CS 106B, Lecture 14
Pointers and Memory Management

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e How does the computer store memory? The stack and the heap

e Memory management and dynamic allocation — powerful tools that
allows us to create linked data structures (next two weeks of the
course)

— Pointers and memory addresses — another way to refer to variables
— Structs — an easy way to group variables together
— Arrays

e Like a class, but simpler

— Collection of variables together

— Easy way to create more complex types
struct Album {

string title;

int year;

string artist name;

int artist age;

int artist _num_kids;

string artist spouse;

s

* You can declare a variable of this type and use "." to access fields
Album lifeChanges;
lifeChanges.year = 2017;
lifeChanges.title = "Life Changes"”;
cout << lifeChanges.year << endl;

Struct Design

e What's wrong with this struct design?

struct Album {
string title;
int year;

string artist_name;
int artist_age;

int artist_num_kids;
string artist_spouse;

s

e Style: awkward naming

e How many times do we construct the artist info?

Struct Design

Album lifeChanges = { e Redundant code to declare
"Life Changes",

2017, and initialize these albums
"Thomas Rhett",

28,

2,

"Lauren”

s

Album tangledUp = {
"Tangled Up",
2015,

"Thomas Rhett",
28,

2,

"Lauren”

s

Struct Design

Album lifeChanges = { e Redundant code to declare
"Life Changes", e s
and initialize these albums

2017,

"Thomas Rhett”, e Redundant to store too
28’

2, — Imagine if the artist info
"Lauren" took up a lot of space

s

Album tangledUp = {
"Tangled Up",
2015,

"Thomas Rhett",
28,

2,

"Lauren”

"Life Changes" "Tangled Up"

"Lauren"

—

s

lifeChanges tangledUp

Fixing Redundancy

struct Album {
string title;
int year;

string artist_name;

int artist_age; Should probably be
int artist_num_kids; another struct?
string artist_spouse;

s

The Artist Struct

struct Album {
string title;
int year;

Artist artist;
}s

struct Artist {
string name;
int age;
int num_kids;
string spouse;

}s
Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges = {"Life Changes", 2017, thomas};
Album tangledUp = {"Tangled Up", 2015, thomas};

Artist In Memory

"fangled Up"

"Thomas Rhett" "Life Changes™

2017 "Thomas Rhett"

28
"Thomas Rhett"

2
"Lauren"

tangledUp

"Lauren"

lifeChanges

Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges
Album tangledUp

= {"Life Changes", 2017, thomas};
{"Tangled Up", 2015, thomas};

Artful Redundancy

"fangled Up"

"Thomas Rhett" "Life Changes™

2017 "Thomas Rhett"

28
"Thomas Rhett"

2
"Lauren"

tangledUp

"Lauren"

lifeChanges

Artist thomas = {"Thomas Rhett", 28, 2, "Lauren"};

Album lifeChanges
Album tangledUp

= {"Life Changes", 2017, thomas};
{"Tangled Up", 2015, thomas};

thomas.num_kids++; // what happens?
10

"fangled Up"

"Thomas Rhett" "Life Changes™
2017 Please see
"thomas"
Please see object
"Lauren" "thomas" \
thomas SB[[
tangledUp

lifeChanges

* The artist field should point to or refer to the "thomas" data

structure instead of storing it
—if only we could just tell the computer where in memory to look for the
thomas structure....

* In C++ - pointers! 0

Computer Memory

e Creating a variable allocates memory (spot for the variable in the
computer)

— We number the spots in memory (just like houses) with a memory
address

e Can think of a computer's memory as a giant array, spread between stack and
heap

e Stack
— stores all the local variables, parameters, etc.
— manages memory automatically

e Heap
— memory that you manage

— Advantage: you get to decide when the memory is freed (instead of it
always disappearing at the end of a function)

— Disadvantage: you need to manage the memory yourself
12

Code Trace

int x = 223 Stack Heap
int y = 39; LEEL

int x

22

int y

39

Creating variables on the stack:
These lines declare and initialize two variables on
the stack

Code Trace

. Stack Heap
int x = 22;
int y = 39; madh
. int x
int *xPtr; 22

ptr xPtr

?
int y

39

Creating a pointer:

xPtr will store a reference to an int

We say that a pointer "points to" a place in
memory, because it stores a memory address
Like all local variables, xPtr is on the stack

The type before the asterisk is the type the
pointer points to

14

Code Trace

int x = 22, Stack Heap
int y = 39; main
int *xPtr; EZX
xPtr = &x; ptr xPtr
int y
39

Initializing a pointer:

XPtr now points to the variable x (the pointee)
The & operator gets the memory address of a
variable, which is now stored in xPtr

Code Trace

int X = 22; Stack Heap
int y = 39; main
int *xPtr; Ef(
XPtr = &x; PR e
X += 9; in3t9y

