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Plan for Today 
• How	does	the	computer	store	memory?	The	stack	and	the	heap	
• Memory	management	and	dynamic	allocation	–	powerful	tools	that	
allows	us	to	create	linked	data	structures	(next	two	weeks	of	the	
course)	
–  Pointers	and	memory	addresses	–	another	way	to	refer	to	variables	
–  Structs	–	an	easy	way	to	group	variables	together	
–  Arrays	
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Structs 
• Like	a	class,	but	simpler	

–  Collection	of	variables	together	
–  Easy	way	to	create	more	complex	types	
struct	Album	{		
				string	title;		
				int	year;		
				string	artist_name;		
				int	artist_age;		
				int	artist_num_kids;	
				string	artist_spouse;	
};	

• You	can	declare	a	variable	of	this	type	and	use	"."	to	access	fields	
Album	lifeChanges;	
lifeChanges.year	=	2017;	
lifeChanges.title	=	"Life	Changes";	
cout	<<	lifeChanges.year	<<	endl;	
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Struct Design 
• What's	wrong	with	this	struct	design?	
	

struct	Album	{		
				string	title;		
				int	year;	
		
				string	artist_name;		
				int	artist_age;		
				int	artist_num_kids;		
				string	artist_spouse;	
};	
	

• Style:	awkward	naming	
• How	many	times	do	we	construct	the	artist	info?	
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Struct Design 
Album	lifeChanges	=	{		
				"Life	Changes",	
				2017,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	
	
Album	tangledUp	=	{		
				"Tangled	Up",	
				2015,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	

• Redundant	code	to	declare	
and	initialize	these	albums	
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Struct Design 
Album	lifeChanges	=	{		
				"Life	Changes",	
				2017,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	
	
Album	tangledUp	=	{		
				"Tangled	Up",	
				2015,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	

• Redundant	code	to	declare	
and	initialize	these	albums	

• Redundant	to	store	too	
–  Imagine	if	the	artist	info	
took	up	a	lot	of	space	

"Life	Changes"	

2017	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Tangled	Up"	

2015	

"Thomas	Rhett"	

28	

2	

"Lauren"	

lifeChanges	 tangledUp	
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Fixing Redundancy 
struct	Album	{		
				string	title;		
				int	year;	
		
				string	artist_name;		
				int	artist_age;		
				int	artist_num_kids;		
				string	artist_spouse;	
};	

Should	probably	be	
another	struct?	
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The Artist Struct 
struct	Album	{		
				string	title;		
				int	year;	
		
				Artist	artist;	
};	
	
struct	Artist	{	
				string	name;		
				int	age;		
				int	num_kids;		
				string	spouse;		
};	
	
Artist	thomas	=	{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	lifeChanges	=	{"Life	Changes",	2017,	thomas};	
Album	tangledUp	=	{"Tangled	Up",	2015,	thomas};	
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Artist	thomas	=	{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	lifeChanges	=	{"Life	Changes",	2017,	thomas};	
Album	tangledUp	=	{"Tangled	Up",	2015,	thomas};	
	

Artist In Memory 

"Life	Changes"	

2017	

lifeChanges	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	
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Artist	thomas	=	{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	lifeChanges	=	{"Life	Changes",	2017,	thomas};	
Album	tangledUp	=	{"Tangled	Up",	2015,	thomas};	
	
thomas.num_kids++;	//	what	happens?	
	

Artful Redundancy 

"Life	Changes"	

2017	

lifeChanges	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	
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•  The	artist	field	should	point	to		or	refer	to	the	"thomas"	data	
structure	instead	of	storing	it	
- if	only	we	could	just	tell	the	computer	where	in	memory	to	look	for	the	
thomas	structure….	

•  In	C++	-	pointers!		

What we want 

"Life	Changes"	

2017	

lifeChanges	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

Please	see	
"thomas"	
object	Please	see	

"thomas"	
object	
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Computer Memory 
• Creating	a	variable	allocates	memory	(spot	for	the	variable	in	the	
computer)	
– We	number	the	spots	in	memory	(just	like	houses)	with	a	memory	
address	
• Can	think	of	a	computer's	memory	as	a	giant	array,	spread	between	stack	and	
heap	

• Stack	
–  stores	all	the	local	variables,	parameters,	etc.	
– manages	memory	automatically	

• Heap	
– memory	that	you	manage	
–  Advantage:	you	get	to	decide	when	the	memory	is	freed	(instead	of	it	
always	disappearing	at	the	end	of	a	function)	

– Disadvantage:	you	need	to	manage	the	memory	yourself	
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Code Trace 
int	x	=	22;	
int	y	=	39;	
	
	

Creating	variables	on	the	stack:	
These	lines	declare	and	initialize	two	variables	on	
the	stack	
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Code Trace 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
	

Creating	a	pointer:	
xPtr	will	store	a	reference	to	an	int	
We	say	that	a	pointer	"points	to"	a	place	in	
memory,	because	it	stores	a	memory	address	
Like	all	local	variables,	xPtr	is	on	the	stack	
The	type	before	the	asterisk	is	the	type	the	
pointer	points	to	
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Code Trace 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
	

