CS 106B, Lecture 10
Recursion and Fractals

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e One more recursive data example
e Introduction to fractals, a powerful tool used in graphics

e fractal: A self-similar mathematical set that can
often be drawn as a recurring graphical pattern.

— Smaller instances of the same shape or pattern
occur within the pattern itself.

— When displayed on a computer screen, it can be
possible to infinitely zoom in/out of a fractal.

Fractals in nature

e Many natural phenomena generate fractal patterns:
— earthquake fault lines
— animal color patterns
— clouds
— mountain ranges
— snowflakes

— crystals
— DNA

— shells

Example fractals

e Sierpinski triangle: equilateral triangle
contains smaller triangles inside it
(your next homework)

e Koch snowflake: a triangle with smaller
triangles poking out of its sides

e Mandelbrot set: circle with
smaller circles on its edge

Coding a fractal

e Many fractals are implemented as a function that accepts x/y
coordinates, size, and a level parameter.

— The level is the number of recurrences of the pattern to draw.
— The position and size change in the recursive call; level decreases by 1

e Example, Koch snowflake:
snowflake(window, x, y, size, 1);

snowflake(window, x, y, size, 2); X\A/K

snowflake(window, x, y, size, 3);

Boxy fractal

e Where should the following line be inserted v ﬁ
in order to get the figure at right? y+
gw.fillRect(x - size / 2, y — size / 2, size, size);

void boxyFractal(GWindow& gw, int x, int y, int size, int order) {
if (order >= 1) {

// A) here

boxyFractal(gw, x - size / 2, y - size / 2, size / 2, order - 1);
// B) here

boxyFractal(gw, x + size / 2, y + size / 2, size / 2, order - 1);
// C) here

boxyFractal(gw, x + size / 2, y - size / 2, size / 2, order - 1);
// D) here

boxyFractal(gw, x - size / 2, y + size / 2, size / 2, order - 1);
// E) here

}

Stanford graphics lib

#include "gwindow.h"

gw.drawLine(x1, y1, x2, y2); draws a line between the given two points
gw.drawPolarLine(x, y, r, t); draws line from (x,y) at angle t of length r;
returns the line's end point as a GPoint
gw.getPixel(x, y) returns an RGB int for a single pixel
gw.setColor("color"); sets color with a color name string like "red", or
#RRGGBB string like "#ff00cc", or RGB int
gw.setPixel(x, y, rgb); sets a single RGB pixel on the window
gw.drawOval(x, y, w, h); other shape and line drawing functions
gw.fillRect(x, y, w, h); ... (see online docs for complete member list)

(] CS 106X Fractals

GWindow gw(300, 200); .
gw.setTitle("CS 106B Fractals"); \\\\
gw.drawLine(20, 20, 100, 100);

e The Cantor Set is a simple fractal that begins with a line segment.

— At each level, the middle third of the segment is removed.
— In the next level, the middle third of each third is removed.

e Write a function cantorSet that draws a Cantor Set with a given
number of levels (lines) at a given position/size.

— Place CANTOR_SPACING of vertical space between levels.

e How is this fractal self-similar?
e What is the minimum amount of work to do at each level?
e What's a good stopping point (base case)?

Cantor Set solution

void cantorSet(GWindow& window, int x, int vy,
int width, int levels) {
if (levels > 9) {
// recursive case: draw line, then repeat by thirds
window.drawlLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);

cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);
}

// else, base case: @ levels, do nothing

-
|%| CS 1068 Fractals

\
= e e e e

10

Cantor Set animated

Q: Which way does the drawing animate? (How could we change it?)

void cantorSet(GWindow& window, int x, int vy,
int width, int levels) {
if (levels > 9) {
// recursive case: draw line, then repeat by thirds
pause(250);
window.drawlLine(x, y, x + width, y);
cantorSet(window, x, y + 20, width/3, levels-1);
cantorSet(window, x + 2*width/3, y + 20, width/3, levels-1);

11

Announcements

e Homework 2 due on today at 5PM
e Homework 1 grades will be released by your section leader soon!
e Shreya will be guest-lecturing on Monday

— My office hours will be cancelled that day (still available via email)

e Midterm Review Session on Tuesday, July 24, from 7-9PM in Gates
BO1

12

Koch snowflake

e Koch snowflake: A fractal formed by pulling a triangular "bend" out
of each side of an existing triangle at each level.

