
Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Recursive Backtracking 2

Shreya Shankar

Stanford CS 106B

16 July 2018

Based on slides created by Ashley Taylor, Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric
Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

1

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Outline

Recap

diceSum Optimizations

Maze

”Arms-length” Recursion

Permutations

2

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Exhaustive Search

• Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

• Often the search space consists of many decisions, each of
which has several available choices

• Example: When enumerating all 5-letter strings, each of the 5
letters is a decision, and each of those decisions has 26
possible choices.

3

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Exhaustive Search

• Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

• Often the search space consists of many decisions, each of
which has several available choices

• Example: When enumerating all 5-letter strings, each of the 5
letters is a decision, and each of those decisions has 26
possible choices.

4

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Exhaustive Search

• Exhaustive search: exploring every possible combination
from a set of choices or values, often implemented recursively

• Often the search space consists of many decisions, each of
which has several available choices

• Example: When enumerating all 5-letter strings, each of the 5
letters is a decision, and each of those decisions has 26
possible choices.

5

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Backtracking

• Backtracking: finding solution(s) by trying partial solutions
and then abandoning them if they are not suitable

• Think of this as a ”brute force” technique because it tries all
paths or combinations

6

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Backtracking

• Backtracking: finding solution(s) by trying partial solutions
and then abandoning them if they are not suitable

• Think of this as a ”brute force” technique because it tries all
paths or combinations

7

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Backtracking

Explore (decisions):

If there are no more decisions to make:

Stop

Else:

// Handle one decision here, and do the rest by recursion

For each available choice C for this decision:

Choose C

Explore the remaining decisions that could follow C

Unchoose C // Backtrack

• Key tasks:

• Figure out appropriate smallest unit of work (decision)
• Figure out how to enumerate all possible choices/options for it

8

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Backtracking

Explore (decisions):

If there are no more decisions to make:

Stop

Else:

// Handle one decision here, and do the rest by recursion

For each available choice C for this decision:

Choose C

Explore the remaining decisions that could follow C

Unchoose C // Backtrack

• Key tasks:
• Figure out appropriate smallest unit of work (decision)

• Figure out how to enumerate all possible choices/options for it

9

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Backtracking

Explore (decisions):

If there are no more decisions to make:

Stop

Else:

// Handle one decision here, and do the rest by recursion

For each available choice C for this decision:

Choose C

Explore the remaining decisions that could follow C

Unchoose C // Backtrack

• Key tasks:
• Figure out appropriate smallest unit of work (decision)
• Figure out how to enumerate all possible choices/options for it

10

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring

1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

11

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring

1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

12

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring

1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

13

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring

1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

14

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?

2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

15

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?

3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

16

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

17

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing

1. How do we un-modify the parameters? Do we need to
explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

18

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing
1. How do we un-modify the parameters? Do we need to

explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

19

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing
1. How do we un-modify the parameters? Do we need to

explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case

1. What should we do in the base case when we’re out of
decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

20

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing
1. How do we un-modify the parameters? Do we need to

explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case
1. What should we do in the base case when we’re out of

decisions?

2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

21

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing
1. How do we un-modify the parameters? Do we need to

explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case
1. What should we do in the base case when we’re out of

decisions?
2. Is there a case for when there aren’t any valid choices left?

3. Are we avoiding arms-length recursion?

22

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model
• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

2. What are the choices for each decision? For loop?

• Exploring
1. How can we represent that choice?
2. Do we need to use a wrapper due to extra parameters?
3. How should we use the return value of the recursive calls?

• Un-choosing
1. How do we un-modify the parameters? Do we need to

explicitly un-modify, or are they copied? Are they un-modified
at the same level as they were modified?

• Base case
1. What should we do in the base case when we’re out of

decisions?
2. Is there a case for when there aren’t any valid choices left?
3. Are we avoiding arms-length recursion?

