CS 106B, Lecture 16
Linked Lists

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Continuing discussion of ArrayStack from last week
e Learn about a new way to store information: the linked list

e Recall from Thursday our ArrayStack

e By storing the array on the heap, the memory existed for all the
Stack member functions
e One limitation: our Stack only stored ints

— How could we expand it to be able to store every type, like the real
Stack?

Template class

e Template class: A class that accepts a type parameter(s).
— In the header and cpp files, mark each class/function as templated.
— Replace occurrences of the previous type int with T in the code.
— See GeneralStack in today's starter code for example

// ClassName.h
template<typename T>
class ClassName {

}s

// ClassName.cpp
template<typename T>
type ClassName<T>::name(parameters) {

¥

Template .h and .cpp

e Because of an odd quirk with C++ templates, the separation
between .h header and .cpp implementation must be reduced.

— Either write all the bodies in the .h file (suggested),

// ClassName.h
#ifndef _classname h
#define _classname h

template<typename T>
class ClassName {

}s

template<typename T>
type ClassName<T>::methodl(...) {...}

#endif // classname h

Flaws with Arrays

e Some adds are very costly (when we have to resize)
— Adding just one element requires copying all the elements

e Imagine if everything were like that?

— Instead of just grabbing a new sheet of paper, re-copy all notes to a
bigger sheet when you run out of space

— Instead of just making a new bend in a line, make everyone move to a
larger area

e |dea: what if we could just add the amount of memory we need?

Vector and arrays

e [nserting into an array involves shifting all the elements over
— That's O(N)
e What if we were to just be able to easily insert?

4 8 15 23 41

Ny,

e Main idea: let's store every element in its own block of memory

e Then we can just add one block of memory!
e Then we can efficiently insert into the middle (or front)!

e A Linked List is good for storing elements in an order (similar to
Vector)

e Elements are chained together in a sequence
e Each element is allocated on the heap — why?

4 /\; -/\;.5 -/\;.6 -/\23 -/\41

Parts of a Linked List

e What does each part of a Linked List need to store?
— element
— pointer to the next element
— We'll say the last node points to nullptr

e The ListNode struct:
struct ListNode {

int data; // assume all elements are ints
ListNode *next;

// constructor

ListNode(int data, ListNode *next): data(data), next(next) {}
// constructor w/out params

ListNode(): data(®), next(nullptr) {}

a 4 -///,\\; -///,\\15 ////\\16 ////\\V23 ////\\V41

Creating a Linked List

Stack Heap

main 0x5CB8C80
ptr front int data
(%]
ptr next
/

ListNode* front = new ListNode();

10

Creating a Linked List

ListNode* front = new ListNode(); — Heap

i 0x5CB8C80
front->data = 42; maJ
42

ptr next
//

11

Creating a Linked List

Stack Heap

ListNode* front = new ListNode();

front->data 42, TTnt / t:if
new ListNode(); i 2

front->next
ptr next

OXSELBCDO

int data
(/]

ptr next

- —

12

Creating a Linked List

Stack

ListNode* front = new ListNode();

front->data = 42; “ﬁi__///)
front->next = new ListNode(); ptr front

front->next->data = -3;

Heap

0x5CB8C80

int data
42

ptr next

0x5CB8CDO

int data
-3

ptr next

—

13

Creating a Linked List

Stack Heap

ListNode* front = new ListNode();

front->data = 42; 2l 2y
front->next = new ListNode(); i T
front->next->data = '3; ptr next
front->next->next = new ListNode(); 1

int data
-3

ptr next

OXSC;BDZO

int data
(/]

ptr next

—

14

Creating a Linked List

ListNode* front = new ListNode(); — —
front->data = 42; main e
front->next = new ListNode(); i .
front->next->data = -3; ptr next
front->next->next = new ListNode(); om£m0
front->next->next->data = 17; —
front->next->next->next = nullptr; -3

ptr next

OXSé;%DZO

int data
17

ptr next

S —

15

Creating a Linked List

Stack Heap

ListNode* front = new ListNode();

front->data = 42; ey B
front-s>next = new ListNode(); p 7
front->next->data = -3; pr next
front->next->next = new ListNode(); exsc;m
front->next->next->data = 17; int data
front->next->next->next = nullptr; -

ptr next

0x5£l§D20

int data
17

ptr next

—

16

No constructor?

ListNode* front = new ListNode(); f““ eer
front->data = 42; — i p—
front->next = new ListNode(); i 22
front->next->data = -3; per next
front->next->next = new ListNode(); . -
front->next->next->data = 17; —
front->next->next->next = new ListNode; -3

ptr next

0x5£l§020

int data

17

ptr next

0x5£l%070

int data
?

ptr next
?

