
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	15	
Classes	and	Stack	Implementation	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Continuing	discussion	of	pointers	from	yesterday	
• Arrays	
• Classes	in	C++	
• Putting	it	together:	implementing	Stack	
• Templates:	generalizing	containers	

3

Why declare on the Heap?
Album	createAlbum()	{	
				Artist	*thomas	=	new	Artist{"Thomas	Rhett",	28,	2,	"Lauren"};	
				Album	lifeChanges{"Life	Changes",	2017,	thomas};	
				return	lifeChanges;	
}	
int	main()	{	
				Album	lifeChanges	=	createAlbum();	
				//	what	does	memory	look	like	here?	
				cout	<<	lifeChanges.artist->name	<<	endl;	
				return	0;	
}	
	

4

Why declare on the Heap?
Album	createAlbum()	{	
				Artist	*thomas	=	new	Artist{"Thomas	Rhett",	28,	2,	"Lauren"};	
				Album	lifeChanges{"Life	Changes",	2017,	thomas};	
				return	lifeChanges;	
}	
int	main()	{	
				Album	lifeChanges	=	createAlbum();	
				cout	<<	lifeChanges.artist->name;	
				return	0;	
}	
	

5

Why declare on the Heap?
Album	createAlbum()	{	
				Artist	thomas{"Thomas	Rhett",	28,		
																		2,	"Lauren"};	
				Album	lifeChanges{"Life	Changes",		
																						2017,	&thomas};	
				//	what	does	memory	look	like	here?	
				return	lifeChanges;	
}	
	
int	main()	{	
				Album	lifeChanges	=	createAlbum();	
				cout	<<	lifeChanges.artist->name;	
}	
	

6

Why declare on the Heap?
Album	createAlbum()	{	
				Artist	thomas{"Thomas	Rhett",	28,		
																		2,	"Lauren"};	
				Album	lifeChanges{"Life	Changes",		
																						2017,	&thomas};	
				//	what	does	memory	look	like	here?	
				return	lifeChanges;	
}	
	
int	main()	{	
				Album	lifeChanges	=	createAlbum();	
				cout	<<	lifeChanges.artist->name;	
}	
	

7

Why declare on the Heap?
Album	createAlbum()	{	
				Artist	thomas{"Thomas	Rhett",	28,		
																		2,	"Lauren"};	
				Album	lifeChanges{"Life	Changes",		
																						2017,	&thomas};	
				return	lifeChanges;	
}	
	
int	main()	{	
				Album	lifeChanges	=	createAlbum();	
				//	what	about	here?	
				cout	<<	lifeChanges.artist->name;	
}	
	

8

Why declare on the Heap?
Album	createAlbum()	{	
				Artist	thomas{"Thomas	Rhett",	28,		
																		2,	"Lauren"};	
				Album	lifeChanges{"Life	Changes",		
																						2017,	&thomas};	
				return	lifeChanges;	
}	
	
int	main()	{	
				Album	lifeChanges	=	createAlbum();	
				//	what	about	here?	
				cout	<<	lifeChanges.artist->name;	
}	
	

9

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Heap	allocated	memory	persists:	
One	of	the	advantages	of	heap-
allocated	memory	is	it	persists	after	
the	stack	frame	returns	

10

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Arrays:	
This	line	creates	an	array	of	size	3	on	
the	heap	
Arrays	are	fixed-size	–	you	can't	make	
them	bigger	or	smaller	
That	block	is	pointed	to	by	the	
variable	album	

11

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Array	Elements:	
Arrays	are	originally	uninitialized	
You	can	access	each	element	by	index	
(just	like	Vector)		
Returns	the	actual	element	NOT	a	
pointer	

12

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		Album	*myLibrary	=	makeLibrary();	
		//	do	something	with	library	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary()	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		return	library;	
}	
			
	

Deleting	Arrays:	
Just	as	new	used	the	square	brackets	
to	create	the	array,	you	must	call	
delete	with	square	brackets	to	free	
the	array's	memory	

