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Exhaustive Search

e Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively
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Exhaustive Search

e Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

e Often the search space consists of many decisions, each of
which has several available choices

® Example: When enumerating all 5-letter strings, each of the 5
letters is a decision, and each of those decisions has 26
possible choices.
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Backtracking

e Backtracking: finding solution(s) by trying partial solutions
and then abandoning them if they are not suitable
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Backtracking

e Backtracking: finding solution(s) by trying partial solutions
and then abandoning them if they are not suitable

® Think of this as a "brute force” technique because it tries all
paths or combinations
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Backtracking

Explore (decisions):
If there are no more decisions to make:
Stop
Else:
// Handle one decision here, and do the rest by recursion
For each available choice C for this decision:
Choose C
Explore the remaining decisions that could follow C
Unchoose C // Backtrack

o Key tasks:



Recap diceSum Optimizations

" Arms-length” Recursion Permutations
00000 000C

Backtracking

Explore (decisions):
If there are no more decisions to make:
Stop
Else:
// Handle one decision here, and do the rest by recursion
For each available choice C for this decision:
Choose C
Explore the remaining decisions that could follow C
Unchoose C // Backtrack

o Key tasks:
® Figure out appropriate smallest unit of work (decision)
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Backtracking

Explore (decisions):
If there are no more decisions to make:
Stop
Else:
// Handle one decision here, and do the rest by recursion
For each available choice C for this decision:
Choose C
Explore the remaining decisions that could follow C
Unchoose C // Backtrack

o Key tasks:

® Figure out appropriate smallest unit of work (decision)
® Figure out how to enumerate all possible choices/options for it
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Mental Model

® Choosing
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Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
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® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?
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Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring
1. How can we represent that choice?
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Mental Model

® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
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® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?
® Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
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Mental Model
® Choosing

Permutations

1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

® Exploring
1. How can we represent that choice?

2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

® Un-choosing
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® Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?
® Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
® Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?
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Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

® Base case

20



Recap
00000

Mental Model

Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?
® Base case

1. What should we do in the base case when we're out of
decisions?
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Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?
® Base case
1. What should we do in the base case when we're out of
decisions?
2. Is there a case for when there aren’t any valid choices left?
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Choosing
1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
2. What are the choices for each decision? For loop?

Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?
Un-choosing
1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

® Base case
1. What should we do in the base case when we're out of
decisions?
2. Is there a case for when there aren’t any valid choices left?

3. Are we avoiding arms-length recursion?
23
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Today's lecture

® Continued diceSum example from last week
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Today's lecture

® Continued diceSum example from last week
® More recursive backtracking practice

® Why "arms-length” recursion is not good, especially in
backtracking
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Today's lecture

Continued diceSum example from last week
More recursive backtracking practice

Why "arms-length” recursion is not good, especially in
backtracking

Backtracking application: permutations

Permutations
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diceSum
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diceSum Problem

Write a function diceSum that accepts two integer parameters: a
number of dice to roll, and a desired sum of all die values. Output
all combinations of die values that add up to exactly that sum.

void diceSum(int dice, int desiredSum) {
Vector<int> chosen;
diceSumHelper(dice, desiredSum, chosen);

29
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Initial Solution

void diceSumHelper(int dice, int desiredSum, Vector<int>&
chosen) {
if (dice == 0) {
if (sumAll(chosen) == desiredSum) {
cout << chosen << endl; // base case

}
} else {

for (int 1 = 1; i <= 6; i++) {
chosen.add (i) ; // choose
diceSumHelper(dice - 1, desiredSum, chosen);

// explore

chosen.remove(chosen.size() - 1); // un-choose

}
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Wasteful Recursion

chosen | available desired sum
- 3 dice 5

M\.

[1 [2dice | [2 [2dice| [3 [2dice]| [4 ]2 dice] 2 dice | [6] 2 dice |

e

|11|1die||12|1die||1 ;|1die||14|1die||15|1die||16|1die|

|1,1,1|||1,1,2|||113|||114|||1,1,5|||116|| /\\

diceSum(3, 5);

5
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Optimizations

® \We need not visit every branch of the decision tree
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Optimizations

® \We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches
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® |nefficiencies in our dice sum algorithm:
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Optimizations

® We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches

® |nefficiencies in our dice sum algorithm:

® Sometimes the current sum is already too high — even rolling
1 for all remaining dice would exceed the desired sum
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Optimizations

® We need not visit every branch of the decision tree
® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches
® |nefficiencies in our dice sum algorithm:
® Sometimes the current sum is already too high — even rolling
1 for all remaining dice would exceed the desired sum
® Sometimes the current sum is already too low — even rolling 6
for all remaining dice would exceed the desired sum
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Optimizations

® We need not visit every branch of the decision tree

® Some branches are clearly not going to lead to success
® \We can preemptively stop, or prune, these branches