23

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Today’s lecture

• Continued diceSum example from last week

• More recursive backtracking practice

• Why ”arms-length” recursion is not good, especially in
backtracking

• Backtracking application: permutations

24

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Today’s lecture

• Continued diceSum example from last week

• More recursive backtracking practice

• Why ”arms-length” recursion is not good, especially in
backtracking

• Backtracking application: permutations

25

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Today’s lecture

• Continued diceSum example from last week

• More recursive backtracking practice

• Why ”arms-length” recursion is not good, especially in
backtracking

• Backtracking application: permutations

26

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Today’s lecture

• Continued diceSum example from last week

• More recursive backtracking practice

• Why ”arms-length” recursion is not good, especially in
backtracking

• Backtracking application: permutations

27

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

diceSum

28

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

diceSum Problem

Write a function diceSum that accepts two integer parameters: a
number of dice to roll, and a desired sum of all die values. Output
all combinations of die values that add up to exactly that sum.

void diceSum(int dice, int desiredSum) {

Vector<int> chosen;

diceSumHelper(dice, desiredSum, chosen);

}

29

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Initial Solution

void diceSumHelper(int dice, int desiredSum, Vector<int>&

chosen) {

if (dice == 0) {

if (sumAll(chosen) == desiredSum) {

cout << chosen << endl; // base case

}

} else {

for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose

diceSumHelper(dice - 1, desiredSum, chosen);

// explore

chosen.remove(chosen.size() - 1); // un-choose

}

}

}

30

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Wasteful Recursion

31

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree

• Some branches are clearly not going to lead to success
• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:

• Sometimes the current sum is already too high – even rolling
1 for all remaining dice would exceed the desired sum

• Sometimes the current sum is already too low – even rolling 6
for all remaining dice would exceed the desired sum

• The code must re-compute the sum many times

32

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree
• Some branches are clearly not going to lead to success

• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:

• Sometimes the current sum is already too high – even rolling
1 for all remaining dice would exceed the desired sum

• Sometimes the current sum is already too low – even rolling 6
for all remaining dice would exceed the desired sum

• The code must re-compute the sum many times

33

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree
• Some branches are clearly not going to lead to success
• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:

• Sometimes the current sum is already too high – even rolling
1 for all remaining dice would exceed the desired sum

• Sometimes the current sum is already too low – even rolling 6
for all remaining dice would exceed the desired sum

• The code must re-compute the sum many times

34

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree
• Some branches are clearly not going to lead to success
• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:

• Sometimes the current sum is already too high – even rolling
1 for all remaining dice would exceed the desired sum

• Sometimes the current sum is already too low – even rolling 6
for all remaining dice would exceed the desired sum

• The code must re-compute the sum many times

35

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree
• Some branches are clearly not going to lead to success
• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:
• Sometimes the current sum is already too high – even rolling

1 for all remaining dice would exceed the desired sum

• Sometimes the current sum is already too low – even rolling 6
for all remaining dice would exceed the desired sum

• The code must re-compute the sum many times

36

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree
• Some branches are clearly not going to lead to success
• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:
• Sometimes the current sum is already too high – even rolling

1 for all remaining dice would exceed the desired sum
• Sometimes the current sum is already too low – even rolling 6

for all remaining dice would exceed the desired sum

• The code must re-compute the sum many times

37

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimizations

• We need not visit every branch of the decision tree
• Some branches are clearly not going to lead to success
• We can preemptively stop, or prune, these branches

• Inefficiencies in our dice sum algorithm:
• Sometimes the current sum is already too high – even rolling

1 for all remaining dice would exceed the desired sum
• Sometimes the current sum is already too low – even rolling 6

for all remaining dice would exceed the desired sum
• The code must re-compute the sum many times

