
This	document	is	copyright	(C)	Stanford	Computer	Science,	Marty	Stepp,	Victoria	Kirst,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	13	
Recursive	Backtracking	3	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• More	backtracking!	

– Make	sure	to	practice,	in	section,	on	CodeStepByStep,	with	the	book	
• Some	notes	on	the	midterm	

3

"Arm's length" recursion
• Arm’s	length	recursion:		a	poor	style	where	unnecessary	tests	are	
performed	before	performing	recursive	calls	

• Typically,	the	tests	try	to	avoid	making	a	call	into	what	would	
otherwise	be	a	base	case	

• Can	lead	to	functionality	bugs	as	well	as	less	readable	code	
• Applies	to	all	recursive	code	but	especially	backtracking	

4

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	What	are	the	

choices	for	each	decision?	Do	we	need	a	for	loop?	
Exploring	
2.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	store	

our	previous	choices	(avoiding	arms-length	recursion)?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

3.  How	should	we	restrict	our	choices	to	be	valid?	
4.  How	should	we	use	the	return	value	of	the	recursive	calls?	Are	we	looking	for	all	

solutions	or	just	one?	
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	un-modify,	

or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	were	modified?	
Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions	(usually	return	true)?	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
8.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	

5

Exercise: Permute Vector
• Write	a	function	permute	that	accepts	a	Vector	of	strings	as	a	
parameter	and	outputs	all	possible	rearrangements	of	the	strings	in	
that	vector.		The	arrangements	may	be	output	in	any	order.	

–  Example:	if	v	contains	{"a",	"b",	"c",	"d"},	your	function	
outputs	these	permutations:	

{a,	b,	c,	d}	 {b,	a,	c,	d}	 {c,	a,	b,	d}	 {d,	a,	b,	c}	
{a,	b,	d,	c}	 {b,	a,	d,	c}	 {c,	a,	d,	b}	 {d,	a,	c,	b}	
{a,	c,	b,	d}	 {b,	c,	a,	d}	 {c,	b,	a,	d}	 {d,	b,	a,	c}	
{a,	c,	d,	b}	 {b,	c,	d,	a}	 {c,	b,	d,	a}	 {d,	b,	c,	a}	
{a,	d,	b,	c}	 {b,	d,	a,	c}	 {c,	d,	a,	b}	 {d,	c,	a,	b}	
{a,	d,	c,	b}	 {b,	d,	c,	a}	 {c,	d,	b,	a}	 {d,	c,	b,	a}	

6

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	The	position.	

What	are	the	choices	for	each	decision?	Which	string	to	choose.	Do	we	need	a	for	
loop?	Yes,	over	strings.	

Exploring	
2.  How	can	we	represent	that	choice?	Vector<string>	How	should	we	modify	the	

parameters	and	store	our	previous	choices	(avoiding	arms-length	recursion)?	Build	up	
the	result	Vector,	remove	chosen	strings	from	the	options	Vector	

a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	Yes!	
3.  How	should	we	restrict	our	choices	to	be	valid?	Only	choose	strings	we	haven't	used	
4.  How	should	we	use	the	return	value	of	the	recursive	calls?	No	return	value.	Are	we	

looking	for	all	solutions	or	just	one?	all	solutions	

7

Backtracking Model
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	3?	Add	the	chosen	string	back	to	our	

Vector	of	options,	remove	it	from	the	result	Vector	we're	building.	Do	we	need	to	
explicitly	un-modify,	or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	
were	modified?	

Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?	Print	the	result	

Vector	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?	Not	in	this	case	
8.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	We	

should	always	avoid	arms-length	recursion!	

