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Plan for Today

e Continuing discussion of ArrayStack from last week
e Learn about a new way to store information: the linked list



e Recall from Thursday our ArrayStack

e By storing the array on the heap, the memory existed for all the
Stack member functions
e One limitation: our Stack only stored ints

— How could we expand it to be able to store every type, like the real
Stack?



Template class

e Template class: A class that accepts a type parameter(s).
— In the header and cpp files, mark each class/function as templated.
— Replace occurrences of the previous type int with T in the code.
— See GeneralStack in today's starter code for example

// ClassName.h
template<typename T>
class ClassName {

}s

// ClassName.cpp
template<typename T>
type ClassName<T>::name(parameters) {

¥



Template .h and .cpp

e Because of an odd quirk with C++ templates, the separation
between .h header and .cpp implementation must be reduced.

— Either write all the bodies in the .h file (suggested),

// ClassName.h
#ifndef _classname h
#define _classname h

template<typename T>
class ClassName {

}s

template<typename T>
type ClassName<T>::methodl(...) {...}

#endif // classname h



Flaws with Arrays

e Some adds are very costly (when we have to resize)
— Adding just one element requires copying all the elements

e Imagine if everything were like that?

— Instead of just grabbing a new sheet of paper, re-copy all notes to a
bigger sheet when you run out of space

— Instead of just making a new bend in a line, make everyone move to a
larger area

e |dea: what if we could just add the amount of memory we need?




Vector and arrays

e [nserting into an array involves shifting all the elements over
— That's O(N)
e What if we were to just be able to easily insert?
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e Main idea: let's store every element in its own block of memory

e Then we can just add one block of memory!
e Then we can efficiently insert into the middle (or front)!

e A Linked List is good for storing elements in an order (similar to
Vector)

e Elements are chained together in a sequence
e Each element is allocated on the heap — why?
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Parts of a Linked List

e What does each part of a Linked List need to store?
— element
— pointer to the next element
— We'll say the last node points to nullptr

e The ListNode struct:
struct ListNode {

int data; // assume all elements are ints
ListNode *next;

// constructor

ListNode(int data, ListNode *next): data(data), next(next) {}
// constructor w/out params

ListNode(): data(®), next(nullptr) {}
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Creating a Linked List

Stack Heap

main 0x5CB8C80
ptr front int data
(%]
ptr next
/

ListNode* front = new ListNode();
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Creating a Linked List

ListNode* front = new ListNode(); — Heap

i 0x5CB8C80
front->data = 42; maJ
42

ptr next
//
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Creating a Linked List

Stack Heap

ListNode* front = new ListNode();

front->data 42, TTnt / t:if
new ListNode(); i 2

front->next
ptr next

OXSELBCDO

int data
(/]

ptr next

- —

12



Creating a Linked List

Stack

ListNode* front = new ListNode();

front->data = 42; “ﬁi__///)
front->next = new ListNode(); ptr front

front->next->data = -3;

Heap

0x5CB8C80

int data
42

ptr next

0x5CB8CDO

int data
-3

ptr next

—
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Creating a Linked List

Stack Heap

ListNode* front = new ListNode();

front->data = 42; 2l 2y
front->next = new ListNode(); i T
front->next->data = '3; ptr next
front->next->next = new ListNode(); 1

int data
-3

ptr next

OXSC;BDZO

int data
(/]

ptr next

—
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Creating a Linked List

ListNode* front = new ListNode(); — —
front->data = 42; main e
front->next = new ListNode(); i .
front->next->data = -3; ptr next
front->next->next = new ListNode(); om£m0
front->next->next->data = 17; —
front->next->next->next = nullptr; -3

ptr next

OXSé;%DZO

int data
17

ptr next

S —
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Creating a Linked List

Stack Heap

ListNode* front = new ListNode();

front->data = 42; ey B
front-s>next = new ListNode(); p 7
front->next->data = -3; pr next
front->next->next = new ListNode(); exsc;m
front->next->next->data = 17; int data
front->next->next->next = nullptr; -

ptr next

0x5£l§D20

int data
17

ptr next

—
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No constructor?

ListNode* front = new ListNode(); f““ eer
front->data = 42; — i p—
front->next = new ListNode(); i 22
front->next->data = -3; per next
front->next->next = new ListNode(); . -
front->next->next->data = 17; —
front->next->next->next = new ListNode; -3

ptr next

0x5£l§020

int data

17

ptr next

0x5£l%070

int data
?

ptr next
?
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No constructor?

