
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	14	
Pointers	and	Memory	Management	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• How	does	the	computer	store	memory?	The	stack	and	the	heap	
• Memory	management	and	dynamic	allocation	–	powerful	tools	that	
allows	us	to	create	linked	data	structures	(next	two	weeks	of	the	
course)	
–  Pointers	and	memory	addresses	–	another	way	to	refer	to	variables	
–  Structs	–	an	easy	way	to	group	variables	together	
–  Arrays	

3

Structs
• Like	a	class,	but	simpler	

–  Collection	of	variables	together	
–  Easy	way	to	create	more	complex	types	
struct	Album	{		
				string	title;		
				int	year;		
				string	artist_name;		
				int	artist_age;		
				int	artist_num_kids;	
				string	artist_spouse;	
};	

• You	can	declare	a	variable	of	this	type	and	use	"."	to	access	fields	
Album	lifeChanges;	
lifeChanges.year	=	2017;	
lifeChanges.title	=	"Life	Changes";	
cout	<<	lifeChanges.year	<<	endl;	

	

4

Struct Design
• What's	wrong	with	this	struct	design?	
	

struct	Album	{		
				string	title;		
				int	year;	
		
				string	artist_name;		
				int	artist_age;		
				int	artist_num_kids;		
				string	artist_spouse;	
};	
	

• Style:	awkward	naming	
• How	many	times	do	we	construct	the	artist	info?	

5

Struct Design
Album	lifeChanges	=	{		
				"Life	Changes",	
				2017,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	
	
Album	tangledUp	=	{		
				"Tangled	Up",	
				2015,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	

• Redundant	code	to	declare	
and	initialize	these	albums	

6

Struct Design
Album	lifeChanges	=	{		
				"Life	Changes",	
				2017,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	
	
Album	tangledUp	=	{		
				"Tangled	Up",	
				2015,	
				"Thomas	Rhett",	
				28,	
				2,		
				"Lauren"	
};	

• Redundant	code	to	declare	
and	initialize	these	albums	

• Redundant	to	store	too	
–  Imagine	if	the	artist	info	
took	up	a	lot	of	space	

"Life	Changes"	

2017	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Tangled	Up"	

2015	

"Thomas	Rhett"	

28	

2	

"Lauren"	

lifeChanges	 tangledUp	

7

Fixing Redundancy
struct	Album	{		
				string	title;		
				int	year;	
		
				string	artist_name;		
				int	artist_age;		
				int	artist_num_kids;		
				string	artist_spouse;	
};	

Should	probably	be	
another	struct?	

8

The Artist Struct
struct	Album	{		
				string	title;		
				int	year;	
		
				Artist	artist;	
};	
	
struct	Artist	{	
				string	name;		
				int	age;		
				int	num_kids;		
				string	spouse;		
};	
	
Artist	thomas	=	{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	lifeChanges	=	{"Life	Changes",	2017,	thomas};	
Album	tangledUp	=	{"Tangled	Up",	2015,	thomas};	
	

9

	
	
	
	
	
	
	
	
	
	
	
	
	
Artist	thomas	=	{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	lifeChanges	=	{"Life	Changes",	2017,	thomas};	
Album	tangledUp	=	{"Tangled	Up",	2015,	thomas};	
	

Artist In Memory

"Life	Changes"	

2017	

lifeChanges	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

10

	
	
	
	
	
	
	
	
	
	
	
	
	
Artist	thomas	=	{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	lifeChanges	=	{"Life	Changes",	2017,	thomas};	
Album	tangledUp	=	{"Tangled	Up",	2015,	thomas};	
	
thomas.num_kids++;	//	what	happens?	
	

Artful Redundancy

"Life	Changes"	

2017	

lifeChanges	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

11

	

•  The	artist	field	should	point	to		or	refer	to	the	"thomas"	data	
structure	instead	of	storing	it	
- if	only	we	could	just	tell	the	computer	where	in	memory	to	look	for	the	
thomas	structure….	