8

Permute solution
//	Outputs	all	permutations	of	the	given	vector.	
void	permute(Vector<string>&	v)	{	
				Vector<string>	chosen;	
				permuteHelper(v,	chosen);	
}	
	

void	permuteHelper(Vector<string>&	v,	Vector<string>&	chosen)	{	
				if	(v.isEmpty())	{	
								cout	<<	chosen	<<	endl;			//	base	case	
				}	else	{	
								for	(int	i	=	0;	i	<	v.size();	i++)	{	
												string	s	=	v[i];	
												v.remove(i);	
												chosen.add(s);																						//	choose	
												permuteHelper(v,	chosen);											//	explore	
												chosen.remove(chosen.size()	-	1);			//	un-choose	
												v.insert(i,	s);	
								}	
				}	
}	

9

Exercise: sublists
• Write	a	function	sublists	that	finds	every	possible	sub-list	of	a	
given	vector.		A	sub-list	of	a	vector	V	contains	≥	0	of	V's	elements.	

–  Example:	if	V	is		{Jane,	Bob,	Matt,	Sara},	
then	the	call	of			sublists(V);		prints:	
	
{Jane,	Bob,	Matt,	Sara} 	{Bob,	Matt,	Sara}	
{Jane,	Bob,	Matt} 	{Bob,	Matt}	
{Jane,	Bob,	Sara} 	{Bob,	Sara}	
{Jane,	Bob} 	{Bob}	
{Jane,	Matt,	Sara} 	{Matt,	Sara}	
{Jane,	Matt} 	{Matt}	
{Jane,	Sara} 	{Sara}	
{Jane} 	{}	
	

–  You	can	print	the	sub-lists	out	in	any	order,		one	per	line.	
• What	are	the	"choices"	in	this	problem?		(choose,	explore)	

printSubVectors

10

Decision tree?
chosen	 available	

{}	 Jane,	Bob,	
Matt,	Sara	

{Jane}	 Bob,	Matt,	
Sara	

{Jane,	
Bob}	

Matt,	
Sara	

{Jane,	
Matt}	

Bob,	
Sara	

{Jane,	
Sara}	

Bob,	
Matt	

...

{Bob}	 Jane,	Matt,	
Sara	

...

{Matt}	 J	
S	

...

{Bob,	
Jane}	

Matt,	
Sara	

whom	to	include	first?	

Jane	 Bob	 Matt	

whom	to	include	second?	

Bob	 Matt	 Sara	

11

Wrong decision tree

Q:		Why	isn't	this	the	right	decision	tree	for	this	problem?	
A.	 	It	does	not	actually	end	up	finding	every	possible	sublist.	
B.	 	It	does	find	all	sublists,	but	it	finds	them	in	the	wrong	order.	
C.	 	It	does	find	all	sublists,	but	it	is	inefficient.	
D.	 	None	of	the	above	

chosen	 available	

{}	 Jane,	Bob,	
Matt,	Sara	

{Jane}	 Bob,	Matt,	
Sara	

{Bob}	 Jane,	Matt,	
Sara	

... ...

whom	to	include	first?	

Jane	 Bob	 Matt	

whom	to	include	second?	

{Matt}	 J	
S	

12

Better decision tree

–  Each	decision	is:	"Include	Jane	or	not?"	...	"Include	Bob	or	not?"	...	
• The	order	of	people	chosen	does	not	matter;	only	the	membership.	

chosen	 available	

{}	 Jane,	Bob,	
Matt,	Sara	

{Jane}	 Bob,	Matt,	
Sara	

{Jane	
Bob}	

Matt,	
Sara	

{Jane}	 Matt,	
Sara	

{}	 Bob,	Matt,	
Sara	

{Jane	
Bob,	
Matt}	

Sara	 {Jane,	
Bob}	

Sara	

{Bob}	 Matt,	
Sara	

{}	 Matt,	
Sara	

include	Jane?	
yes	 no	

yes	 no	

yes	 no	

include	Bob?	

include	
Matt?	

yes	 no	

include	Bob?	

... ...

...

13

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	What	are	the	

choices	for	each	decision?	Do	we	need	a	for	loop?	
Exploring	
2.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	store	

our	previous	choices	(avoiding	arms-length	recursion)?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

3.  How	should	we	restrict	our	choices	to	be	valid?	
4.  How	should	we	use	the	return	value	of	the	recursive	calls?	Are	we	looking	for	all	

solutions	or	just	one?	
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	un-modify,	

or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	were	modified?	
Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions	(usually	return	true)?	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
8.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	

14

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?		