Changing pointee values:
Changes we make to a "pointee" (the object of a
pointer) can be accessed by the pointer

16

int x = 22;

int y = 39;

int *xPtr;

xPtr = &x;

X += 9;

int *yPtr = &y;

Code Trace

Stack Heap

main

int x
31
ptr xPtr
int y
39
ptr yPtr

Creating a pointer:
Here we create another pointer, this
time pointing to the variable y

17

int x = 22;

int y = 39;

int *xPtr;

xPtr = &x;

X += 9;

int *yPtr = &y;
(*yPtr)++;

Code Trace

Stack Heap

main

int x
31
ptr xPtr
int y
40
ptr yPtr

Accessing Pointees:

We can dereference a pointer using the *
operator

In this example, we add 1 to the value that
yPtr points to

18

The Stack

e A pointer is a special type that stores the address for a variable

— Needs to be declared with an asterisk (meaning pointer) to the type
stored in the block

int *pointer; // stores the memory address for an int
string *strPointer; // stores memory address for a string

e To create a variable on the stack, we just declare it (all variables
you've created in this class so far have been on the stack)

Album lifeChanges;
— We can get the memory address using an & (address operator)
Album *pointer = &lifeChanges;

19

Pointer Syntax Recap

e Declaring a pointer
type* name;
e Dereferencing a pointer
— Gets the variable from the address (the variable the pointer points to)
— Also uses the *
type variable = *pointer;
— To access a field in a pointer to a struct:
int year = (*album).year;
— Alternative syntax uses -> instead:
int year = album->year;

20

Pointer mystery

e As parameters, pointers work similarly to references.

void mystery(int a, int& b, int* c) {
a++;
(*c)--;
b += *c;
cout << a <<

<< b << " "< *ec << " " << endl;

int main() {
int a = 4;
int b = 8;
int ¢ = -3;

cout << a << " "< b<< " " <k< <k " " << endl;
mystery(c, a, &b);

cout << a << " " << b<< " " «k< <k« " " << endl;
return 0;

21

Pointer mystery

void mystery(int a, int& b, int* c) {
a++;
(*C)--; main

b += *c; ?

cout << a << " "< b << " "« TR
*¢ << " " << endl; ?

} int ¢
?

int main() {
int a
int b
int ¢

Stack Heap

4;
8;

..E;;

cout << a << " " <k<b<kk " "« cc
<« " " << endl;

mystery(c, a, &b);

cout << a << " "<k b« " "<k c Output
<« " " << endl;]

return 9;

22

Announcements

e Grades for assignment 2 should be released; assighment 4
(backtracking) released later today
e Exam logistics

— Midterm review session in one week, from 7:00-8:30PM, in Gates BO1,
led by SL Peter

— Midterm is on Wednesday, July 25, from 7:00-9:00PM in Hewlett 200

— Midterm info (list of topics covered and study tips) online:
https://web.stanford.edu/class/cs106b/exams/midterm.html

— Practice exam is posted — gives you an idea of what to expect, not
necessarily going to be identical

— Complete assignment 4 before the midterm — backtracking will be
tested

23

Code Trace Continued

int x = 22;

int y = 39;

int *xPtr;

xPtr = &x;

X += 9;

int *yPtr = &y;
(*yPtr)++;

yPtr = new int;

Stack Heap

0x5CB8C80
?

main

int x
31
ptr xPtr

int y
40
ptr yPtr

Creating memory on the heap:

Only way to create memory on the heap is
with new

Asks the computer for more memory
You're responsible for unallocating (freeing)
the memory

24

Code Trace Continued

int x = 22;

int y = 39;

int *xPtr;

xPtr = &x;

X += 9;

int *yPtr = &y;
(*yPtr)++;

yPtr = new int;
*yPtr = 8;

Stack Heap

0x5CB8C80
8

main

int x
31
ptr xPtr

int y
40
ptr yPtr

Accessing Heap Memory:
Same as with pointers to memory on the stack
Use the * to dereference

25

Code Trace Continued

int x = 22;

int y = 39;

int *xPtr;

xPtr = &x;

X += 9;

int *yPtr = &y;

(*yPtr)++;
yPtr = new int;
*yPtr = 8;
yPtr = &y;

Stack Heap

main (Orphaned) @x5CB8C80

8
int x
31
ptr xPtr

int y
40
ptr yPtr

Orphaned Memory:

If we lose all the pointers to a block of heap-allocated
memory, we say it's "orphaned”

There's no way to access it or tell the computer we're

done using it — that slows the computer down

Code Trace Continued

int x = 22;

int y = 39;

int *xPtr;

xPtr = &x;

X += 9;

int *yPtr = &y;

(*yPtr)++;
yPtr = new int;
*yPtr = 8;

delete yPtr;

Stack Heap

main (Freed) @x5CB8C80

int x
31
ptr xPtr

int y
40
ptr yPtr

Freeing Memory:

To tell the computer we don't need the heap
memory anymore, we call delete

Every new needs a delete

If we dereference freed memory, unpredictable
behavior (crash!)

