Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000000

Recursive Backtracking 2

Shreya Shankar
Stanford CS 106B

16 July 2018

Based on slides created by Ashley Taylor, Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric
Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Recap diceSum Optimizations Maze " Arms-length” Recursion
00000 000000 000000 0000

Outline

Recap

diceSum Optimizations

Maze

"Arms-length” Recursion

Permutations

Permutations
0000000

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
0000 000000 000000 0000 0000000

Exhaustive Search

e Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

Recap
©0000

Exhaustive Search

e Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

e Often the search space consists of many decisions, each of
which has several available choices

Recap
©0000

Exhaustive Search

e Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

e Often the search space consists of many decisions, each of
which has several available choices

® Example: When enumerating all 5-letter strings, each of the 5
letters is a decision, and each of those decisions has 26
possible choices.

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
0e000 000000 000000 0000 0000000

Backtracking

e Backtracking: finding solution(s) by trying partial solutions
and then abandoning them if they are not suitable

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations

Backtracking

e Backtracking: finding solution(s) by trying partial solutions
and then abandoning them if they are not suitable

® Think of this as a "brute force” technique because it tries all
paths or combinations

Recap diceSum Optimizations

ms-length” Recursion Permutations
00e00 o)

Backtracking

Explore (decisions):
If there are no more decisions to make:
Stop
Else:
// Handle one decision here, and do the rest by recursion
For each available choice C for this decision:
Choose C
Explore the remaining decisions that could follow C
Unchoose C // Backtrack

o Key tasks:

Recap diceSum Optimizations

" Arms-length” Recursion Permutations
00000 000C

Backtracking

Explore (decisions):
If there are no more decisions to make:
Stop
Else:
// Handle one decision here, and do the rest by recursion
For each available choice C for this decision:
Choose C
Explore the remaining decisions that could follow C
Unchoose C // Backtrack

o Key tasks:
® Figure out appropriate smallest unit of work (decision)

Recap
00000

Backtracking

Explore (decisions):
If there are no more decisions to make:
Stop
Else:
// Handle one decision here, and do the rest by recursion
For each available choice C for this decision:
Choose C
Explore the remaining decisions that could follow C
Unchoose C // Backtrack

o Key tasks:

® Figure out appropriate smallest unit of work (decision)
® Figure out how to enumerate all possible choices/options for it

10

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000e0 000000 000000 0000 0000000

Mental Model

® Choosing

11

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000e0 000000 000000 0000 0000000

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

12

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000e0 000000 000000 0000 0000000

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

13

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000e0 000000 000000 0000 0000000

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring

14

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000e0 000000 000000 0000 0000000

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring
1. How can we represent that choice?

15

Recap diceSum Optimizations

ms-length” Recursion Permutations
[e]e]e] o} o)

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?

16

Recap diceSum Optimizations

" Arms-length” Recursion Permutations
00000

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?
® Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

17

Recap diceSum Optimizations

" Arms-length” Recursion
00000

Mental Model
® Choosing

Permutations

1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring
1. How can we represent that choice?

2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

® Un-choosing

18

Recap
00000

Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?
® Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
® Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

19

Recap
00000

Mental Model

Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

® Base case

20

Recap
00000

Mental Model

Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?
® Base case

1. What should we do in the base case when we're out of
decisions?

21

Recap
00000

Mental Model

Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?
® Base case
1. What should we do in the base case when we're out of
decisions?
2. Is there a case for when there aren’t any valid choices left?

22

Recap
00000

Mental Model

Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

® Base case
1. What should we do in the base case when we're out of
decisions?
2. Is there a case for when there aren’t any valid choices left?

3. Are we avoiding arms-length recursion?
23

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
0000e 000000 000000 0000 0000000

Today's lecture

® Continued diceSum example from last week

24

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
0000e 000000 000000 0000 0000000

Today's lecture

® Continued diceSum example from last week

® More recursive backtracking practice

25

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
0000e 000000 000000 0000 0000000

Today's lecture

® Continued diceSum example from last week
® More recursive backtracking practice

® Why "arms-length” recursion is not good, especially in
backtracking

26

diceSum Optimizations

" Arms-length” Recursion

Today's lecture

Continued diceSum example from last week
More recursive backtracking practice

Why "arms-length” recursion is not good, especially in
backtracking

Backtracking application: permutations

Permutations

27

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 ©00000 000000 0000 0000000

diceSum

28

Re

cap diceSum Optimizations Maze " Arms-length” Recursion Permutations

)OO0 000000 000000

diceSum Problem

Write a function diceSum that accepts two integer parameters: a
number of dice to roll, and a desired sum of all die values. Output
all combinations of die values that add up to exactly that sum.