	Each	element.	
What	are	the	choices	for	each	decision?		

	Whether	to	include	that	element	in	the	sublist.		
Do	we	need	a	for	loop?	

		No	–	only	two	options.	
Exploring	
2.  How	can	we	represent	that	choice?		

	Vector<string>		
How	should	we	modify	the	parameters	and	store	our	previous	choices	(avoiding	arms-
length	recursion)?		

	Build	up	the	result	Vector,	keep	track	of	which	index	to	include	
3.  Are	we	looking	for	all	solutions	or	just	one?		

	All	solutions	

15

Backtracking Model
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	2?		

	Remove	the	element	from	the	Vector,	if	it	was	added.		
Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?		

	Print	the	result	Vector	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
	Not	in	this	case	

16

sublists solution
void	sublists(Vector<string>&	v)	{	
				Vector<string>	chosen;	
				sublistsHelper(v,	0,	chosen);	
}	
	
void	sublistsHelper(Vector<string>&	v,	int	i,	
																				Vector<string>&	chosen)	{	
				if	(i	>=	v.size())	{	
								cout	<<	chosen	<<	endl;			//	base	case;	nothing	to	choose	
				}	else	{	
								//	there	are	two	choices	to	explore:	
								//	the	subset	without	i'th	element,	and	the	one	with	it	
	
								sublistsHelper(v,	i+1,	chosen);		//	choose/explore	(without)	
	
								chosen.add(v[i]);	
								sublistsHelper(v,	i+1,	chosen);		//	choose/explore	(with)	
	
								chosen.remove(chosen.size()	-	1);			//	"undo"	our	choice	
				}	
}	

17

Announcements
• Thank	you	to	Shreya	for	doing	a	great	job	covering	lecture!	
• Grades	for	assignment	2	will	come	out	early	tomorrow	at	the	latest	
• Exam	logistics	

– Midterm	review	session	in	one	week,	from	7:00-9:00PM,	in	Gates	B01,	
led	by	SL	Peter	

– Midterm	is	on	Wednesday,	July	25,	from	7:00-9:00PM	
– Midterm	info	(list	of	topics	covered	and	study	tips)	online:	
https://web.stanford.edu/class/cs106b/exams/midterm.html	

–  Practice	exam	will	be	posted	by	end	of	the	day	tomorrow	
– General	tips:	practice	handwriting	answers,	use	CodeStepByStep	and	
section	handouts	for	further	practice	

–  The	exam	will	have	code	trace	or	reading	questions	in	addition	to	code	
writing	questions	

–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	

18

The "8 Queens" problem
• Consider	the	problem	of	trying	to	place	8	queens	on	a	chess	board	
such	that	no	queen	can	attack	another	queen.	
	

Q	

Q	

Q	

Q	

Q	

Q	

Q	

Q	

19

Exercise
• Suppose	we	have	a	Board	class	with	the	following	methods:	

• Write	a	function	solveQueens	that	accepts	a	Board	as	a	
parameter	and	tries	to	place	8	queens	on	it	safely.	
–  Your	method	should	return	a	board	with	the	queens	placed	if	it's	
possible.	

Member	 Description	
Board	b(size);	 construct	empty	board	
b.isSafe(row,	column)	 true	if	a	queen	could	be	

safely	placed	here		(0-based)	
b.isValid()	 true	if	all	current	queens	are	safe	
b.place(row,	column);	 place	queen	here	
b.remove(row,	column);	 remove	queen	from	here	
cout	<<	b	<<	endl;	
or	b.toString()	

print/return	a	text	display	
of	the	board	state	

20

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	What	are	the	

choices	for	each	decision?	Do	we	need	a	for	loop?	
Exploring	
2.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	store	

our	previous	choices	(avoiding	arms-length	recursion)?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

3.  How	should	we	restrict	our	choices	to	be	valid?	
4.  How	should	we	use	the	return	value	of	the	recursive	calls?	Are	we	looking	for	all	

solutions	or	just	one?	
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	un-modify,	

or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	were	modified?	
Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions	(usually	return	true)?	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
8.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	

21

Naive algorithm
•  for	(each	board	square):	

–  Place	a	queen	there.	
–  Try	to	place	the	rest	
of	the	queens.	

