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Plan for Today

e Continuing discussion of pointers from yesterday
e Arrays

e Classes in C++

e Putting it together: implementing Stack

e Templates: generalizing containers



Why declare on the Heap?

Album createAlbum() {
Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album lifeChanges{"Life Changes", 2017, thomas};
return lifeChanges;

int main() {
Album lifeChanges = createAlbum();
// what does memory look like here?
cout << lifeChanges.artist->name << endl;
return 0;
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Why declare on the Heap?

Album createAlbum() {

Stack Heap
Artist thomas{"Thomas Rhett", 28,
2, "Lauren"}; main
Album lifeChanges{"Life Changes", Gl Lo i
2017, &thomas}; string title

. "Life Changes"
return lifeChanges; e

} 2017
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int main() {
Album lifeChanges = createAlbum();
// what about here?
cout << lifeChanges.artist->name;



More Complicated Trace

struct Album {
string title; Heap allocated memory persists:
int year;
Striﬁg artist; One of the advantages of heap-
¥ allocated memory is it persists after
. . the stack frame returns
int main() {

Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;

return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;



More Complicated Trace

struct Album {
string title;
int year;
string artist;

s

int main() {
Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;
return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];

Arrays:

This line creates an array of size 3 on
the heap

Arrays are fixed-size — you can't make
them bigger or smaller

That block is pointed to by the
variable album

library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;
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More Complicated Trace

struct Album {

string title; Array Elements:
int year; . . TR T
string artist; Arrays are originally uninitialized
}; You can access each element by index
int main() { (just like Vector)
Album *myLibr\ar\y = makeLibr\ar\y(); REturnS the aCtual E|ement NOT d
// do something with library pointer
delete[] myLibrary;
return 9;
}

Album *makeLibrary() {
Album* library = new Album[3];
library[@0] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;
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More Complicated Trace

struct Album {
string title;
int year;
string artist;

s

int main() {
Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;
return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];

Deleting Arrays:

Just as new used the square brackets
to create the array, you must call
delete with square brackets to free
the array's memory

library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;
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More Complicated Trace

struct Album {

string title; Array Sizes:

int year; I .

string artist; Arrays don't have a length field, so
}s we need to store the size in a

separate variable

int main() {

int size;

Album *myLibrary = makelLibrary(size);
// do something with library using size
delete[] myLibrary;

return 0;

Album *makelLibrary(int &size) {
Album* library = new Album[3];

library[@] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
size = 3;

return library;
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e Sometimes, you want a several blocks of memory, not just one
block

— The blocks are stored next to each other

e Solution: array

e Declare an array of fixed-size
Type* arr = new T[size];
int *arr = new int[7];

e Freeing the array (notice the brackets):
delete[] arr;

e Warnings:

— Cannot change size (grow or shrink)

— No bounds-checking — the program will have undefined behavior

(crash)

— Need to store size separately 14



Announcements

e Grades for assignment 2 are released

e Exam logistics

— Midterm review session on Tuesday, from 7:00-8:30PM, in Gates BO1,
led by SL Peter

— Midterm is on Wednesday, July 25, from 7:00-9:00PM in Hewlett 200

— Complete assignment 4 before the midterm — backtracking will be
tested

125 B Functionality—{ll-Style

100




e So far in this course, we have used many collection classes:
— Vector, Grid, Stack, Queue, Map, Set, HashMap, HashSet, Lexicon, ...

e Now let's explore how they are implemented.
— We will start by implementing our own version of a Stack class.

e To do so, we must learn about classes, arrays, and memory allocation.

— After that, we will implement several other collections:
e linked list
e binary tree set, map; hash table set, map
e priority queue
e graph
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Classes and objects (6.1)

e class: A template for a new type of objects.
— Allows us to add new types to the language.
— Examples: Date, Student, BankAccount

student
reglstratlon

e object: Entity that combines state and behavior.

— object-oriented programming (OOP): Programs that perform their
behavior as interactions between objects.

— abstraction: Separation between concepts and details.
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Elements of a class

e member variables: State inside each object.
— Also called "instance variables" or "fields"
— Each object has a copy of each member.

e member functions: Behavior inside each object.
— Also called "methods"
— Each object has a copy of each method.
— The method can interact with the data inside that object.

e constructor: Initializes new objects as they are created.
— Sets the initial state of each new object.
— Often accepts parameters for the initial state of the fields.
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Interface vs. code

e C++ separates classes into two kinds of code files:
.h: A "header" file containing the interface (declarations).