ListNode* front = new ListNode(); S —
front->data = 42; main p—
front->next = new ListNode(); . a2
front->next->data = -3; Bt
front->next->next = new ListNode(); . .
front->next->next->data = 17; —
front->next->next->next = new ListNode; -3
front->next->next->next->next = new ListNode; e
/ / KABOOM mscésozo

int data

17

ptr next

0x5£l%070

int data
?

ptr next
?
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Announcements

e Assignment 4 is due on Thursday — please finish it before then

e You will get assignment 3 feedback on Wednesday

e Exam logistics

— Midterm review session on Tuesday (tomorrow!), from 7:00-8:30PM,
in Gates BO1, led by SL Peter

— Midterm is on Wednesday, July 25, from 7:00-9:00PM in Hewlett 200

— Complete assignment 4 before the midterm — backtracking will be
tested

19



Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for (ListNode* ptr = Llist; ptr != nullptr; ptr = ptr->next) {
/* .. use ptr .. ¥/
}
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Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for {ListNode* ptr = List] ptr != nullptr; ptr = ptr->next) {
/* .. use ptr .. */

¥

Initialize ptr to the first node in (front node of)
the list
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Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for (ListNode* ptr = list; ptr != nullptr;[ptr = ptr—>nextj {
/* .. use ptr .. */

¥

Move ptr to point to the next node of the list |
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Linked List iteration

¢ |dea: travel each ListNode one at a time

— No easy way to "index in" like with Vector. Why?

e General syntax:

for (ListNode* ptr = List;[ptr = nullptr;]ptr = ptr->next) {
/* .. use ptr .. */

¥

| Continue doing this until we hit the end of the list |
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Practice Iteratively!

e Write a function that takes in the pointer to the front of a Linked
List and prints out all the elements of a Linked List

void printList(ListNode *front) {
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Practice Iteratively!

e Write a function that takes in the pointer to the front of a Linked List
and prints out all the elements of a Linked List

void printList(ListNode *front) {

for (ListNode* ptr = front; ptr != nullptr; ptr = ptr->next) {
cout << ptr->data << endl;
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Iterative Trace

e \Write a function that takes in the

Stack Heap

pointer to the front of a Linked List
and prints out all the elements of a —a
Linked List {
void printList(ListNode *front) ({ g$m
for (ListNode* ptr = front; Eii
ptr != nullptr; =
ptr = ptr->next) {
cout << ptr->data << endl;
}
}
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Alternative Iteration

for (ListNode* ptr = front; ptr != nullptr; ptr
// do something with ptr

ptr->next) {

}

is equivalent to:

ListNode *ptr = front;

while (ptr != nullptr) { // or while (ptr)

// do something with ptr
ptr = ptr->next;
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A Temporary Solution

What's wrong?

int main() {
ListNode* front = new ListNode();
front->data = 42;
front->next = new ListNode();
front->next->data = -3;
front->next->next = nullptr;
while (front != nullptr) {
cout << front->data << " ";
front = front->next;
}

// continue using front
return 0;
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A Temporary Solution

Stack Heap

What's wrong?

main 0x5CB8C80
ptr front / int data
int main() { 42

ListNode* front = new ListNode(); pir ned
front->data = 42; aﬁikm
front->next = new ListNode(); —
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// continue using front
return 0;
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A Temporary Solution

What's wrong? — —
main (Orphaned) @x5CB8C80
ptr front int data
int main() { 42
ListNode* front = new ListNode(); prr ned
front->data = 42; aﬁ£&m
front->next = new ListNode(); S
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// continue using front
return 0;
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A Temporary Solution

What's wrong? — —
main (Orphaned) @x5CB8C80
. int data
int main() { j«/’/’ 42
ListNode* front = new ListNode(); prr nedt
front->data = 42;
(Orphaned) @x5CB8CDO
front->next = new ListNode(); S
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// continue using front
return 0;
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A Temporary Solution

What's wrong? — —
main (Orphaned) @x5CB8C80
ptr front int data
int main() { — 42
ListNode* front = new ListNode(); prr nedt
front->data = 42; (Orphaned)” @x5CB8CDO
front->next = new ListNode(); S
front->next->data = -3; -3
front->next->next = nullptr; ptr next
while (front != nullptr) { —
cout << front->data << " ";
front = front->next;
}
// orphaned memory and empty list!
return 0;
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int main() { Stack

Correct Version

Heap

ListNode* front = new ListNode();

1 @x5CB8C80
front->data = 42; s ™
. ptr front int data
front->next = new ListNode(); 42

front->next->data = -3; ptr ptr ptr next
front->next->next = nullptr; = ;
ListNode *ptr = front; OX5LEEC0
while (ptr != nullptr) { “i?“
cout << ptr->data << " "; ptr next
ptr = ptr->next; —
}

// front still has pointer to list
return 0;
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