– Un-place	the	queen.	

Q:		How	large	is	the	
solution	space	for	
this	algorithm?	
A. 	64	choices	
B.	 	64	*	8	
C.	 	64	8	

D. 	64*63*62*61*60*59*58*57	
E.	 	none	of	the	above	

0	 1	 2	 3	 4	 5	 6	 7	

0	 Q		

1		

2	 ...	

3	

4	

5	

6	

7	

22

Better algorithm idea
• Observation:	In	a	working	
solution,	exactly	1	queen	
must	appear	in	each	
row	and	in	
each	column.	

–  Redefine	a	"choice"	
to	be	valid	placement	
of	a	queen	in	a	
particular	column.	

– How	large	is	the	
solution	space	now?	
• 8	*	8	*	8	*	...	

0	 1	 2	 3	 4	 5	 6	 7	

0	 Q		

1		

2	 Q	 ...	

3	 ...	

4	 Q	

5	

6	

7	

23

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?		

	Each	queen	to	place.	
What	are	the	choices	for	each	decision?		

	Where	in	a	column	to	place	the	queen.		
Do	we	need	a	for	loop?	

		Yes	–	8	options.	
Exploring	
2.  How	can	we	represent	that	choice?		

	Modify	the	board	to	place	the	queen	
How	should	we	modify	the	parameters	and	store	our	previous	choices	(avoiding	arms-
length	recursion)?		

	Keep	track	of	which	column	we	should	place	next	
3.  How	should	we	restrict	our	choices	to	be	valid?	

	Only	place	queens	in	their	own	column	
3.  Are	we	looking	for	all	solutions	or	just	one?		

	Just	one;	we	should	return	the	board	as	an	out	parameter,	and	return	a	boolean	

24

Backtracking Model
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	2?		

	Unplace	the	queen	
Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions?		

	Return	true	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
	Yes,	the	board	could	be	invalid	–	that	should	be	a	base	case.	
	At	the	end	of	the	function,	we	should	return	false	

25

8 Queens solution
//	Recursively	searches	for	a	solutions	to	N	queens	
//	on	this	board,	starting	with	the	given	column.	
//	PRE:	queens	have	been	safely	placed	in	columns	0	to	(col-1)	
bool	solveHelper(Board&	board,	int	col)	{	
				if	(!board.isValid())	{	
								return	false;	
				}	else	if	(col	>=	board.size())	{	
								return	true;	//	base	case:	all	columns	placed	
				}	else	{	
								//	recursive	case:	try	to	place	a	queen	in	this	column	
								for	(int	row	=	0;	row	<	board.size();	row++)	{	
												board.place(row,	col);													//	choose	
												if	(solveHelper(board,	col	+	1))	{	//	explore	
																return	true;	
												}				
												board.remove(row,	col);												//	un-choose	
								}	
				}	
				return	false;	
}	
bool	solveQueens(Board&	board)	{	
				solveHelper(board,	0);	
}	

26

Exercise: Dominoes
• Dominoes	uses	black	tiles,	each	having	2	numbers	
of	dots	from	0-6.		Players	line	up	tiles	to	match	dots.	