.cpp: A '"source" file containing definitions or implementation
(method bodies).

e class FOO => must write both Foo.h and Foo. cpp.

e The content of .h files is #included inside .cpp files.
— Makes them aware of declarations of code implemented elsewhere.
— At compilation, all definitions are linked together into an executable.
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Class declaration (.h)

#ifndef _classname_h | Protection in case multiple .cpp files

#tdefine classname h include this .h, so that its contents
a - won't get declared twice

class ClassName
public: // in ClassName .h
ClassName (parameters) // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)
returnType name(parameters) const;

function promises not to change any of

private: the member variables
type name; // member variables
type name; // (data inside each object)

’ \ . .
}’ IMPORTANT: must put a semicolon at end of class declaration (argh)
#endif
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Class example (v1)

// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {

public:
BankAccount(string n, double d); // constructor
void deposit(double amount); // methods

void withdraw(double amount);
void getBalance() const;
private:
string name; // each BankAccount object
double balance; // has a name and balance

s
#tendif
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BankAccount.cpp

[#include "BankAccount.h" ]

BankAccount: :BankAccount(string name, double initDeposit) {
this->name = name;

balance = initDeposit;
} Include Header

Include the .h file for the class, as
void BankAccount: :deposit(double am{ \ell as other files your class

+= ; : :
balance += amount; implementation needs

}

void BankAccount::withdraw(double amount) {
balance -= amount;

}

void BankAccount::getBalance() const {
return balance;

}
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BankAccount.cpp

#include "BankAccount.h"

r

this->name = name;
balance = initDeposit;

N

BankAccount: :BankAccount(string name, double initDeposit) {

void BankAccount::deposit(double amount) {

balance += amount;

}

void BankAccount: :withdraw(double aI Constructor

balance -= amount;

}

void BankAccount::getBalance() cons
return balance;

}

Initialize the member variables
Notice that each method name is
prepended by the classname::
the this keyword indicates the
object, to differentiate from the
local variable




BankAccount.cpp

#include "BankAccount.h"

BankAccount: :BankAccount(string name, double :IVIethOdS
this->name = name; Methods are also

balance = initDeposit; prepended by the
} classname
They can directly access

the member variables

(C;id BankAccount: :deposit(double amount) {‘\\
balance += amount;

}

void BankAccount::withdraw(double amount) {
balance -= amount;

\_ J

void BankAccount::getBalance() const {
return balance;

}
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BankAccount.cpp

#include "BankAccount.h"

BankAccount: :BankAccount(string na|| Const Methods

this->name = name;
balance = initDeposit;

}

Const methods should have const at
the end, and they should not change
the member variables or call non-

void BankAccount: :deposit(double aj Const member functions

balance += amount;

}

void BankAccount::withdraw(double amount) {

balance -= amount;

}

return balance;

}

\.

.
void BankAccount::getBalance() const {
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Using objects

// client code in bankmain.cpp

BankAccount bal("Ashley", 1.25); bal
bal.deposit(2.00); name = "Ashley”
balance = 3.25
BankAccount ba2("Shreya", 9999.00);
ba2.withdraw(500.00); ba2
name = "Shreya”
balance = 9499.00

e An object groups multiple variables together.
— Each object contains a hame and balance field inside it.
— We can get/set them individually.
— Code that uses your objects is called client code.
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The implicit parameter

e implicit parameter:
The object on which a member function is called.

— During the call ashley.deposit(...),
the object named ashley is the implicit parameter.

— During the call shreya.withdraw(...),
the object named shreya is the implicit parameter.

— The member function can refer to that object's member variables.

e \We say that it executes in the context of a particular object.
e The function can refer to the data of the object it was called on.

e [t behaves as if each object has its own copy of the member functions.
27



e Recall: a Stack has O(1) push and pop operations
e Only need to add to the end

e |[dea: we need the implementation of stack to store all the elements
the client added

e How could we implement a stack using an array?

28



How Stack works

e Inside a Stack is an array storing the elements you have added.
— Typically the array is larger than the data added so far, so that it has
some extra slots in which to put new elements later.
e We call this an unfilled array.

Stack<int> s;
s.push(42);

S.push(_S); value 42 -5 17
s.push(17); sizz. 3 capacity 10
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Resize when out of space

// grows array to twice the capacity if needed
void ArrayStack::checkResize() {
if (size == capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * capacity]();

for (int 1 = @; 1 < capacity; i++) {

bigger[i] = elements[i];

}

delete[] elements;

elements = bigger;

capacity *= 2;

value | 3 | 8 |97 |5(12|4(8|1|6| 75
size 11 capacity 20

o0



Template class

e Template class: A class that accepts a type parameter(s).
— In the header and cpp files, mark each class/function as templated.
— Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

}s

// ClassName.cpp
template<typename T>
type ClassName: :name(parameters) {

¥
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Template .h and .cpp

e Because of an odd quirk with C++ templates, the separation
between .h header and .cpp implementation must be reduced.

— Either write all the bodies in the .h file (suggested),
— Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname h
#define _classname h

template<typename T>
class ClassName {

¥
#include "ClassName.cpp"
#endif // _classname h
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