•  In	C++	-	pointers!		

What we want

"Life	Changes"	

2017	

lifeChanges	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

Please	see	
"thomas"	
object	Please	see	

"thomas"	
object	

12

Computer Memory
• Creating	a	variable	allocates	memory	(spot	for	the	variable	in	the	
computer)	
– We	number	the	spots	in	memory	(just	like	houses)	with	a	memory	
address	
• Can	think	of	a	computer's	memory	as	a	giant	array,	spread	between	stack	and	
heap	

• Stack	
–  stores	all	the	local	variables,	parameters,	etc.	
– manages	memory	automatically	

• Heap	
– memory	that	you	manage	
–  Advantage:	you	get	to	decide	when	the	memory	is	freed	(instead	of	it	
always	disappearing	at	the	end	of	a	function)	

– Disadvantage:	you	need	to	manage	the	memory	yourself	

13

Code Trace
int	x	=	22;	
int	y	=	39;	
	
	

Creating	variables	on	the	stack:	
These	lines	declare	and	initialize	two	variables	on	
the	stack	

14

Code Trace
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
	

Creating	a	pointer:	
xPtr	will	store	a	reference	to	an	int	
We	say	that	a	pointer	"points	to"	a	place	in	
memory,	because	it	stores	a	memory	address	
Like	all	local	variables,	xPtr	is	on	the	stack	
The	type	before	the	asterisk	is	the	type	the	
pointer	points	to	

15

Code Trace
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
	

Initializing	a	pointer:	
xPtr	now	points	to	the	variable	x	(the	pointee)	
The	&	operator	gets	the	memory	address	of	a	
variable,	which	is	now	stored	in	xPtr	

16

Code Trace
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
	
	

Changing	pointee	values:	
Changes	we	make	to	a	"pointee"	(the	object	of	a	
pointer)	can	be	accessed	by	the	pointer	

17

Code Trace
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
	
	

Creating	a	pointer:	
Here	we	create	another	pointer,	this	
time	pointing	to	the	variable	y	

18

Code Trace
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
	
	

Accessing	Pointees:	
We	can	dereference	a	pointer	using	the	*	
operator	
In	this	example,	we	add	1	to	the	value	that	
yPtr	points	to	

19

The Stack
• A	pointer	is	a	special	type	that	stores	the	address	for	a	variable	

– Needs	to	be	declared	with	an	asterisk	(meaning	pointer)	to	the	type	
stored	in	the	block	

int	*pointer;	//	stores	the	memory	address	for	an	int	
string	*strPointer;	//	stores	memory	address	for	a	string	
	
	

• To	create	a	variable	on	the	stack,	we	just	declare	it	(all	variables	
you've	created	in	this	class	so	far	have	been	on	the	stack)	
Album	lifeChanges;	
– We	can	get	the	memory	address	using	an	&	(address	operator)	
Album	*pointer	=	&lifeChanges;	

20

Pointer Syntax Recap
• Declaring	a	pointer	

	type*	name;	
• Dereferencing	a	pointer	

– Gets	the	variable	from	the	address	(the	variable	the	pointer	points	to)	
–  Also	uses	the	*	

	type	variable	=	*pointer;	
–  To	access	a	field	in	a	pointer	to	a	struct:	

	int	year	=	(*album).year;	
–  Alternative	syntax	uses	->	instead:	

	int	year	=	album->year;	

21

Pointer mystery
• As	parameters,	pointers	work	similarly	to	references.	