VOLX 363

e Start with an equilateral triangle, then:

— Divide each of its 3 line segments into 3 parts of equal length.
— Draw an eq.triangle with middle segment as base, pointing outward.
— Remove the middle line segment.

13

Line segment replace

e Replace each line segment as follows:

N\

14

Multiple levels

e How is this fractal self-similar?

15

Polar lines

// X Yy r theta
window.drawPolarLine(20, 20, 113, -45);

O CS 106X Fractals

-45 degrees

113
pixels

16

Triangle in polar

e Segment 1: Segment 2: Segment 3:

17

Segment in polar

e Think of a triangle side as 4 polar line segments, as below.
— What are their angles, relative to the angle of this triangle side?

18

Snowflake solution

GPoint ksLine(GWindow& gw, GPoint pt, int size, int t, int levels) {
if (levels == 1) {
return gw.drawPolarLine(pt, size, t);
} else {
ksLine(gw, pt, size/3, t, levels - 1);
ksLine(gw, pt, size/3, t + 60, levels - 1);
pt = ksLine(gw, pt, size/3, t - 60, levels - 1);
return ksLine(gw, pt, size/3, t, levels - 1);

}

void kochSnowflake(GWindow& gw, int x, int y, int size, int levels) {
GPoint pt(x, y);

pt = ksLine(gw, pt, size, 0, levels);
pt = ksLine(gw, pt, size, -120, levels);
pt = ksLine(gw, pt, size, 120, levels);

19

Fibonaccl exercise

e Write a recursive function ¥ib that accepts an integer N and
returns the Nth Fibonacci number.

— The first two Fibonacci numbers are defined to be 1.
— Every other Fibonacci number is the sum of the two before it.
(Don't worry about integer overflow.)

fib(1) => 1

fib(2) => 1

fib(3) => 2 T3=T3
fib(4) => 3 AREAR

fib(5) => 5 =k
fib(6) => 8 !
fib(7) => 13 5x5
fib(8) => 21

£fib(9) => 34

20

Bad fib solution

// Returns the nth Fibonacci number.
int fib(int n) {

if (n <= 2) {
return 1;
} else {

return fib(n - 1) + fib(n - 2);
}
}

// what does the call stack look like?

21

Memoization

e memoization: Caching results of previous expensive function calls
for speed so that they do not need to be re-computed.

— Often implemented by storing call results in a collection.

e Pseudocode template:

cache = {}. // empty

function f(args):
if I have computed f(args) before:
Look up f(args) result in cache.
else:
Actually compute f(args) result.
Store result in cache.
Return result.

22

Wrapper Functions

e \We don't want the user to have to worry about the cache!
— Alternative to the default parameters we saw yesterday

e Some recursive functions need extra arguments to implement the
recursion

e A wrapper function is a function that does some initial prep work,
then fires off a recursive call with the right arguments.

— Might be good to know
e The recursion is done in the helper function

23

Memoized fib solution

// Returns the nth Fibonacci number.
// This version uses memoization.
int fib(int n) { // wrapper function
Map<int, int> cache;
return fibHelper(n, cache);

}
int fibHelper(int n, Map<int, int> &cache) {
if (n <= 2) {
return 1;

} else if (cache.containsKey(n)) {
return cache[n];
} else {
int result = fib(n - 1) + fib(n - 2);
cache[n] = result;
return result;

24

Overflow (extra) slides

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Tail recursion

¢ tail recursion: When a recursive call is made
as the final action of a recursive function.

— Tail recursion can often be optimized by the compiler.
e Qt Creator: "Release” mode, not "Debug" mode

— Are these tail recursive?

int mystery(int n) {
if (n < 10) {

}

b);

return n;

else {

int a = n / 10;
int b = n % 10;
return mystery(a +

int fact(int n) {
if (n <= 1) {
return 1;
} else {
return n * fact(n - 1);

¥

26

Tail-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * [, * n,
int factorial(int n, int accum = 1) {
if (n <= 1) {
return accum;
} else {

return factorial(n - 1, accum * n);

¥

— Tail recursive solutions often end up passing partial computations as
parameters that would otherwise be computed after the recursive call.

27

Non-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * [, * n,
int factorial(int n) {
int accum = 1;
for (int i = 1; 1 <= n; i++) {
accum *= i;
}

return accum;

— Sometimes looking at the non-recursive version of a function can help
you find the tail recursive solution.

e Often looks more like the non-recursive version, with a variable or
parameter keeping track of partial computations.

e Loop is replaced by recursive call.

28

