CS 106B, Lecture 15
Classes and Stack Implementation

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Continuing discussion of pointers from yesterday
e Arrays

e Classes in C++

e Putting it together: implementing Stack

e Templates: generalizing containers

Why declare on the Heap?

Album createAlbum() {
Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album lifeChanges{"Life Changes", 2017, thomas};
return lifeChanges;

int main() {
Album lifeChanges = createAlbum();
// what does memory look like here?
cout << lifeChanges.artist->name << endl;
return 0;

Why declare on the Heap?

Album createAlbum() {

Artist *thomas = new Artist{"Thomas Rhett", 28, 2, "Lauren"};
Album lifeChanges{"Life Changes", 2017, thomas};
return lifeChanges;

}

int main() {
Album lifeChanges =

createAlbum();

cout << lifeChanges.artist->name;

return 0;

Stack

main
Album lifeChanges

string title
"Life Changes"

int year
2017
ptr artist

Heap

0x5CB8C80

string name
"Thomas Rhett"

int age

28
int num_kids
2
string spouse
"Lauren"

Why declare on the Heap?

Album createAlbum() {
Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};
Album lifeChanges{"Life Changes",
2017, &thomas};
// what does memory look like here?
return lifeChanges;

int main() {
Album lifeChanges = createAlbum();
cout << lifeChanges.artist->name;

Why declare on the Heap?

Album createAlbum() {
Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};
Album lifeChanges{"Life Changes",
2017, &thomas};
// what does memory look like here?
return lifeChanges;

int main() {
Album lifeChanges = createAlbum();
cout << lifeChanges.artist->name;

Stack Heap

main
Album lifeChanges
string title
"Life Changes"

int year
2017

ptr artist

createAlbum

Artist thomas

string name
"Thomas Rhett"
int age
28
int num_kids
2
string spouse
"Lauren"

Why declare on the Heap?

Album createAlbum() {
Artist thomas{"Thomas Rhett", 28,
2, "Lauren"};
Album lifeChanges{"Life Changes",

2017, &thomas};
return lifeChanges;

int main() {
Album lifeChanges = createAlbum();
// what about here?
cout << lifeChanges.artist->name;

Why declare on the Heap?

Album createAlbum() {

Stack Heap
Artist thomas{"Thomas Rhett", 28,
2, "Lauren"}; main
Album lifeChanges{"Life Changes", Gl Lo i
2017, &thomas}; string title

. "Life Changes"
return lifeChanges; e

} 2017
ptr artist

int main() {
Album lifeChanges = createAlbum();
// what about here?
cout << lifeChanges.artist->name;

More Complicated Trace

struct Album {
string title; Heap allocated memory persists:
int year;
Striﬁg artist; One of the advantages of heap-
¥ allocated memory is it persists after
. . the stack frame returns
int main() {

Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;

return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];
library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

More Complicated Trace

struct Album {
string title;
int year;
string artist;

s

int main() {
Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;
return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];

Arrays:

This line creates an array of size 3 on
the heap

Arrays are fixed-size — you can't make
them bigger or smaller

That block is pointed to by the
variable album

library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

10

More Complicated Trace

struct Album {

string title; Array Elements:
int year; . . TR T
string artist; Arrays are originally uninitialized
}; You can access each element by index
int main() { (just like Vector)
Album *myLibr\ar\y = makeLibr\ar\y(); REturnS the aCtual E|ement NOT d
// do something with library pointer
delete[] myLibrary;
return 9;
}

Album *makeLibrary() {
Album* library = new Album[3];
library[@0] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

11

More Complicated Trace

struct Album {
string title;
int year;
string artist;

s

int main() {
Album *myLibrary = makelLibrary();
// do something with library
delete[] myLibrary;
return 9;

}

Album *makeLibrary() {
Album* library = new Album[3];

Deleting Arrays:

Just as new used the square brackets
to create the array, you must call
delete with square brackets to free
the array's memory

library[@] = {"Life Changes", 2017, "Thomas Rhett"};

library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
return library;