13

More Complicated Trace
struct	Album	{		
				string	title;		
				int	year;		
				string	artist;		
};	
	
int	main()	{	
		int	size;	
		Album	*myLibrary	=	makeLibrary(size);	
		//	do	something	with	library	using	size	
		delete[]	myLibrary;	
		return	0;	
}	
	
Album	*makeLibrary(int	&size)	{	
		Album*	library	=	new	Album[3];	
		library[0]	=	{"Life	Changes",	2017,	"Thomas	Rhett"};	
		library[1]	=	{"Montevallo",	2014,	"Sam	Hunt"};	
		library[2]	=	{"Not	as	Legit	as	Git",	2018,	"Anand"};	
		size	=	3;	
		return	library;	
}	
			
	

Array	Sizes:	
Arrays	don't	have	a	length	field,	so	
we	need	to	store	the	size	in	a	
separate	variable	

14

Arrays
• Sometimes,	you	want	a	several	blocks	of	memory,	not	just	one	
block	
–  The	blocks	are	stored	next	to	each	other	

• Solution:	array	
• Declare	an	array	of	fixed-size	

	Type*	arr	=	new	T[size];	
	int	*arr	=	new	int[7];		

• Freeing	the	array	(notice	the	brackets):	
	delete[]	arr;	

• Warnings:	
–  Cannot	change	size	(grow	or	shrink)	
– No	bounds-checking	–	the	program	will	have	undefined	behavior	
(crash)	

– Need	to	store	size	separately	

15

Announcements
• Grades	for	assignment	2	are	released	
• Exam	logistics	

– Midterm	review	session	on	Tuesday,	from	7:00-8:30PM,	in	Gates	B01,	
led	by	SL	Peter	

– Midterm	is	on	Wednesday,	July	25,	from	7:00-9:00PM	in	Hewlett	200	
–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	

16

Motivation
• So	far	in	this	course,	we	have	used	many	collection	classes:	

–  Vector,	Grid,	Stack,	Queue,	Map,	Set,	HashMap,	HashSet,	Lexicon,	...	

• Now	let's	explore	how	they	are	implemented.	
– We	will	start	by	implementing	our	own	version	of	a	Stack	class.	

• To	do	so,	we	must	learn	about	classes,	arrays,	and	memory	allocation.	

–  After	that,	we	will	implement	several	other	collections:	
• linked	list	
• binary	tree	set,	map;			hash	table	set,	map	
• priority	queue	
• graph	
• ...	

17

Classes and objects (6.1)

•  class:	A	template	for	a	new	type	of	objects.	
–  Allows	us	to	add	new	types	to	the	language.	
–  Examples:	Date,	Student,	BankAccount	

•  object:	Entity	that	combines	state	and	behavior.	

– object-oriented	programming	(OOP):	Programs	that	perform	their	
behavior	as	interactions	between	objects.	

– abstraction:	Separation	between	concepts	and	details.	

18

Elements of a class
• member	variables:	State	inside	each	object.	

–  Also	called	"instance	variables"	or	"fields"	
–  Each	object	has	a	copy	of	each	member.	

• member	functions:	Behavior	inside	each	object.	
–  Also	called	"methods"	
–  Each	object	has	a	copy	of	each	method.	
–  The	method	can	interact	with	the	data	inside	that	object.	

• constructor:	Initializes	new	objects	as	they	are	created.	
–  Sets	the	initial	state	of	each	new	object.	
– Often	accepts	parameters	for	the	initial	state	of	the	fields.	

19

Interface vs. code
• C++	separates	classes	into	two	kinds	of	code	files:	

	.h: 	A	"header"	file	containing	the	interface	(declarations).	
	.cpp: 	A	"source"	file	containing	definitions	or	implementation	
(method	bodies).	
• class	Foo		=>		must	write	both	Foo.h	and	Foo.cpp.	