	

void	mystery(int	a,	int&	b,	int*	c)	{	
				a++;	
				(*c)--;	
				b	+=	*c;	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	*c	<<	"	"	<<	endl;	
}	
	

int	main()	{	
				int	a	=	4;	
				int	b	=	8;	
				int	c	=	-3;	
	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	<<	"	"	<<	endl;	
				mystery(c,	a,	&b);	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	<<	"	"	<<	endl;	
				return	0;	
}	

22

Pointer mystery
void	mystery(int	a,	int&	b,	int*	c)	{	
				a++;	
				(*c)--;	
				b	+=	*c;	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	
*c	<<	"	"	<<	endl;	

}	
	

int	main()	{	
				int	a	=	4;	
				int	b	=	8;	
				int	c	=	-3;	
	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	
<<	"	"	<<	endl;	

				mystery(c,	a,	&b);	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	
<<	"	"	<<	endl;	

				return	0;	
}	

23

Announcements
• Grades	for	assignment	2	should	be	released;	assignment	4	
(backtracking)	released	later	today	

• Exam	logistics	
– Midterm	review	session	in	one	week,	from	7:00-8:30PM,	in	Gates	B01,	
led	by	SL	Peter	

– Midterm	is	on	Wednesday,	July	25,	from	7:00-9:00PM	in	Hewlett	200	
– Midterm	info	(list	of	topics	covered	and	study	tips)	online:	
https://web.stanford.edu/class/cs106b/exams/midterm.html	

–  Practice	exam	is	posted	–	gives	you	an	idea	of	what	to	expect,	not	
necessarily	going	to	be	identical	

–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	

24

Code Trace Continued
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
	
	
	

Creating	memory	on	the	heap:	
Only	way	to	create	memory	on	the	heap	is	
with	new	
Asks	the	computer	for	more	memory	
You're	responsible	for	unallocating	(freeing)	
the	memory	

25

Code Trace Continued
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
	
	
	

Accessing	Heap	Memory:	
Same	as	with	pointers	to	memory	on	the	stack	
Use	the	*	to	dereference	

26

Code Trace Continued
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
yPtr	=	&y;	
	
	
	

Orphaned	Memory:	
If	we	lose	all	the	pointers	to	a	block	of	heap-allocated	
memory,	we	say	it's	"orphaned"	
There's	no	way	to	access	it	or	tell	the	computer	we're	
done	using	it	–	that	slows	the	computer	down	

27

Code Trace Continued
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
delete	yPtr;	
	
	

Freeing	Memory:	
To	tell	the	computer	we	don't	need	the	heap	
memory	anymore,	we	call	delete	
Every	new	needs	a	delete	
If	we	dereference	freed	memory,	unpredictable	
behavior	(crash!)	
Stack	memory	is	automatically	freed	when	the	
function	ends	

28

Code Trace Continued
int	x	=	22;	
int	y	=	39;	
int	*xPtr;	
xPtr	=	&x;	
x	+=	9;	
int	*yPtr	=	&y;	
(*yPtr)++;	
yPtr	=	new	int;	
*yPtr	=	8;	
delete	yPtr;	
yPtr	=	&y;	
	
	

Reassigning	Pointers:	
After	freeing	the	memory,	we	can	reassign	the	
pointer	without	leaking	memory	
Calling	delete	changed	the	pointee	not	the	pointer	

29

Pointers and the Heap
• Creating	a	variable	on	the	heap	uses	the	new	keyword	

–  Allocates	memory	on	the	heap	and	returns	the	location	to	store	in	the	
pointer	

– Note:	the	pointer	itself	is	still	a	local	variable	(it	has	a	name)	

	Album*	lifeChanges	=	new	Album;	

• Freeing	memory	–	everything	created	must	be	destroyed	
–  The	Album	will	exist	even	if	lifeChanges	goes	out	of	scope	or	changes	
values	
• "orphaning	memory"	–	the	Album	isn't	pointed	to	by	anything	anymore	
• When	memory	is	orphaned,	we	say	the	program	has	a	memory	leak	
• Can	cause	your	program	to	slow	down	

–  To	free	the	Album,	use	the	delete	keyword	on	the	pointer	
		delete	lifeChanges;	//	lifeChanges	can	be	reassigned	now	

30

	

– What	should	the	Album	struct	look	like?	