38

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Optimized diceSum

void diceSumHelper(int dice, int sum, int desiredSum,

Vector<int>& chosen) {

if (dice == 0) {

if (sum == desiredSum) {

cout << chosen << endl; // base case

}

} else if (sum + 1*dice <= desiredSum

&& sum + 6*dice >= desiredSum) {

for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose

diceSumHelper(dice - 1, sum + i, desiredSum,

chosen); // explore

chosen.remove(chosen.size() - 1); // un-choose

}

}

}

39

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Maze

40

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

• Return true if able to escape, or false if not

• ”Escaping” means exiting the maze boundaries

• You can move 1 square at a time in any of the 4 directions

• ”Mark” your path along the way

• ”Taint” bad paths that do not work

• Do not explore the same path twice

41

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

• Return true if able to escape, or false if not

• ”Escaping” means exiting the maze boundaries

• You can move 1 square at a time in any of the 4 directions

• ”Mark” your path along the way

• ”Taint” bad paths that do not work

• Do not explore the same path twice

42

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

• Return true if able to escape, or false if not

• ”Escaping” means exiting the maze boundaries

• You can move 1 square at a time in any of the 4 directions

• ”Mark” your path along the way

• ”Taint” bad paths that do not work

• Do not explore the same path twice

43

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

• Return true if able to escape, or false if not

• ”Escaping” means exiting the maze boundaries

• You can move 1 square at a time in any of the 4 directions

• ”Mark” your path along the way

• ”Taint” bad paths that do not work

• Do not explore the same path twice

44

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

• Return true if able to escape, or false if not

• ”Escaping” means exiting the maze boundaries

• You can move 1 square at a time in any of the 4 directions

• ”Mark” your path along the way

• ”Taint” bad paths that do not work

• Do not explore the same path twice

45

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

• Return true if able to escape, or false if not

• ”Escaping” means exiting the maze boundaries

• You can move 1 square at a time in any of the 4 directions

• ”Mark” your path along the way

• ”Taint” bad paths that do not work

• Do not explore the same path twice

46

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Escape Maze” exercise

Write a function escapeMaze(maze, row, col) that searches for
a path out of a given 2-dimensional maze.

47

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Maze class

#include "Maze.h"

Member name Description
m.inBounds(row, col) true if within maze boundaries

m.isMarked(row, col) true if given cell is marked

m.isOpen(row, col) true if given cell is empty (no wall or mark)

m.isTainted(row, col) true if given cell has been tainted

m.isWall(row, col) true if given cell contains a wall

m.mark(row, col); sets given cell to be marked

m.numRows(), m.numCols() returns dimensions of maze

m.taint(row, col); sets given cell to be tainted

m.unmark(row, col); sets given cell to be not marked if marked

m.untaint(row, col); sets given cell to be not tainted if tainted

48

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?

• North, south, west, east

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

49

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.

• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?

• North, south, west, east

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

50

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?

• North, south, west, east

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

51

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?

• North, south, west, east

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

52

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

53

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

54

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?

• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

55

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

56

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?

• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

57

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

58

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
• Nope

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Return true or false

59

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
• Nope

• Base case
1. What should we do in the base case when we’re out of

decisions?

• Return true or false

60

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over possible directions

2. What are the choices for each decision? Do we need a loop?
• North, south, west, east

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Each direction leads us to a new row, col pair

2. Do we need to use a wrapper due to extra parameters?
• Nope

• Base case
1. What should we do in the base case when we’re out of

decisions?
• Return true or false

61

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Escape Maze solution

bool escapeMaze(Maze& maze, int row, int col) {

if (!maze.inBounds(row, col)) return true;

else if (!maze.isOpen(row, col)) return false;

else {

// recursive case: try to escape in 4 directions

maze.mark(row, col);

if (escapeMaze(maze, row - 1, col)

|| escapeMaze(maze, row + 1, col)

|| escapeMaze(maze, row, col - 1)

|| escapeMaze(maze, row, col + 1)) {

return true; // one of the paths worked!

} else {

maze.taint(row, col);

return false; // all 4 paths failed; taint

}

}

}

62

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Arms-length” Recursion

63

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Arms-length” Recursion

• Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

• Typically, the tests try to avoid making a call into what would
otherwise be a base case

• Example: escapeMaze – our code recursively tries to explore
up, down, left, and right. Some of those directions may lead
to walls or off the board. Shouldn’t we test before making
calls in those directions?

