat	by	thirds	
								window.drawLine(x,	y,	x	+	width,	y);	
								cantorSet(window,	x,	y	+	20,	width/3,	levels-1);	
								cantorSet(window,	x	+	2*width/3,	y	+	20,	width/3,	levels-1);	
				}	
				//	else,	base	case:	0	levels,	do	nothing	
}	



11 

Cantor Set animated 
Q:	Which	way	does	the	drawing	animate?		(How	could	we	change	it?)	
	

void	cantorSet(GWindow&	window,	int	x,	int	y,	
															int	width,	int	levels)	{	
				if	(levels	>	0)	{	
								//	recursive	case:	draw	line,	then	repeat	by	thirds	
								pause(250);	
								window.drawLine(x,	y,	x	+	width,	y);	
								cantorSet(window,	x,	y	+	20,	width/3,	levels-1);	
								cantorSet(window,	x	+	2*width/3,	y	+	20,	width/3,	levels-1);	
				}	
}		//			A.															B.															C.															D.	



12 

Announcements 

• Homework	2	due	on	today	at	5PM	
• Homework	1	grades	will	be	released	by	your	section	leader	soon!	
• Shreya	will	be	guest-lecturing	on	Monday	

– My	office	hours	will	be	cancelled	that	day	(still	available	via	email)	
• Midterm	Review	Session	on	Tuesday,	July	24,	from	7-9PM	in	Gates	
B01	



13 

Koch snowflake 
• Koch	snowflake:	A	fractal	formed	by	pulling	a	triangular	"bend"	out	
of	each	side	of	an	existing	triangle	at	each	level.	

• Start	with	an	equilateral	triangle,	then:	
– Divide	each	of	its	3	line	segments	into	3	parts	of	equal	length.	
– Draw	an	eq.triangle	with	middle	segment	as	base,	pointing	outward.	
–  Remove	the	middle	line	segment.	



14 

Line segment replace 
• Replace	each	line	segment	as	follows:	



15 

Multiple levels 
• How	is	this	fractal	self-similar?	



16 

Polar lines 
//																				x			y				r		theta	
window.drawPolarLine(20,	20,	113,	-45);	

-45	degrees	

113	
pixels	



17 

Triangle in polar 
• Segment	1: 	Segment	2: 	Segment	3:	



18 

Segment in polar 
• Think	of	a	triangle	side	as	4	polar	line	segments,	as	below.	

– What	are	their	angles,	relative	to	the	angle	of	this	triangle	side?	

1	

2	 3	

4	



19 

Snowflake solution 
GPoint	ksLine(GWindow&	gw,	GPoint	pt,	int	size,	int	t,	int	levels)	{	
				if	(levels	==	1)	{	
								return	gw.drawPolarLine(pt,	size,	t);	
				}	else	{	
								pt	=	ksLine(gw,	pt,	size/3,	t,	levels	-	1);	
								pt	=	ksLine(gw,	pt,	size/3,	t	+	60,	levels	-	1);	
								pt	=	ksLine(gw,	pt,	size/3,	t	-	60,	levels	-	1);	
								return	ksLine(gw,	pt,	size/3,	t,	levels	-	1);	
				}	
}	
	
void	kochSnowflake(GWindow&	gw,	int	x,	int	y,	int	size,	int	levels)	{	
				GPoint	pt(x,	y);	
				pt	=	ksLine(gw,	pt,	size,				0,	levels);	
				pt	=	ksLine(gw,	pt,	size,	-120,	levels);	
				pt	=	ksLine(gw,	pt,	size,		120,	levels);	
}	



20 

Fibonacci exercise 
• Write	a	recursive	function	fib	that	accepts	an	integer	N	and	
returns	the	Nth	Fibonacci	number.	
–  The	first	two	Fibonacci	numbers	are	defined	to	be	1.	
–  Every	other	Fibonacci	number	is	the	sum	of	the	two	before	it.	
	(Don't	worry	about	integer	overflow.)	