17

No constructor?

ListNode* front = new ListNode(); S —
front->data = 42; main p—
front->next = new ListNode(); . a2
front->next->data = -3; Bt
front->next->next = new ListNode(); . .
front->next->next->data = 17; —
front->next->next->next = new ListNode; -3
front->next->next->next->next = new ListNode; e
/ / KABOOM mscésozo

int data

17

ptr next

0x5£l%070

int data
?

ptr next
?

18

Announcements

e Assignment 4 is due on Thursday — please finish it before then

e You will get assignment 3 feedback on Wednesday

e Exam logistics

— Midterm review session on Tuesday (tomorrow!), from 7:00-8:30PM,
in Gates BO1, led by SL Peter

— Midterm is on Wednesday, July 25, from 7:00-9:00PM in Hewlett 200

— Complete assignment 4 before the midterm — backtracking will be
tested

19

Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for (ListNode* ptr = Llist; ptr != nullptr; ptr = ptr->next) {
/* .. use ptr .. ¥/
}

20

Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for {ListNode* ptr = List] ptr != nullptr; ptr = ptr->next) {
/* .. use ptr .. */

¥

Initialize ptr to the first node in (front node of)
the list

21

Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for (ListNode* ptr = list; ptr != nullptr;[ptr = ptr—>nextj {
/* .. use ptr .. */

¥

Move ptr to point to the next node of the list |

22

Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for (ListNode* ptr = List;[ptr = nullptr;]ptr = ptr->next) {
/* .. use ptr .. */

¥

| Continue doing this until we hit the end of the list |

23

Practice Iteratively!

e Write a function that takes in the pointer to the front of a Linked
List and prints out all the elements of a Linked List

void printList(ListNode *front) {

24

Practice Iteratively!

e Write a function that takes in the pointer to the front of a Linked List
and prints out all the elements of a Linked List

void printList(ListNode *front) {

for (ListNode* ptr = front; ptr != nullptr; ptr = ptr->next) {
cout << ptr->data << endl;

25

Iterative Trace

e \Write a function that takes in the

Stack Heap

pointer to the front of a Linked List
and prints out all the elements of a —a
Linked List {
void printList(ListNode *front) ({ g$m
for (ListNode* ptr = front; Eii
ptr != nullptr; =
ptr = ptr->next) {
cout << ptr->data << endl;
}
}

26

Alternative Iteration

for (ListNode* ptr = front; ptr != nullptr; ptr
// do something with ptr

ptr->next) {

}

is equivalent to:

ListNode *ptr = front;

while (ptr != nullptr) { // or while (ptr)

// do something with ptr
ptr = ptr->next;

27

A Temporary Solution

What's wrong?

int main() {
ListNode* front = new ListNode();
front->data = 42;
front->next = new ListNode();
front->next->data = -3;
front->next->next = nullptr;
while (front != nullptr) {
cout << front->data << " ";
front = front->next;
}

// continue using front
return 0;

28

A Temporary Solution

Stack Heap

What's wrong?

main 0x5CB8C80
ptr front / int data
int main() { 42

ListNode* front = new ListNode(); pir ned
front->data = 42; aﬁikm
front->next = new ListNode(); —
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// continue using front
return 0;

29

A Temporary Solution

What's wrong? — —
main (Orphaned) @x5CB8C80
ptr front int data
int main() { 42
ListNode* front = new ListNode(); prr ned
front->data = 42; aﬁ£&m
front->next = new ListNode(); S
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// continue using front
return 0;

30

A Temporary Solution

What's wrong? — —
main (Orphaned) @x5CB8C80
. int data
int main() { j«/’/’ 42
ListNode* front = new ListNode(); prr nedt
front->data = 42;
(Orphaned) @x5CB8CDO
front->next = new ListNode(); S
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// continue using front
return 0;

31

A Temporary Solution

What's wrong? — —
main (Orphaned) @x5CB8C80
ptr front int data
int main() { — 42
ListNode* front = new ListNode(); prr nedt
front->data = 42; (Orphaned)” @x5CB8CDO
front->next = new ListNode(); S
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// orphaned memory and empty list!
return 0;

32

int main() { Stack

Correct Version

Heap

ListNode* front = new ListNode();

1 @x5CB8C80
front->data = 42; s ™
. ptr front int data
front->next = new ListNode(); 42

front->next->data = -3; ptr ptr ptr next
front->next->next = nullptr; = ;
ListNode *ptr = front; OX5LEEC0
while (ptr != nullptr) { “i?“
cout << ptr->data << " "; ptr next
ptr = ptr->next; —
}

// front still has pointer to list
return 0;

33