Album improvements

"Life	Changes"	

2017	

lifeChanges	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

Please	see	
"thomas"	
object	Please	see	

"thomas"	
object	

31

The Album Struct Redux
struct	Album	{		
				string	title;		
				int	year;	
		
				Artist	*artist;	
};	
	
struct	Artist	{	
				string	name;		
				int	age;		
				int	num_kids;		
				string	spouse;		
};	
	
Artist	*thomas	=	new	Artist{"Thomas	Rhett",	28,	2,	"Lauren"};	
	
Album	*lifeChanges	=	new	Album{"Life	Changes",	2017,	thomas};	
Album	*tangledUp	=	new	Album{"Tangled	Up",	2015,	thomas};	
	

32

	
	
Artist	*thomas	=	new	Artist{"Thomas	Rhett",	28,	2,	"Lauren"};	
Album	*lifeChanges	=	new	Album{"Life	Changes",	2017,	thomas};	
Album	*tangledUp	=	new	Album{"Tangled	Up",	2015,	thomas};	
cout	<<	tangledUp->artist->spouse	<<	endl;	//	"Lauren"	
//	later	in	the	code,	maybe	in	a	different	function	
delete	thomas;	delete	tangledUp;	delete	lifeChanges;	
	

Album improvements

"Life	Changes"	

2017	

lifeChanges	

"Tangled	Up"	

2015	

tangledUp	

"Thomas	Rhett"	

28	

2	

"Lauren"	

thomas	

33

Null/garbage pointers
• null	pointer:	Memory	address	0;		"points	to	nothing".	
• uninitialized	pointer:	points	to	a	random	address.	

–  If	you	dereference	these,	program	will	probably	crash.	
	
int	x	=	42;	
int*	p1	=	nullptr;					//	stores	0	
int*	p2;															//	uninitialized	
cout	<<		p1	<<	endl;			//	0	
cout	<<	*p1	<<	endl;			//	KABOOM	
cout	<<	*p2	<<	endl;			//	KABOOM	
	
//	testing	for	nullness	
if	(p1	==	nullptr)	{...}		//	true	
if	(p1)												{...}		//	false	
if	(!p1)											{...}		//	true	

0x7f8e20	 x	 42	
0x7f8e24	 p1	 0x0	
0x7f8e28	 p2	 0x??????	

34

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Heap	allocated	memory	persists:	
One	of	the	advantages	of	heap-
allocated	memory	is	it	persists	after	
the	stack	frame	returns	

35

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Arrays:	
This	line	creates	an	array	of	size	3	on	
the	heap	
Arrays	are	fixed-size	–	you	can't	make	
them	bigger	or	smaller	
That	block	is	pointed	to	by	the	
variable	album	

36

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Array	Elements:	
Arrays	are	originally	uninitialized	
You	can	access	each	element	by	index	
(just	like	Vector)		
Returns	the	actual	element	NOT	a	
pointer	

37

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Deleting	Arrays:	
Just	as	new	used	the	square	brackets	
to	create	the	array,	you	must	call	
delete	with	square	brackets	to	free	
the	array's	memory	

38

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		int	size;	
		Album	*myLibrary	=	makeLibrary(size);	
		//	do	something	with	library	using	size	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary(int	&size)	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		size	=	3;	
		return	library;	
}	
			
	

Array	Sizes:	
Arrays	don't	have	a	length	field,	so	
we	need	to	store	the	size	in	a	
separate	variable	

39

Arrays
• Sometimes,	you	want	a	several	blocks	of	memory,	not	just	one	
block	
–  The	blocks	are	stored	next	to	each	other	

• Solution:	array	
• Declare	an	array	of	fixed-size	

	Type*	arr	=	new	T[size];	
	int	*arr	=	new	int[7];		

• Freeing	the	array	(notice	the	brackets):	
	delete[]	arr;	

• Warnings:	
–  Cannot	change	size	(grow	or	shrink)	
– No	bounds-checking	–	the	program	will	have	undefined	behavior	
(crash)	

– Need	to	store	size	separately	