64

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Arms-length” Recursion

• Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

• Typically, the tests try to avoid making a call into what would
otherwise be a base case

• Example: escapeMaze – our code recursively tries to explore
up, down, left, and right. Some of those directions may lead
to walls or off the board. Shouldn’t we test before making
calls in those directions?

65

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Arms-length” Recursion

• Arm’s length recursion: a poor style where unnecessary
tests are performed before performing recursive calls

• Typically, the tests try to avoid making a call into what would
otherwise be a base case

• Example: escapeMaze – our code recursively tries to explore
up, down, left, and right. Some of those directions may lead
to walls or off the board. Shouldn’t we test before making
calls in those directions?

66

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Arms-length” escapeMaze

// This code is bad. It uses arm’s length recursion.

bool escapeMaze(Maze& maze, int r, int c) {

maze.mark(row, col);

// recursive case: check each one by arm’s length

if (maze.inBounds(r-1,c) && maze.isOpen(r-1, c))

if (escapeMaze(r-1,c)) {return true; }

if (maze.inBounds(r+1,c) && maze.isOpen(r+1, c))

if (escapeMaze(r+1,c)) {return true; }

if (maze.inBounds(r,c-1) && maze.isOpen(r,c-1))

if (escapeMaze(r,c-1)) {return true; }

if (maze.inBounds(r,c+1) && maze.isOpen(r,c+1))

if (escapeMaze(r,c+1)) {return true; }

maze.taint(row, col);

return false; // all 4 paths failed; taint

}

67

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

escapeMaze better solution

bool escapeMaze(Maze& maze, int row, int col) {

if (!maze.inBounds(row, col)) return true;

else if (!maze.isOpen(row, col)) return false;

else {

// recursive case: try to escape in 4 directions

maze.mark(row, col);

if (escapeMaze(maze, row - 1, col)

|| escapeMaze(maze, row + 1, col)

|| escapeMaze(maze, row, col - 1)

|| escapeMaze(maze, row, col + 1)) {

return true; // one of the paths worked!

} else {

maze.taint(row, col);

return false; // all 4 paths failed; taint

}

}

}

68

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Permutations

69

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Permute Vector” exercise

• Write a function permute that accepts a Vector of strings as
a parameter and outputs all possible rearrangements of the
strings in that vector. The arrangements may be output in
any order.

• Example: if v contains {"a", "b", "c", "d"}, your
function outputs these permutations:

70

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Permute Vector” exercise

• Write a function permute that accepts a Vector of strings as
a parameter and outputs all possible rearrangements of the
strings in that vector. The arrangements may be output in
any order.

• Example: if v contains {"a", "b", "c", "d"}, your
function outputs these permutations:

71

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Examining the problem

• Think of each permutation as a set of choices or decisions

• Which character do I want to place first?
• Which character do I want to place second?
• Solution space: set of all possible sets of decisions to explore

• We want to generate all possible sequences of decisions

for (each possible first letter):

for (each possible second letter):

for (each possible third letter):

...

print!

• This is called a depth-first search

72

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Examining the problem

• Think of each permutation as a set of choices or decisions
• Which character do I want to place first?

• Which character do I want to place second?
• Solution space: set of all possible sets of decisions to explore

• We want to generate all possible sequences of decisions

for (each possible first letter):

for (each possible second letter):

for (each possible third letter):

...

print!

• This is called a depth-first search

73

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Examining the problem

• Think of each permutation as a set of choices or decisions
• Which character do I want to place first?
• Which character do I want to place second?

• Solution space: set of all possible sets of decisions to explore

• We want to generate all possible sequences of decisions

for (each possible first letter):

for (each possible second letter):

for (each possible third letter):

...

print!