Stack memory is automatically freed when the
function ends

Code Trace Continued

int x = 22; Stack Heap
int y = 39; main

int *xPtr; -

xPtr = &X; &thr

X += 9; o

int *yPtr = &y; Eﬁ’m

(*yPtr)++;

yPtr = new int;

kyPtr = 8; Reassignipg Pointers: |

g After freeing the memory, we can reassign the
delete yPtr; pointer without leaking memory
yPtr = &y; Calling delete changed the pointee not the pointer

28

Pointers and the Heap

e Creating a variable on the heap uses the new keyword

— Allocates memory on the heap and returns the location to store in the
pointer

— Note: the pointer itself is still a local variable (it has a name)

Album* lifeChanges = new Album;

* Freeing memory — everything created must be destroyed

— The Album will exist even if lifeChanges goes out of scope or changes
values

e "orphaning memory" — the Album isn't pointed to by anything anymore
e When memory is orphaned, we say the program has a memory leak

e Can cause your program to slow down

— To free the Album, use the delete keyword on the pointer

delete lifeChanges; // lifeChanges can be reassigned now g

Album improvements

"fangled Up"
"Thomas Rhett" "Life Changes™
2017 Please see
"thomas”
Please see object
"Lauren" "thomas™ \\\\\\
thomas object L
tangledUp

lifeChanges

— What should the Album struct look like?

30

The Album Struct Redux

struct Album {
string title;
int year;

Artist *artist;

s

struct Artist {
string name;
int age;
int num_kids;
string spouse;

}s
Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};

Album *1lifeChanges = new Album{"Life Changes", 2017, thomas};
Album *tangledUp = new Album{"Tangled Up", 2015, thomas};

31

Album improvements

"fangled Up"

2015
"Life Changes™

I

tangledUp

"Thomas Rhett"

lifeChanges

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album *1lifeChanges = new Album{"Life Changes", 2017, thomas};
Album *tangledUp = new Album{"Tangled Up", 2015, thomas};
cout << tangledUp->artist->spouse << endl; // "Lauren"

// later in the code, maybe in a different function

delete thomas; delete tangledUp; delete lifeChanges; 37

Null/garbage pointers

e null pointer: Memory address 0; "points to nothing".

e uninitialized pointer: points to a random address.

— If you dereference these, program will probably crash.

int x = 42;

int* p1l = nullptr; // stores ©

int* p2; // uninitialized 7%
cout << pl << endl; // © Ox7f8e24
cout << *pl << endl; // KABOOM OxTf8e28
cout << *p2 << endl; // KABOOM

// testing for nullness

if (pl == nullptr) {...} // true

if (p1) {...} // false

if (!p1) {...} // true

X 42
pl Ox0
p2 | 0x2??77?

33

More Complicated Trace

struct Album {
string title; Heap allocated memory persists:
int year;
Striﬁg artist; One of the advantages of heap-
¥ allocated memory is it persists after
. . the stack frame returns
int main() {

Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;

return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

34

More Complicated Trace

struct Album {
string title;
int year;
string artist;

s

int main() {
Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;
return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];

Arrays:

This line creates an array of size 3 on
the heap

Arrays are fixed-size — you can't make
them bigger or smaller

That block is pointed to by the
variable album

library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

35

More Complicated Trace

struct Album {

string title; Array Elements:
int year; . . TR T
string artist; Arrays are originally uninitialized
}; You can access each element by index
int main() { (just like Vector)
Album *myLibr\ar\y = makeLibr\ar\y(); REturnS the aCtual E|ement NOT d
// do something with library pointer
delete[] myLibrary;
return 9;
}

Album *makeLibrary() {
Album* library = new Album[3];
library[@0] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

36

More Complicated Trace

struct Album {
string title;
int year;
string artist;

s

int main() {
Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;
return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];

Deleting Arrays:

Just as new used the square brackets
to create the array, you must call
delete with square brackets to free
the array's memory

library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

37

More Complicated Trace

struct Album {

string title; Array Sizes:

int year; I .

string artist; Arrays don't have a length field, so
}s we need to store the size in a

separate variable

int main() {

int size;

Album *myLibrary = makelLibrary(size);
// do something with library using size
delete[] myLibrary;

return 0;

Album *makelLibrary(int &size) {
Album* library = new Album[3];

library[@] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
size = 3;

return library;

38

e Sometimes, you want a several blocks of memory, not just one
block

— The blocks are stored next to each other

e Solution: array

e Declare an array of fixed-size
Type* arr = new T[size];
int *arr = new int[7];

e Freeing the array (notice the brackets):
delete[] arr;

e Warnings:

— Cannot change size (grow or shrink)

— No bounds-checking — the program will have undefined behavior

(crash)

— Need to store size separately 39