• The	content	of	.h	files	is	#included	inside	.cpp	files.	
– Makes	them	aware	of	declarations	of	code	implemented	elsewhere.	
–  At	compilation,	all	definitions	are	linked	together	into	an	executable.	

20

Class declaration (.h)
#ifndef	_classname_h	
#define	_classname_h	
	

class	ClassName	{	
public:																										//	in	ClassName.h	
				ClassName(parameters);							//	constructor	
	

				returnType	name(parameters);	//	member	functions	
				returnType	name(parameters);	//	(behavior	inside	
				returnType	name(parameters);	//		each	object)	
				returnType	name(parameters)	const;	
	

private:	
				type	name;					//	member	variables	
				type	name;					//	(data	inside	each	object)	
};	
	

#endif	
IMPORTANT:	must	put	a	semicolon	at	end	of	class	declaration	(argh)	

Protection	in	case	multiple	.cpp	files	
include	this	.h,	so	that	its	contents	
won't	get	declared	twice	

function	promises	not	to	change	any	of	
the	member	variables	

21

Class example (v1)
//	BankAccount.h	
	

#ifndef	_bankaccount_h	
#define	_bankaccount_h	
	
class	BankAccount	{														
public:	
				BankAccount(string	n,	double	d);		//	constructor	
				void	deposit(double	amount);						//	methods	
				void	withdraw(double	amount);	
				void	getBalance()	const;	
private:	
				string	name;						//	each	BankAccount	object	
				double	balance;			//	has	a	name	and	balance	
};	
	

#endif	

22

BankAccount.cpp
#include	"BankAccount.h"	
	
BankAccount::BankAccount(string	name,	double	initDeposit)	{	
				this->name	=	name;	
				balance	=	initDeposit;	
}	
	
void	BankAccount::deposit(double	amount)	{	
				balance	+=	amount;	
}	
	
void	BankAccount::withdraw(double	amount)	{	
				balance	-=	amount;	
}	
	
void	BankAccount::getBalance()	const	{	
				return	balance;	
}	

Include	Header	
Include	the	.h	file	for	the	class,	as	
well	as	other	files	your	class	
implementation	needs	

23

BankAccount.cpp
#include	"BankAccount.h"	
	
BankAccount::BankAccount(string	name,	double	initDeposit)	{	
				this->name	=	name;	
				balance	=	initDeposit;	
}	
	
void	BankAccount::deposit(double	amount)	{	
				balance	+=	amount;	
}	
	
void	BankAccount::withdraw(double	amount)	{	
				balance	-=	amount;	
}	
	
void	BankAccount::getBalance()	const	{	
				return	balance;	
}	

Constructor	
Initialize	the	member	variables	
Notice	that	each	method	name	is	
prepended	by	the	classname::	
the	this	keyword	indicates	the	
object,	to	differentiate	from	the	
local	variable	

24

BankAccount.cpp
#include	"BankAccount.h"	
	
BankAccount::BankAccount(string	name,	double	initDeposit)	{	
				this->name	=	name;	
				balance	=	initDeposit;	
}	
	
void	BankAccount::deposit(double	amount)	{	
				balance	+=	amount;	
}	
	
void	BankAccount::withdraw(double	amount)	{	
				balance	-=	amount;	
}	
	
void	BankAccount::getBalance()	const	{	
				return	balance;	
}	

Methods	
Methods	are	also	
prepended	by	the	
classname	
They	can	directly	access	
the	member	variables		

25

BankAccount.cpp
#include	"BankAccount.h"	
	
BankAccount::BankAccount(string	name,	double	initDeposit)	{	
				this->name	=	name;	
				balance	=	initDeposit;	
}	
	
void	BankAccount::deposit(double	amount)	{	
				balance	+=	amount;	
}	
	
void	BankAccount::withdraw(double	amount)	{	
				balance	-=	amount;	
}	
	
void	BankAccount::getBalance()	const	{	
				return	balance;	
}	

Const	Methods	
Const	methods	should	have	const	at	
the	end,	and	they	should	not	change	
the	member	variables	or	call	non-
const	member	functions	

