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Plan for Today 
• Continuing	discussion	of	ArrayStack	from	last	week	
• Learn	about	a	new	way	to	store	information:	the	linked	list	
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A Stack Class 
• Recall	from	Thursday	our	ArrayStack	
• By	storing	the	array	on	the	heap,	the	memory	existed	for	all	the	
Stack	member	functions	

• One	limitation:	our	Stack	only	stored	ints	
– How	could	we	expand	it	to	be	able	to	store	every	type,	like	the	real	
Stack?	
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Template class 
• Template	class:	A	class	that	accepts	a	type	parameter(s).	

–  In	the	header	and	cpp	files,	mark	each	class/function	as	templated.	
–  Replace	occurrences	of	the	previous	type	int	with	T	in	the	code.	
–  See	GeneralStack	in	today's	starter	code	for	example	
	
	//	ClassName.h	
	template<typename	T>	
	class	ClassName	{	
					...	
	};	
	
	//	ClassName.cpp	
	template<typename	T>	
	type	ClassName<T>::name(parameters)	{	
					...	
	}	
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Template .h and  .cpp 

• Because	of	an	odd	quirk	with	C++	templates,	the	separation	
between	.h	header	and	.cpp	implementation	must	be	reduced.	
–  Either	write	all	the	bodies	in	the	.h	file	(suggested),	
	//	ClassName.h	
	#ifndef	_classname_h	
	#define	_classname_h	

	

	template<typename	T>	
	class	ClassName	{	
					...	
	};	
	
		template<typename	T>	
		type	ClassName<T>::method1(...)	{...}	
		...	
	

	#endif			//	_classname_h	
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Flaws with Arrays 
• Some	adds	are	very	costly	(when	we	have	to	resize)	

–  Adding	just	one	element	requires	copying	all	the	elements	
•  Imagine	if	everything	were	like	that?	

–  Instead	of	just	grabbing	a	new	sheet	of	paper,	re-copy	all	notes	to	a	
bigger	sheet	when	you	run	out	of	space	

–  Instead	of	just	making	a	new	bend	in	a	line,	make	everyone	move	to	a	
larger	area	

•  Idea:	what	if	we	could	just	add	the	amount	of	memory	we	need?	
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Vector and arrays 
•  Inserting	into	an	array	involves	shifting	all	the	elements	over	

–  That's	O(N)	
• What	if	we	were	to	just	be	able	to	easily	insert?	

4	 8	 15	 23	 41	
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Linked List 
• Main	idea:	let's	store	every	element	in	its	own	block	of	memory	
• Then	we	can	just	add	one	block	of	memory!	
• Then	we	can	efficiently	insert	into	the	middle	(or	front)!	
• A	Linked	List	is	good	for	storing	elements	in	an	order	(similar	to	
Vector)	

• Elements	are	chained	together	in	a	sequence	
• Each	element	is	allocated	on	the	heap	–	why?	

4	 8	 15	 16	 23	 41	
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Parts of a Linked List 
• What	does	each	part	of	a	Linked	List	need	to	store?	

–  element	
–  pointer	to	the	next	element	
– We'll	say	the	last	node	points	to	nullptr	

• The	ListNode	struct:	
struct	ListNode	{	
				int	data;	//	assume	all	elements	are	ints	
				ListNode	*next;	
	
				//	constructor	
				ListNode(int	data,	ListNode	*next):	data(data),	next(next)	{}	
				//	constructor	w/out	params	
				ListNode():	data(0),	next(nullptr)	{}	
};	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	nullptr;	
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Creating a Linked List 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	nullptr;	
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No constructor? 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	new	ListNode;	
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No constructor? 
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	new	ListNode;	
front->next->next->next->next	=	new	ListNode;		
				//	KABOOM	

	



19 

Announcements 
• Assignment	4	is	due	on	Thursday	–	please	finish	it	before	then	
• You	will	get	assignment	3	feedback	on	Wednesday	
• Exam	logistics	

– Midterm	review	session	on	Tuesday	(tomorrow!),	from	7:00-8:30PM,	
in	Gates	B01,	led	by	SL	Peter	

– Midterm	is	on	Wednesday,	July	25,	from	7:00-9:00PM	in	Hewlett	200	
–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	
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Linked List iteration 
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	



21 

Linked List iteration 
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

Initialize	ptr	to	the	first	node	in	(front	node	of)	
the	list	



22 

Linked List iteration 
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

Move	ptr	to	point	to	the	next	node	of	the	list	
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Linked List iteration 
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

Continue	doing	this	until	we	hit	the	end	of	the	list	
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Practice Iteratively! 
• Write	a	function	that	takes	in	the	pointer	to	the	front	of	a	Linked	
List	and	prints	out	all	the	elements	of	a	Linked	List	

	
void	printList(ListNode	*front)	{	
	
	
	
	
	
}	
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Practice Iteratively! 
• Write	a	function	that	takes	in	the	pointer	to	the	front	of	a	Linked	List	
and	prints	out	all	the	elements	of	a	Linked	List	

	
void	printList(ListNode	*front)	{	
		for	(ListNode*	ptr	=	front;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
						cout	<<	ptr->data	<<	endl;	
		}		
}	
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Iterative Trace 
• Write	a	function	that	takes	in	the	
pointer	to	the	front	of	a	Linked	List	
and	prints	out	all	the	elements	of	a	
Linked	List	

	
void	printList(ListNode	*front)	{	
		for	(ListNode*	ptr	=	front;		
							ptr	!=	nullptr;	
							ptr	=	ptr->next)	{		
						cout	<<	ptr->data	<<	endl;	
		}		
}	
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Alternative Iteration 
for	(ListNode*	ptr	=	front;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				//	do	something	with	ptr	
}	
	

is	equivalent	to:	
	
ListNode	*ptr	=	front;	
while	(ptr	!=	nullptr)	{	//	or	while	(ptr)	
				//	do	something	with	ptr	
				ptr	=	ptr->next;	
}	
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A Temporary Solution 
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	
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A Temporary Solution 
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	
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A Temporary Solution 
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	
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A Temporary Solution 
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	
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A Temporary Solution 
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	orphaned	memory	and	empty	list!	
		return	0;	
}	
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Correct Version 
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	
		ListNode	*ptr	=	front;	

while	(ptr	!=	nullptr)	{	
				cout	<<	ptr->data	<<	"	";	
				ptr	=	ptr->next;	
		}	
		//	front	still	has	pointer	to	list	
		return	0;	
}	