• This is called a depth-first search

74

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Examining the problem

• Think of each permutation as a set of choices or decisions
• Which character do I want to place first?
• Which character do I want to place second?
• Solution space: set of all possible sets of decisions to explore

• We want to generate all possible sequences of decisions

for (each possible first letter):

for (each possible second letter):

for (each possible third letter):

...

print!

• This is called a depth-first search

75

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Examining the problem

• Think of each permutation as a set of choices or decisions
• Which character do I want to place first?
• Which character do I want to place second?
• Solution space: set of all possible sets of decisions to explore

• We want to generate all possible sequences of decisions

for (each possible first letter):

for (each possible second letter):

for (each possible third letter):

...

print!

• This is called a depth-first search

76

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Examining the problem

• Think of each permutation as a set of choices or decisions
• Which character do I want to place first?
• Which character do I want to place second?
• Solution space: set of all possible sets of decisions to explore

• We want to generate all possible sequences of decisions

for (each possible first letter):

for (each possible second letter):

for (each possible third letter):

...

print!

• This is called a depth-first search

77

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing

1. We generally iterate over decisions. What are we iterating over
here? The iteration will be done by recursion.

• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?

• Strings in the vector; use a for loop

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

78

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.

• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?

• Strings in the vector; use a for loop

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

79

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?

• Strings in the vector; use a for loop

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

80

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?

• Strings in the vector; use a for loop

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

81

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

82

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring

1. How can we represent that choice? How should we modify
the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

83

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?

• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

84

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

85

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?

• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

86

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?
• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

87

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?
• Yes: vector of strings already a part of our permutation

• Base case

1. What should we do in the base case when we’re out of
decisions?

• Print out permutation

88

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?
• Yes: vector of strings already a part of our permutation

• Base case
1. What should we do in the base case when we’re out of

decisions?

• Print out permutation

89

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Mental Model

• Choosing
1. We generally iterate over decisions. What are we iterating over

here? The iteration will be done by recursion.
• Iterating over strings left in the vector

2. What are the choices for each decision? Do we need a loop?
• Strings in the vector; use a for loop

• Exploring
1. How can we represent that choice? How should we modify

the parameters?
• Build up a vector of strings used in our current permutation

2. Do we need to use a wrapper due to extra parameters?
• Yes: vector of strings already a part of our permutation

• Base case
1. What should we do in the base case when we’re out of

decisions?
• Print out permutation

90

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

”Permute Vector” solution

// Outputs all permutations of the given vector.

void permute(Vector<string>& v) {

Vector<string> chosen; permuteHelper(v, chosen);

}

void permuteHelper(Vector<string>& v, Vector<string>&

chosen) {

if (v.isEmpty()) cout << chosen << endl;

else {

for (int i = 0; i < v.size(); i++) {

string s = v[i]; v.remove(i);

chosen.add(s); // choose

permuteHelper(v, chosen); // explore

chosen.remove(chosen.size() - 1); // un-choose

v.insert(i, s);

}

}

}

91

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Permute a string

• Write a function permute that accepts a string as a parameter
and outputs all possible rearrangements of the characters in
that string. The arrangements may be output in any order.

• Example: there are 6 permutations of ”cat”

92

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Permute a string

• Write a function permute that accepts a string as a parameter
and outputs all possible rearrangements of the characters in
that string. The arrangements may be output in any order.

• Example: there are 6 permutations of ”cat”

93

Recap diceSum Optimizations Maze ”Arms-length” Recursion Permutations

Permute a string – solution

// Outputs all permutations of the given string.

void permute(string s) {

permute(s, "");

}

void permuteHelper(string s, string chosen = "") {

if (s == "") {

cout << chosen << endl; // base case: nothing left

} else {

// recursive case: choose each possible next letter

for (int i = 0; i < s.length(); i++) {

string rest = s.substr(0, i) + s.substr(i + 1);

permuteHelper(rest, chosen + s[i]); //

choose/explore

}

}

}

94

	Recap
	diceSum Optimizations
	Maze
	"Arms-length" Recursion
	Permutations