Initializing	a	pointer:	
xPtr	now	points	to	the	variable	x	(the	pointee)	
The	&	operator	gets	the	memory	address	of	a	
variable,	which	is	now	stored	in	xPtr	
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Code Trace 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
	
	

Changing	pointee	values:	
Changes	we	make	to	a	"pointee"	(the	object	of	a	
pointer)	can	be	accessed	by	the	pointer	
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Code Trace 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
	
	

Creating	a	pointer:	
Here	we	create	another	pointer,	this	
time	pointing	to	the	variable	y	



18 

Code Trace 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
	
	

Accessing	Pointees:	
We	can	dereference	a	pointer	using	the	*	
operator	
In	this	example,	we	add	1	to	the	value	that	
yPtr	points	to	
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The Stack 
• A	pointer	is	a	special	type	that	stores	the	address	for	a	variable	

– Needs	to	be	declared	with	an	asterisk	(meaning	pointer)	to	the	type	
stored	in	the	block	

int	*pointer;	//	stores	the	memory	address	for	an	int	
string	*strPointer;	//	stores	memory	address	for	a	string	
	
	

• To	create	a	variable	on	the	stack,	we	just	declare	it	(all	variables	
you've	created	in	this	class	so	far	have	been	on	the	stack)	
Album	lifeChanges;	
– We	can	get	the	memory	address	using	an	&	(address	operator)	
Album	*pointer	=	&lifeChanges;	
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Pointer Syntax Recap 
• Declaring	a	pointer	

	type*	name;	
• Dereferencing	a	pointer	

– Gets	the	variable	from	the	address	(the	variable	the	pointer	points	to)	
–  Also	uses	the	*	

	type	variable	=	*pointer;	
–  To	access	a	field	in	a	pointer	to	a	struct:	

	int	year	=	(*album).year;	
–  Alternative	syntax	uses	->	instead:	

	int	year	=	album->year;	
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Pointer mystery 
• As	parameters,	pointers	work	similarly	to	references.	

	

void	mystery(int	a,	int&	b,	int*	c)	{	
				a++;	
				(*c)--;	
				b	+=	*c;	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	*c	<<	"	"	<<	endl;	
}	
	

int	main()	{	
				int	a	=	4;	
				int	b	=	8;	
				int	c	=	-3;	
	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	<<	"	"	<<	endl;	
				mystery(c,	a,	&b);	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	<<	"	"	<<	endl;	
				return	0;	
}	
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Pointer mystery 
void	mystery(int	a,	int&	b,	int*	c)	{	
				a++;	
				(*c)--;	
				b	+=	*c;	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	
*c	<<	"	"	<<	endl;	

}	
	

int	main()	{	
				int	a	=	4;	
				int	b	=	8;	
				int	c	=	-3;	
	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	
<<	"	"	<<	endl;	

				mystery(c,	a,	&b);	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	
<<	"	"	<<	endl;	

				return	0;	
}	
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Announcements 
• Grades	for	assignment	2	should	be	released;	assignment	4	
(backtracking)	released	later	today	

• Exam	logistics	
– Midterm	review	session	in	one	week,	from	7:00-8:30PM,	in	Gates	B01,	
led	by	SL	Peter	

– Midterm	is	on	Wednesday,	July	25,	from	7:00-9:00PM	in	Hewlett	200	
– Midterm	info	(list	of	topics	covered	and	study	tips)	online:	
https://web.stanford.edu/class/cs106b/exams/midterm.html	

–  Practice	exam	is	posted	–	gives	you	an	idea	of	what	to	expect,	not	
necessarily	going	to	be	identical	

–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	
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Code Trace Continued 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
	
	
	

Creating	memory	on	the	heap:	
Only	way	to	create	memory	on	the	heap	is	
with	new	
Asks	the	computer	for	more	memory	
You're	responsible	for	unallocating	(freeing)	
the	memory	
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Code Trace Continued 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
	
	
	

Accessing	Heap	Memory:	
Same	as	with	pointers	to	memory	on	the	stack	
Use	the	*	to	dereference	
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Code Trace Continued 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
yPtr	=	&y;	
	
	
	

Orphaned	Memory:	
If	we	lose	all	the	pointers	to	a	block	of	heap-allocated	
memory,	we	say	it's	"orphaned"	
There's	no	way	to	access	it	or	tell	the	computer	we're	
done	using	it	–	that	slows	the	computer	down	
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Code Trace Continued 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
delete	yPtr;	
	
	

Freeing	Memory:	
To	tell	the	computer	we	don't	need	the	heap	
memory	anymore,	we	call	delete	
Every	new	needs	a	delete	
If	we	dereference	freed	memory,	unpredictable	
behavior	(crash!)	
Stack	memory	is	automatically	freed	when	the	
function	ends	
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Code Trace Continued 
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
delete	yPtr;	
yPtr	=	&y;	
	
	