® |nefficiencies in our dice sum algorithm:
® Sometimes the current sum is already too high — even rolling
1 for all remaining dice would exceed the desired sum
® Sometimes the current sum is already too low — even rolling 6
for all remaining dice would exceed the desired sum
® The code must re-compute the sum many times

38
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Optimized diceSum

void diceSumHelper(int dice, int sum, int desiredSum,
Vector<int>& chosen) {
if (dice == 0) {
if (sum == desiredSum) {
cout << chosen << endl; // base case
}
} else if (sum + 1*dice <= desiredSum
&% sum + 6*dice >= desiredSum) {
for (int 1 = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, sum + i, desiredSum,
chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

39
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not
® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions

® "Mark” your path along the way
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions
® "Mark” your path along the way

® "Taint" bad paths that do not work
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.

® Return true if able to escape, or false if not

® "Escaping” means exiting the maze boundaries

® You can move 1 square at a time in any of the 4 directions

® "Mark” your path along the way

® "Taint" bad paths that do not work

Do not explore the same path twice

46
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"Escape Maze" exercise

Write a function escapeMaze (maze, row, col) that searches for
a path out of a given 2-dimensional maze.
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Maze class

#include "Maze.h"

Member name

Description

m.inBounds(row, col)

true if within maze boundaries

m.isMarked(row, col)

true if given cell is marked

m.isOpen(row, col)

true if given cell is empty (no wall or mark)

m.isTainted(row, col)

true if given cell has been tainted

m.isWall(row, col)

true if given cell contains a wall

m.mark(row, col);

sets given cell to be marked

m.numRows (), m.numCols()

returns dimensions of maze

m.taint (row, col);

sets given cell to be tainted

m.unmark (row, col);

sets given cell to be not marked if marked

m.untaint (row, col);

sets given cell to be not tainted if tainted
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
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® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair
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® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
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® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
® Nope
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair
2. Do we need to use a wrapper due to extra parameters?
® Nope
® Base case

59



Maze
000000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions
2. What are the choices for each decision? Do we need a loop?
® North, south, west, east
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Fach direction leads us to a new row, col pair
2. Do we need to use a wrapper due to extra parameters?
® Nope
® Base case

1. What should we do in the base case when we're out of
decisions?
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® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® [terating over possible directions

2. What are the choices for each decision? Do we need a loop?
® North, south, west, east

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Fach direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

® Nope
® Base case
1. What should we do in the base case when we're out of
decisions?

® Return true or false
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Escape Maze solution

bool escapeMaze(Maze& maze, int row, int col) {
if ('maze.inBounds(row, col)) return true;
else if (!maze.isOpen(row, col)) return false;
else {

// recursive case: try to escape in 4 directions

maze.mark(row, col);

if (escapeMaze(maze, row - 1, col)
|| escapeMaze(maze, row + 1, col)
|| escapeMaze(maze, row, col - 1)

|| escapeMaze(maze, row, col + 1)) {
return true; // one of the paths worked!

} else {
maze.taint (row, col);

return false; // all 4 paths failed; taint

Permutations
0000000
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" Arms-length” Recursion

® Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls
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" Arms-length” Recursion

® Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

® Typically, the tests try to avoid making a call into what would
otherwise be a base case
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" Arms-length” Recursion

® Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

® Typically, the tests try to avoid making a call into what would
otherwise be a base case

® Example: escapeMaze — our code recursively tries to explore
up, down, left, and right. Some of those directions may lead
to walls or off the board. Shouldn't we test before making
calls in those directions?
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"Arms-length” escapeMaze

// This code is bad. It uses arm’s length recursion.
bool escapeMaze(Maze& maze, int r, int c) {
maze.mark(row, col);
// recursive case: check each one by arm’s length
if (maze.inBounds(r-1,c) && maze.isOpen(r-1, c))
if (escapeMaze(r-1,c)) {return true; }
if (maze.inBounds(r+1,c) && maze.isOpen(r+1l, c))
if (escapeMaze(r+1,c)) {return true; }
if (maze.inBounds(r,c-1) && maze.isOpen(r,c-1))
if (escapeMaze(r,c-1)) {return true; }
if (maze.inBounds(r,c+1) && maze.isOpen(r,c+1))
if (escapeMaze(r,c+1)) {return true; }
maze.taint (row, col);
return false; // all 4 paths failed; taint

Permutations
0000000
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escapeMaze better solution

bool escapeMaze(Maze& maze, int row, int col) {
if ('maze.inBounds(row, col)) return true;
else if (!maze.isOpen(row, col)) return false;
else {

// recursive case: try to escape in 4 directions

maze.mark(row, col);

if (escapeMaze(maze, row - 1, col)
|| escapeMaze(maze, row + 1, col)
|| escapeMaze(maze, row, col - 1)

|| escapeMaze(maze, row, col + 1)) {
return true; // one of the paths worked!