	
	fib(1)	=>	1	
	fib(2)	=>	1	
	fib(3)	=>	2	
	fib(4)	=>	3	
	fib(5)	=>	5	
	fib(6)	=>	8	
	fib(7)	=>	13	
	fib(8)	=>	21	
	fib(9)	=>	34	
	...	

crawl 



21 

Bad fib solution 
//	Returns	the	nth	Fibonacci	number.	
int	fib(int	n)	{	
				if	(n	<=	2)	{	
								return	1;	
				}	else	{	
								return	fib(n	-	1)	+	fib(n	-	2);	
				}	
}	
	
//	what	does	the	call	stack	look	like?	



22 

Memoization 
• memoization:	Caching	results	of	previous	expensive	function	calls	
for	speed	so	that	they	do	not	need	to	be	re-computed.	
– Often	implemented	by	storing	call	results	in	a	collection.	

• Pseudocode	template:	
	

cache	=	{}.							//	empty	
	

function	f(args):	
				if	I	have	computed	f(args)	before:	
								Look	up	f(args)	result	in	cache.	
				else:	
								Actually	compute	f(args)	result.	
								Store	result	in	cache.	
				Return	result.	



23 

Wrapper Functions 
• We	don't	want	the	user	to	have	to	worry	about	the	cache!	

–  Alternative	to	the	default	parameters	we	saw	yesterday	
• Some	recursive	functions	need	extra	arguments	to	implement	the	
recursion	

• A	wrapper	function	is	a	function	that	does	some	initial	prep	work,	
then	fires	off	a	recursive	call	with	the	right	arguments.		
– Might	be	good	to	know	

• The	recursion	is	done	in	the	helper	function	



24 

Memoized fib solution 
//	Returns	the	nth	Fibonacci	number.	
//	This	version	uses	memoization.	
int	fib(int	n)	{	//	wrapper	function	
				Map<int,	int>	cache;	
				return	fibHelper(n,	cache);	
}	
	
int	fibHelper(int	n,	Map<int,	int>	&cache)	{	
				if	(n	<=	2)	{	
								return	1;	
				}	else	if	(cache.containsKey(n))	{	
								return	cache[n];	
				}	else	{	
								int	result	=	fib(n	-	1)	+	fib(n	-	2);	
								cache[n]	=	result;	
								return	result;	
				}	
}	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Overflow	(extra)	slides	



26 

Tail recursion 
•  tail	recursion:	When	a	recursive	call	is	made	
as	the	final	action	of	a	recursive	function.	
–  Tail	recursion	can	often	be	optimized	by	the	compiler.	

• Qt	Creator:	"Release"	mode,		not	"Debug"	mode	

–  Are	these	tail	recursive?	

int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	n;	
		}	else	{	
				int	a	=	n	/	10;	
				int	b	=	n	%	10;	
				return	mystery(a	+	
b);	
		}	
}	

int	fact(int	n)	{	
				if	(n	<=	1)	{	
								return	1;	
				}	else	{	
								return	n	*	fact(n	-	1);	
				}	
}	



27 

Tail-recursive factorial 
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
int	factorial(int	n,	int	accum	=	1)	{	
				if	(n	<=	1)	{	
								return	accum;	
				}	else	{	
								return	factorial(n	-	1,	accum	*	n);	
				}	
}	
	
–  Tail	recursive	solutions	often	end	up	passing	partial	computations	as	
parameters	that	would	otherwise	be	computed	after	the	recursive	call.	



28 

Non-recursive factorial 
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
int	factorial(int	n)	{	
				int	accum	=	1;	
				for	(int	i	=	1;	i	<=	n;	i++)	{	
								accum	*=	i;	
				}	
				return	accum;	
}	
	
–  Sometimes	looking	at	the	non-recursive	version	of	a	function	can	help	
you	find	the	tail	recursive	solution.	
• Often	looks	more	like	the	non-recursive	version,	with	a	variable	or	
parameter	keeping	track	of	partial	computations.	

• Loop	is	replaced	by	recursive	call.	