void diceSum(int dice, int desiredSum) {
Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

29

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000000

Initial Solution

void diceSumHelper(int dice, int desiredSum, Vector<int>&
chosen) {
if (dice == 0) {
if (sumAll(chosen) == desiredSum) {
cout << chosen << endl; // base case

}
} else {

for (int 1 = 1; i <= 6; i++) {
chosen.add (i) ; // choose
diceSumHelper(dice - 1, desiredSum, chosen);

// explore

chosen.remove(chosen.size() - 1); // un-choose

}

30

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000000

Wasteful Recursion

chosen | available desired sum
- 3 dice 5

M\.

[1 [2dice | [2 [2dice| [3 [2dice]| [4]2 dice] 2 dice | [6] 2 dice |

e

|11|1die||12|1die||1 ;|1die||14|1die||15|1die||16|1die|

|1,1,1|||1,1,2|||113|||114|||1,1,5|||116|| /\\

diceSum(3, 5);

5

31

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000000

Optimizations

® \We need not visit every branch of the decision tree

32

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000000

Optimizations

® \We need not visit every branch of the decision tree
® Some branches are clearly not going to lead to success

33

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 0000e0 000000 0000 0000000

Optimizations

® \We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches

34

Recap diceSum Optimizations
00000 000000

" Arms-length” Recursion Permutations

Optimizations

® \We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches

® |nefficiencies in our dice sum algorithm:

35

diceSum Optimizations
000000

Optimizations

® We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches

® |nefficiencies in our dice sum algorithm:

® Sometimes the current sum is already too high — even rolling
1 for all remaining dice would exceed the desired sum

36

diceSum Optimizations
000000

Optimizations

® We need not visit every branch of the decision tree
® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches
® |nefficiencies in our dice sum algorithm:
® Sometimes the current sum is already too high — even rolling
1 for all remaining dice would exceed the desired sum
® Sometimes the current sum is already too low — even rolling 6
for all remaining dice would exceed the desired sum

37

diceSum Optimizations
000000

Optimizations

® We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches

® |nefficiencies in our dice sum algorithm:
® Sometimes the current sum is already too high — even rolling
1 for all remaining dice would exceed the desired sum
® Sometimes the current sum is already too low — even rolling 6
for all remaining dice would exceed the desired sum
® The code must re-compute the sum many times

38

Recap diceSum Optimizations Maze

" Arms-length” Recursion Permutations
00000 00000e 000000

0000 0000000

Optimized diceSum

void diceSumHelper(int dice, int sum, int desiredSum,
Vector<int>& chosen) {
if (dice == 0) {
if (sum == desiredSum) {
cout << chosen << endl; // base case
}
} else if (sum + 1*dice <= desiredSum
&% sum + 6*dice >= desiredSum) {
for (int 1 = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, sum + i, desiredSum,
chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

39

Maze

40

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0O@0000 0000 0000000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

41

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0O@0000 0000 0000000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

42

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations

00000 000000 0O@0000 0000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not
® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions

43

diceSum Optimizations Maze " Arms-length” Recursion Permutations
)000 000000 000000 0000 0000000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions

® "Mark” your path along the way

44

diceSum Optimizations Maze

" Arms-length” Recursion Permutations
,,,,,) 00000C 000000 0000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions
® "Mark” your path along the way

® "Taint" bad paths that do not work

45

Maze
000000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions

® "Mark” your path along the way

® "Taint" bad paths that do not work

Do not explore the same path twice

46

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 00e000 0000 0000000

"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

HEEEEE o |
| e 0eoee o0
| (o [[[|of | [|o]
[|e EUOOOK)
 Jo | 1o Jo[[][]
| |® o | | [
eeece

47

Maze
000000

Maze class

#include "Maze.h"

Member name

Description

m.inBounds(row, col)

true if within maze boundaries

m.isMarked(row, col)

true if given cell is marked

m.isOpen(row, col)

true if given cell is empty (no wall or mark)

m.isTainted(row, col)

true if given cell has been tainted

m.isWall(row, col)

true if given cell contains a wall

m.mark(row, col);

sets given cell to be marked

m.numRows (), m.numCols()

returns dimensions of maze

m.taint (row, col);

sets given cell to be tainted

m.unmark (row, col);

sets given cell to be not marked if marked

m.untaint (row, col);

sets given cell to be not tainted if tainted

48

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0000e0 0000 0000000

Mental Model

® Choosing

49

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0000e0 0000 0000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

50

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0000e0 0000 0000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

51

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0000e0 0000 0000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?