Reassigning	Pointers:	
After	freeing	the	memory,	we	can	reassign	the	
pointer	without	leaking	memory	
Calling	delete	changed	the	pointee	not	the	pointer	
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Pointers and the Heap 
• Creating	a	variable	on	the	heap	uses	the	new	keyword	

–  Allocates	memory	on	the	heap	and	returns	the	location	to	store	in	the	
pointer	

– Note:	the	pointer	itself	is	still	a	local	variable	(it	has	a	name)	

	Album*	lifeChanges	=	new	Album;	

• Freeing	memory	–	everything	created	must	be	destroyed	
–  The	Album	will	exist	even	if	lifeChanges	goes	out	of	scope	or	changes	
values	
• "orphaning	memory"	–	the	Album	isn't	pointed	to	by	anything	anymore	
• When	memory	is	orphaned,	we	say	the	program	has	a	memory	leak	
• Can	cause	your	program	to	slow	down	

–  To	free	the	Album,	use	the	delete	keyword	on	the	pointer	
		delete	lifeChanges;	//	lifeChanges	can	be	reassigned	now	
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– What	should	the	Album	struct	look	like?	

Album improvements 

"Life	Changes"	

2017	

lifeChanges	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

Please	see	
"thomas"	
object	Please	see	

"thomas"	
object	
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The Album Struct Redux 
struct	Album	{		
				string	title;		
				int	year;	
		
				Artist	*artist;	
};	
	
struct	Artist	{	
				string	name;		
				int	age;		
				int	num_kids;		
				string	spouse;		
};	
	
Artist	*thomas	=	new	Artist{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	*lifeChanges	=	new	Album{"Life	Changes",	2017,	thomas};	
Album	*tangledUp	=	new	Album{"Tangled	Up",	2015,	thomas};	
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Artist	*thomas	=	new	Artist{"Thomas	Rhett",	28,	2,	"Lauren"};	
Album	*lifeChanges	=	new	Album{"Life	Changes",	2017,	thomas};	
Album	*tangledUp	=	new	Album{"Tangled	Up",	2015,	thomas};	
cout	<<	tangledUp->artist->spouse	<<	endl;	//	"Lauren"	
//	later	in	the	code,	maybe	in	a	different	function	
delete	thomas;	delete	tangledUp;	delete	lifeChanges;	
	

Album improvements 

"Life	Changes"	

2017	

lifeChanges	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	
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Null/garbage pointers 
• null	pointer:	Memory	address	0;		"points	to	nothing".	
• uninitialized	pointer:	points	to	a	random	address.	

–  If	you	dereference	these,	program	will	probably	crash.	
	
int	x	=	42;	
int*	p1	=	nullptr;					//	stores	0	
int*	p2;															//	uninitialized	
cout	<<		p1	<<	endl;			//	0	
cout	<<	*p1	<<	endl;			//	KABOOM	
cout	<<	*p2	<<	endl;			//	KABOOM	
	
//	testing	for	nullness	
if	(p1	==	nullptr)	{...}		//	true	
if	(p1)												{...}		//	false	
if	(!p1)											{...}		//	true	

0x7f8e20	 x	 42	
0x7f8e24	 p1	 0x0	
0x7f8e28	 p2	 0x??????	
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More Complicated Trace 
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Heap	allocated	memory	persists:	
One	of	the	advantages	of	heap-
allocated	memory	is	it	persists	after	
the	stack	frame	returns	
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More Complicated Trace 
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Arrays:	
This	line	creates	an	array	of	size	3	on	
the	heap	
Arrays	are	fixed-size	–	you	can't	make	
them	bigger	or	smaller	
That	block	is	pointed	to	by	the	
variable	album	
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More Complicated Trace 
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Array	Elements:	
Arrays	are	originally	uninitialized	
You	can	access	each	element	by	index	
(just	like	Vector)		
Returns	the	actual	element	NOT	a	
pointer	
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More Complicated Trace 
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Deleting	Arrays:	
Just	as	new	used	the	square	brackets	
to	create	the	array,	you	must	call	
delete	with	square	brackets	to	free	
the	array's	memory	
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More Complicated Trace 
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		int	size;	
		Album	*myLibrary	=	makeLibrary(size);	
		//	do	something	with	library	using	size	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary(int	&size)	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		size	=	3;	
		return	library;	
}	
			
	

Array	Sizes:	
Arrays	don't	have	a	length	field,	so	
we	need	to	store	the	size	in	a	
separate	variable	
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Arrays 
• Sometimes,	you	want	a	several	blocks	of	memory,	not	just	one	
block	
–  The	blocks	are	stored	next	to	each	other	

• Solution:	array	
• Declare	an	array	of	fixed-size	

	Type*	arr	=	new	T[size];	
	int	*arr	=	new	int[7];		

• Freeing	the	array	(notice	the	brackets):	
	delete[]	arr;	

• Warnings:	
–  Cannot	change	size	(grow	or	shrink)	
– No	bounds-checking	–	the	program	will	have	undefined	behavior	
(crash)	

– Need	to	store	size	separately	