26

Using objects
//	client	code	in	bankmain.cpp	
BankAccount	ba1("Ashley",	1.25);	
ba1.deposit(2.00);	
	
BankAccount	ba2("Shreya",	9999.00);	
ba2.withdraw(500.00);	
	
	
	
	

• An	object	groups	multiple	variables	together.	
–  Each	object	contains	a	name	and	balance	field	inside	it.	
– We	can	get/set	them	individually.	
–  Code	that	uses	your	objects	is	called	client	code.	

name				=	"Ashley"	
balance	=	3.25	

name				=	"Shreya"	
balance	=	9499.00	

ba1	

ba2	

27

The implicit parameter
•  implicit	parameter:	
The	object	on	which	a	member	function	is	called.	
	

– During	the	call	ashley.deposit(...),	
the	object	named	ashley	is	the	implicit	parameter.	

	

– During	the	call	shreya.withdraw(...),	
the	object	named	shreya	is	the	implicit	parameter.	

	

–  The	member	function	can	refer	to	that	object's	member	variables.	
• We	say	that	it	executes	in	the	context	of	a	particular	object.	

• The	function	can	refer	to	the	data	of	the	object	it	was	called	on.	
• It	behaves	as	if	each	object	has	its	own	copy	of	the	member	functions.	

28

A Stack Class
• Recall:	a	Stack	has	O(1)	push	and	pop	operations	
• Only	need	to	add	to	the	end	
•  Idea:	we	need	the	implementation	of	stack	to	store	all	the	elements	
the	client	added	

• How	could	we	implement	a	stack	using	an	array?	

29

How Stack works
•  Inside	a	Stack	is	an	array	storing	the	elements	you	have	added.	

–  Typically	the	array	is	larger	than	the	data	added	so	far,	so	that	it	has	
some	extra	slots	in	which	to	put	new	elements	later.	
• We	call	this	an	unfilled	array.	

	
Stack<int>	s;	
s.push(42);	
s.push(-5);	
s.push(17);	
	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

value	 42	 -5	 17	 ?	 ?	 ?	 ?	 ?	 ?	 ?	

size	 3	 capacity	 10	

30

Resize when out of space
//	grows	array	to	twice	the	capacity	if	needed	
void	ArrayStack::checkResize()	{	
				if	(size	==	capacity)	{	
								//	create	bigger	array	and	copy	data	over	
								int*	bigger	=	new	int[2	*	capacity]();	
								for	(int	i	=	0;	i	<	capacity;	i++)	{	
												bigger[i]	=	elements[i];	
								}	
								delete[]	elements;	
								elements	=	bigger;	
								capacity	*=	2;	
				}	
}	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	

value	 3	 8	 9	 7	 5	 12	 4	 8	 1	 6	 75	 0	 0	 0	 0	 0	 0	 0	 0	 0	

size	 11	 capacity	 20	

31

Template class
• Template	class:	A	class	that	accepts	a	type	parameter(s).	

–  In	the	header	and	cpp	files,	mark	each	class/function	as	templated.	
–  Replace	occurrences	of	the	previous	type	int	with	T	in	the	code.	
	
	//	ClassName.h	
	template<typename	T>	
	class	ClassName	{	
					...	
	};	
	
	//	ClassName.cpp	
	template<typename	T>	
	type	ClassName::name(parameters)	{	
					...	
	}	

32

Template .h and .cpp

• Because	of	an	odd	quirk	with	C++	templates,	the	separation	
between	.h	header	and	.cpp	implementation	must	be	reduced.	
–  Either	write	all	the	bodies	in	the	.h	file	(suggested),	
– Or	#include	the	.cpp	at	the	end	of	.h	file	to	join	them	together.	
	
	//	ClassName.h	
	#ifndef	_classname_h	
	#define	_classname_h	

	

	template<typename	T>	
	class	ClassName	{	
					...	
	};	

	

	#include	"ClassName.cpp"	
	#endif			//	_classname_h	