12

More Complicated Trace

struct Album {

string title; Array Sizes:

int year; I .

string artist; Arrays don't have a length field, so
}s we need to store the size in a

separate variable

int main() {

int size;

Album *myLibrary = makelLibrary(size);
// do something with library using size
delete[] myLibrary;

return 0;

Album *makelLibrary(int &size) {
Album* library = new Album[3];

library[@] = {"Life Changes", 2017, "Thomas Rhett"};
library[1] = {"Montevallo", 2014, "Sam Hunt"};
library[2] = {"Not as Legit as Git", 2018, "Anand"};
size = 3;

return library;

13

e Sometimes, you want a several blocks of memory, not just one
block

— The blocks are stored next to each other

e Solution: array

e Declare an array of fixed-size
Type* arr = new T[size];
int *arr = new int[7];

e Freeing the array (notice the brackets):
delete[] arr;

e Warnings:

— Cannot change size (grow or shrink)

— No bounds-checking — the program will have undefined behavior

(crash)

— Need to store size separately 14

Announcements

e Grades for assignment 2 are released

e Exam logistics

— Midterm review session on Tuesday, from 7:00-8:30PM, in Gates BO1,
led by SL Peter

— Midterm is on Wednesday, July 25, from 7:00-9:00PM in Hewlett 200

— Complete assignment 4 before the midterm — backtracking will be
tested

125 B Functionality—{ll-Style

100

e So far in this course, we have used many collection classes:
— Vector, Grid, Stack, Queue, Map, Set, HashMap, HashSet, Lexicon, ...

e Now let's explore how they are implemented.
— We will start by implementing our own version of a Stack class.

e To do so, we must learn about classes, arrays, and memory allocation.

— After that, we will implement several other collections:
e linked list
e binary tree set, map; hash table set, map
e priority queue
e graph

16

Classes and objects (6.1)

e class: A template for a new type of objects.
— Allows us to add new types to the language.
— Examples: Date, Student, BankAccount

student
reglstratlon

e object: Entity that combines state and behavior.

— object-oriented programming (OOP): Programs that perform their
behavior as interactions between objects.

— abstraction: Separation between concepts and details.

17

Elements of a class

e member variables: State inside each object.
— Also called "instance variables" or "fields"
— Each object has a copy of each member.

e member functions: Behavior inside each object.
— Also called "methods"
— Each object has a copy of each method.
— The method can interact with the data inside that object.

e constructor: Initializes new objects as they are created.
— Sets the initial state of each new object.
— Often accepts parameters for the initial state of the fields.

18

Interface vs. code

e C++ separates classes into two kinds of code files:
.h: A "header" file containing the interface (declarations).

.cpp: A '"source" file containing definitions or implementation
(method bodies).

e class FOO => must write both Foo.h and Foo. cpp.

e The content of .h files is #included inside .cpp files.
— Makes them aware of declarations of code implemented elsewhere.
— At compilation, all definitions are linked together into an executable.

19

Class declaration (.h)

#ifndef _classname_h | Protection in case multiple .cpp files

#tdefine classname h include this .h, so that its contents
a - won't get declared twice

class ClassName
public: // in ClassName .h
ClassName (parameters) // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)
returnType name(parameters) const;

function promises not to change any of

private: the member variables
type name; // member variables
type name; // (data inside each object)

’ \ . .
}’ IMPORTANT: must put a semicolon at end of class declaration (argh)
#endif

20

Class example (v1)

// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {

public:
BankAccount(string n, double d); // constructor
void deposit(double amount); // methods

void withdraw(double amount);
void getBalance() const;
private:
string name; // each BankAccount object
double balance; // has a name and balance

s
#tendif

21

BankAccount.cpp

[#include "BankAccount.h"]

BankAccount: :BankAccount(string name, double initDeposit) {
this->name = name;

balance = initDeposit;
} Include Header

Include the .h file for the class, as
void BankAccount: :deposit(double am{ \ell as other files your class

+= ; : :
balance += amount; implementation needs

}

void BankAccount::withdraw(double amount) {
balance -= amount;