52

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0000e0 0000 0000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

53

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 0000e0 0000 0000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring

54

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

55

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

56

Maze
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

57

Maze
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
® Nope

58

Maze
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair
2. Do we need to use a wrapper due to extra parameters?
® Nope
® Base case

59

Maze
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Fach direction leads us to a new row, col pair
2. Do we need to use a wrapper due to extra parameters?
® Nope
® Base case

1. What should we do in the base case when we're out of
decisions?

60

Maze
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

® Nope
® Base case
1. What should we do in the base case when we're out of
decisions?

® Return true or false

61

Recap diceSum Optimizations Maze " Arms-length” Recursion
00000 000000 00000e 0000

Escape Maze solution

bool escapeMaze(Maze& maze, int row, int col) {
if ('maze.inBounds(row, col)) return true;
else if (!maze.isOpen(row, col)) return false;
else {

// recursive case: try to escape in 4 directions

maze.mark(row, col);

if (escapeMaze(maze, row - 1, col)
|| escapeMaze(maze, row + 1, col)
|| escapeMaze(maze, row, col - 1)

|| escapeMaze(maze, row, col + 1)) {
return true; // one of the paths worked!

} else {
maze.taint (row, col);

return false; // all 4 paths failed; taint

Permutations
0000000

62

" Arms-length” Recursion

@000

" Arms-length” Recursion

63

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000000

" Arms-length” Recursion

® Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

64

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations

0000

" Arms-length” Recursion

® Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

® Typically, the tests try to avoid making a call into what would
otherwise be a base case

65

" Arms-length” Recursion
0000

" Arms-length” Recursion

® Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

® Typically, the tests try to avoid making a call into what would
otherwise be a base case

® Example: escapeMaze — our code recursively tries to explore
up, down, left, and right. Some of those directions may lead
to walls or off the board. Shouldn't we test before making
calls in those directions?

66

Recap diceSum Optimizations Maze " Arms-length” Recursion
00000 000000 000000 00e0

"Arms-length” escapeMaze

// This code is bad. It uses arm’s length recursion.
bool escapeMaze(Maze& maze, int r, int c) {
maze.mark(row, col);
// recursive case: check each one by arm’s length
if (maze.inBounds(r-1,c) && maze.isOpen(r-1, c))
if (escapeMaze(r-1,c)) {return true; }
if (maze.inBounds(r+1,c) && maze.isOpen(r+1l, c))
if (escapeMaze(r+1,c)) {return true; }
if (maze.inBounds(r,c-1) && maze.isOpen(r,c-1))
if (escapeMaze(r,c-1)) {return true; }
if (maze.inBounds(r,c+1) && maze.isOpen(r,c+1))
if (escapeMaze(r,c+1)) {return true; }
maze.taint (row, col);
return false; // all 4 paths failed; taint

Permutations
0000000

67

Recap diceSum Optimizations Maze " Arms-length” Recursion
00000 000000 000000 ocooe

escapeMaze better solution

bool escapeMaze(Maze& maze, int row, int col) {
if ('maze.inBounds(row, col)) return true;
else if (!maze.isOpen(row, col)) return false;
else {

// recursive case: try to escape in 4 directions

maze.mark(row, col);

if (escapeMaze(maze, row - 1, col)
|| escapeMaze(maze, row + 1, col)
|| escapeMaze(maze, row, col - 1)

|| escapeMaze(maze, row, col + 1)) {
return true; // one of the paths worked!

} else {
maze.taint (row, col);

return false; // all 4 paths failed; taint

Permutations
0000000

68

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 9000000

Permutations

69

diceSum Optimizations Maze " Arms-length” Recursion Permutations

000 00000C 000000 000C O@00000

"Permute Vector” exercise

® Write a function permute that accepts a Vector of strings as
a parameter and outputs all possible rearrangements of the
strings in that vector. The arrangements may be output in

any order.