• Given	a	class	Domino	with	the	following	members:	
	

int	first()														//	first	dots	value	from	0-6	
int	second()													//	second	dots	value	from	0-6	
void	flip()														//	inverts	1st/2nd	
bool	contains(int	n)					//	true	if	1st	and/or	2nd	==	n	
string	toString()								//	e.g.	"(3|5)"	
	

• Write	a	function	chainExists	that	takes	a	Vector	of	dominoes	
and	a	starting/ending	dot	value,	and	returns	whether	the	dominoes	
can	be	made	into	a	chain	that	starts/ends	with	those	values.	

chainExists

27

Domino chains
• Suppose	we	have	the	following	dominoes:	

• We	can	link	them	into	a	chain	from	1	to	3	as	follows:	
– Notice	that	the	3|5	domino	had	to	be	flipped.	

• We	can	"link"	one	domino	into	a	"chain"	from	6	to	2	as	follows:		

28

Enumerating choices
•  If	we	have	these	dominoes,	and	we	want	a	chain	from	1	to	3:	

Q:		What	are	the	"choices"	your	code	should	explore?	
A. 	The	numbers	0-6	that	can	appear	on	a	domino.	
B.	 	The	set	of	all	of	the	dominoes	above.	
C.	 	The	set	of	dominoes	above	whose	first	number	is	1.	
D.	 	The	set	of	dominoes	above	whose	second	number	is	3.	
E.	 	The	set	of	dominoes	above	whose	first	or	second	number	is	1.	

29

Backtracking Model
Choosing	
1.  We	generally	iterate	over	decisions.	What	are	we	iterating	over	here?	What	are	the	

choices	for	each	decision?	Do	we	need	a	for	loop?	
Exploring	
2.  How	can	we	represent	that	choice?	How	should	we	modify	the	parameters	and	store	

our	previous	choices	(avoiding	arms-length	recursion)?	
a)  Do	we	need	to	use	a	wrapper	due	to	extra	parameters?	

3.  How	should	we	restrict	our	choices	to	be	valid?	
4.  How	should	we	use	the	return	value	of	the	recursive	calls?	Are	we	looking	for	all	

solutions	or	just	one?	
Un-choosing	
5.  How	do	we	un-modify	the	parameters	from	step	3?	Do	we	need	to	explicitly	un-modify,	

or	are	they	copied?	Are	they	un-modified	at	the	same	level	as	they	were	modified?	
Base	Case	
6.  What	should	we	do	in	the	base	case	when	we're	out	of	decisions	(usually	return	true)?	
7.  Is	there	a	case	for	when	there	aren't	any	valid	choices	left	or	a	"bad"	state	is	reached	

(usually	return	false)?		
8.  Are	the	base	cases	ordered	properly?	Are	we	avoiding	arms-length	recursion?	

30

hasChain pseudocode
function	chainExists(dominoes,	start,	end):	
				if	dominoes	is	empty:	nothing	to	do.	
				if	start	==	end:	
								if	any	domino	in	dominoes	contains	start,	return	true.	
				else:	
								//	handle	all	choices	for	a	single	letter;	let	recursion	do	the	rest.	
								for	each	domino	d	in	dominoes:	
												if	d	contains	start:	
																choose	d.	
																if	chainExists(dominoes):				//	explore	remaining	dominoes.	
																				return	true.	
																un-choose	d.	
	
								return	false.			//	no	chain	found	

31

hasChain solution
bool	chainExists(Vector<Domino>&	dominoes,	int	start,	int	end)	{	
				if	(start	==	end)	{																						//	base	case	
								for	(Domino	d	:	dominoes)	{	
												if	(d.contains(start))	{	return	true;	}	
								}	
								return	false;	
				}	else	{	
								for	(int	i	=	0;	i	<	dominoes.size();	i++)	{	
												Domino	d	=	dominoes[i];	
												if	(d.second()	==	start)	{	
																d.flip();	
												}	
												if	(d.first()	==	start)	{	
																dominoes.remove(i);										//	choose	
																if	(d.second()	==	end	||					//	explore	
																								chainExists(dominoes,	d.second(),	end))	{	
																				dominoes.insert(i,	d);	
																				return	true;	
																}	
																dominoes.insert(i,	d);							//	un-choose	
												}	
								}	
								return	false;	
				}	
}	