}

void BankAccount::getBalance() const {
return balance;

}

22

BankAccount.cpp

#include "BankAccount.h"

r

this->name = name;
balance = initDeposit;

N

BankAccount: :BankAccount(string name, double initDeposit) {

void BankAccount::deposit(double amount) {

balance += amount;

}

void BankAccount: :withdraw(double aI Constructor

balance -= amount;

}

void BankAccount::getBalance() cons
return balance;

}

Initialize the member variables
Notice that each method name is
prepended by the classname::
the this keyword indicates the
object, to differentiate from the
local variable

BankAccount.cpp

#include "BankAccount.h"

BankAccount: :BankAccount(string name, double :IVIethOdS
this->name = name; Methods are also

balance = initDeposit; prepended by the
} classname
They can directly access

the member variables

(C;id BankAccount: :deposit(double amount) {‘\\
balance += amount;

}

void BankAccount::withdraw(double amount) {
balance -= amount;

_ J

void BankAccount::getBalance() const {
return balance;

}

24

BankAccount.cpp

#include "BankAccount.h"

BankAccount: :BankAccount(string na|| Const Methods

this->name = name;
balance = initDeposit;

}

Const methods should have const at
the end, and they should not change
the member variables or call non-

void BankAccount: :deposit(double aj Const member functions

balance += amount;

}

void BankAccount::withdraw(double amount) {

balance -= amount;

}

return balance;

}

\.

.
void BankAccount::getBalance() const {

25

Using objects

// client code in bankmain.cpp

BankAccount bal("Ashley", 1.25); bal
bal.deposit(2.00); name = "Ashley”
balance = 3.25
BankAccount ba2("Shreya", 9999.00);
ba2.withdraw(500.00); ba2
name = "Shreya”
balance = 9499.00

e An object groups multiple variables together.
— Each object contains a hame and balance field inside it.
— We can get/set them individually.
— Code that uses your objects is called client code.

26

The implicit parameter

e implicit parameter:
The object on which a member function is called.

— During the call ashley.deposit(...),
the object named ashley is the implicit parameter.

— During the call shreya.withdraw(...),
the object named shreya is the implicit parameter.

— The member function can refer to that object's member variables.

e \We say that it executes in the context of a particular object.
e The function can refer to the data of the object it was called on.

e [t behaves as if each object has its own copy of the member functions.
27

e Recall: a Stack has O(1) push and pop operations
e Only need to add to the end

e |[dea: we need the implementation of stack to store all the elements
the client added

e How could we implement a stack using an array?

28

How Stack works

e Inside a Stack is an array storing the elements you have added.
— Typically the array is larger than the data added so far, so that it has
some extra slots in which to put new elements later.
e We call this an unfilled array.

Stack<int> s;
s.push(42);

S.push(_S); value 42 -5 17
s.push(17); sizz. 3 capacity 10

29

Resize when out of space

// grows array to twice the capacity if needed
void ArrayStack::checkResize() {
if (size == capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * capacity]();

for (int 1 = @; 1 < capacity; i++) {

bigger[i] = elements[i];

}

delete[] elements;

elements = bigger;

capacity *= 2;

value | 3 | 8 |97 |5(12|4(8|1|6| 75
size 11 capacity 20

o0

Template class

e Template class: A class that accepts a type parameter(s).
— In the header and cpp files, mark each class/function as templated.
— Replace occurrences of the previous type int with T in the code.

// ClassName.h
template<typename T>
class ClassName {

}s

// ClassName.cpp
template<typename T>
type ClassName: :name(parameters) {

¥

31

Template .h and .cpp

e Because of an odd quirk with C++ templates, the separation
between .h header and .cpp implementation must be reduced.

— Either write all the bodies in the .h file (suggested),
— Or #include the .cpp at the end of .h file to join them together.

// ClassName.h
#ifndef _classname h
#define _classname h

template<typename T>
class ClassName {

¥
#include "ClassName.cpp"
#endif // _classname h

32