{a, b, c, d} {b, 3, c, d} {c,a, b, d} {d, a, b, c}
{a, b, d, c} {b, a,d,c} {c,a,d, b} {d, a, c, b}
{a,c, b, d} {b, c, a, d} {c, b, a, d} {d, b, a, c}
{a, c, d, b} {b, c, d, a} {c, b, d, a} {d, b, c, a}
{a,d, b, c} {b, d, 3, c} {c, d, a, b} {d, ¢, a, b}
{a, d, c, b} {b, d, c, a} {c,d, b, a} {d, c, b,a}

70

Permutations
0®00000

"Permute Vector” exercise

® Write a function permute that accepts a Vector of strings as
a parameter and outputs all possible rearrangements of the
strings in that vector. The arrangements may be output in
any order.

® Example: if v contains {"a", "b", "c", "d"}, your
function outputs these permutations:

{a, b, c, d} {b, 3, c, d} {c,a, b, d} {d, a, b, c}
{a, b, d, c} {b, a,d,c} {c,a,d, b} {d, a, c, b}
{a,c, b, d} {b, c, a, d} {c, b, a, d} {d, b, a, c}
{a, c, d, b} {b, c, d, a} {c, b, d, a} {d, b, c, a}
{a,d, b, c} {b, d, 3, c} {c, d, a, b} {d, ¢, a, b}
{a, d, c, b} {b, d, c, a} {c,d, b, a} {d, c, b,a}

71

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 00e0000

Examining the problem

® Think of each permutation as a set of choices or decisions

72

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 00e0000

Examining the problem

® Think of each permutation as a set of choices or decisions
® Which character do | want to place first?

73

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 00e0000

Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?

74

" Arms-length” Recursion Permutations
0000 00e0000

Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
® Solution space: set of all possible sets of decisions to explore

75

Permutations
00®0000

Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
® Solution space: set of all possible sets of decisions to explore

® We want to generate all possible sequences of decisions

for (each possible first letter):
for (each possible second letter):
for (each possible third letter):

print!

76

Permutations
00®0000

Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
® Solution space: set of all possible sets of decisions to explore

® We want to generate all possible sequences of decisions

for (each possible first letter):
for (each possible second letter):
for (each possible third letter):

print!

® This is called a depth-first search

7

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 000e000

Mental Model

® Choosing

78

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 000e000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

79

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 000e000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector

80

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 000e000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?

81

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
h a 000000)OO 0000 000®000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop

82

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
h a 000000)OO 0000 000®000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop

® Exploring

83

Re

cap diceSum Optimizations " Arms-length” Recursion Permutations

000e000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

84

Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Build up a vector of strings used in our current permutation

85

Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

86

Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

87

Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

® Base case

88

Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

® Base case

1. What should we do in the base case when we're out of
decisions?

89

Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

® Base case
1. What should we do in the base case when we're out of
decisions?

® Print out permutation

90

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 0000e00

"Permute Vector” solution

// Outputs all permutations of the given vector.
void permute(Vector<string>& v) {
Vector<string> chosen; permuteHelper (v, chosen);

}

void permuteHelper (Vector<string>& v, Vector<string>&
chosen) {
if (v.isEmpty()) cout << chosen << endl;
else {

for (int 1 = 0; i < v.size(); i++) {
string s = v[i]; v.remove(i);
chosen.add(s); // choose
permuteHelper (v, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose
v.insert(i, s);

91

Recap diceSum Optimizations

" Arms-length” Recursion Permutations
000000

Permute a string

® Write a function permute that accepts a string as a parameter
and outputs all possible rearrangements of the characters in
that string. The arrangements may be output in any order.

92

" Arms-length” Recursion Permutations
000000

Permute a string

® Write a function permute that accepts a string as a parameter
and outputs all possible rearrangements of the characters in
that string. The arrangements may be output in any order.

® Example: there are 6 permutations of "cat”

93

Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 O00000e

Permute a string — solution

// Outputs all permutations of the given string.
void permute(string s) {
permute(s, "");

}
void permuteHelper(string s, string chosen = "") {
if (S == nn) {
cout << chosen << endl; // base case: nothing left
} else {

// recursive case: choose each possible next letter
for (int i = 0; i < s.length(); i++) {
string rest = s.substr(0, i) + s.substr(i + 1);
permuteHelper (rest, chosen + s[il); //
choose/explore

94

	Recap
	diceSum Optimizations
	Maze
	"Arms-length" Recursion
	Permutations