} else {
maze.taint (row, col);

return false; // all 4 paths failed; taint

Permutations
0000000
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Permutations
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"Permute Vector” exercise

® Write a function permute that accepts a Vector of strings as
a parameter and outputs all possible rearrangements of the
strings in that vector. The arrangements may be output in

any order.

{a, b, c, d} {b, 3, c, d} {c,a, b, d} {d, a, b, c}
{a, b, d, c} {b, a,d,c} {c,a,d, b} {d, a, c, b}
{a,c, b, d} {b, c, a, d} {c, b, a, d} {d, b, a, c}
{a, c, d, b} {b, c, d, a} {c, b, d, a} {d, b, c, a}
{a,d, b, c} {b, d, 3, c} {c, d, a, b} {d, ¢, a, b}
{a, d, c, b} {b, d, c, a} {c,d, b, a} {d, c, b,a}
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"Permute Vector” exercise

® Write a function permute that accepts a Vector of strings as
a parameter and outputs all possible rearrangements of the
strings in that vector. The arrangements may be output in
any order.

® Example: if v contains {"a", "b", "c", "d"}, your
function outputs these permutations:

{a, b, c, d} {b, 3, c, d} {c,a, b, d} {d, a, b, c}
{a, b, d, c} {b, a,d,c} {c,a,d, b} {d, a, c, b}
{a,c, b, d} {b, c, a, d} {c, b, a, d} {d, b, a, c}
{a, c, d, b} {b, c, d, a} {c, b, d, a} {d, b, c, a}
{a,d, b, c} {b, d, 3, c} {c, d, a, b} {d, ¢, a, b}
{a, d, c, b} {b, d, c, a} {c,d, b, a} {d, c, b,a}

71



Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 00e0000

Examining the problem

® Think of each permutation as a set of choices or decisions
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Examining the problem

® Think of each permutation as a set of choices or decisions
® Which character do | want to place first?
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Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
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Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
® Solution space: set of all possible sets of decisions to explore
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Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
® Solution space: set of all possible sets of decisions to explore

® We want to generate all possible sequences of decisions

for (each possible first letter):
for (each possible second letter):
for (each possible third letter):

print!
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Examining the problem

® Think of each permutation as a set of choices or decisions

® Which character do | want to place first?
® Which character do | want to place second?
® Solution space: set of all possible sets of decisions to explore

® We want to generate all possible sequences of decisions

for (each possible first letter):
for (each possible second letter):
for (each possible third letter):

print!

® This is called a depth-first search
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Mental Model

® Choosing
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector

80



Recap diceSum Optimizations Maze " Arms-length” Recursion Permutations
00000 000000 000000 0000 000e000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop

® Exploring
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Build up a vector of strings used in our current permutation

85



Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop

® Exploring
1. How can we represent that choice? How should we modify
the parameters?

® Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

87



Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

® Base case
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Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

® Base case

1. What should we do in the base case when we're out of
decisions?

89



Permutations
000@000

Mental Model

® Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

® |[terating over strings left in the vector
2. What are the choices for each decision? Do we need a loop?
® Strings in the vector; use a for loop
® Exploring
1. How can we represent that choice? How should we modify
the parameters?
® Build up a vector of strings used in our current permutation
2. Do we need to use a wrapper due to extra parameters?
® Yes: vector of strings already a part of our permutation

® Base case
1. What should we do in the base case when we're out of
decisions?

® Print out permutation
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"Permute Vector” solution

// Outputs all permutations of the given vector.
void permute(Vector<string>& v) {
Vector<string> chosen; permuteHelper (v, chosen);

}

void permuteHelper (Vector<string>& v, Vector<string>&
chosen) {
if (v.isEmpty()) cout << chosen << endl;
else {

for (int 1 = 0; i < v.size(); i++) {
string s = v[i]; v.remove(i);
chosen.add(s); // choose
permuteHelper (v, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose
v.insert(i, s);
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Permute a string

® Write a function permute that accepts a string as a parameter
and outputs all possible rearrangements of the characters in
that string. The arrangements may be output in any order.
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Permute a string

® Write a function permute that accepts a string as a parameter
and outputs all possible rearrangements of the characters in
that string. The arrangements may be output in any order.

® Example: there are 6 permutations of "cat”
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Permute a string — solution

// Outputs all permutations of the given string.
void permute(string s) {
permute(s, "");

}
void permuteHelper(string s, string chosen = "") {
if (S == nn) {
cout << chosen << endl; // base case: nothing left
} else {

// recursive case: choose each possible next letter
for (int i = 0; i < s.length(); i++) {
string rest = s.substr(0, i) + s.substr(i + 1);
permuteHelper (rest, chosen + s[il); //
choose/explore
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