
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	16	
Linked	Lists	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Continuing	discussion	of	ArrayStack	from	last	week	
• Learn	about	a	new	way	to	store	information:	the	linked	list	

3

A Stack Class
• Recall	from	Thursday	our	ArrayStack	
• By	storing	the	array	on	the	heap,	the	memory	existed	for	all	the	
Stack	member	functions	

• One	limitation:	our	Stack	only	stored	ints	
– How	could	we	expand	it	to	be	able	to	store	every	type,	like	the	real	
Stack?	

4

Template class
• Template	class:	A	class	that	accepts	a	type	parameter(s).	

–  In	the	header	and	cpp	files,	mark	each	class/function	as	templated.	
–  Replace	occurrences	of	the	previous	type	int	with	T	in	the	code.	
–  See	GeneralStack	in	today's	starter	code	for	example	
	
	//	ClassName.h	
	template<typename	T>	
	class	ClassName	{	
					...	
	};	
	
	//	ClassName.cpp	
	template<typename	T>	
	type	ClassName<T>::name(parameters)	{	
					...	
	}	

5

Template .h and .cpp

• Because	of	an	odd	quirk	with	C++	templates,	the	separation	
between	.h	header	and	.cpp	implementation	must	be	reduced.	
–  Either	write	all	the	bodies	in	the	.h	file	(suggested),	
	//	ClassName.h	
	#ifndef	_classname_h	
	#define	_classname_h	

	

	template<typename	T>	
	class	ClassName	{	
					...	
	};	
	
		template<typename	T>	
		type	ClassName<T>::method1(...)	{...}	
		...	
	

	#endif			//	_classname_h	

6

Flaws with Arrays
• Some	adds	are	very	costly	(when	we	have	to	resize)	

–  Adding	just	one	element	requires	copying	all	the	elements	
•  Imagine	if	everything	were	like	that?	

–  Instead	of	just	grabbing	a	new	sheet	of	paper,	re-copy	all	notes	to	a	
bigger	sheet	when	you	run	out	of	space	

–  Instead	of	just	making	a	new	bend	in	a	line,	make	everyone	move	to	a	
larger	area	

•  Idea:	what	if	we	could	just	add	the	amount	of	memory	we	need?	
	
	

4	 8	 15	 16	 23	 42	

7

Vector and arrays
•  Inserting	into	an	array	involves	shifting	all	the	elements	over	

–  That's	O(N)	
• What	if	we	were	to	just	be	able	to	easily	insert?	

4	 8	 15	 23	 41	

16	

8

Linked List
• Main	idea:	let's	store	every	element	in	its	own	block	of	memory	
• Then	we	can	just	add	one	block	of	memory!	
• Then	we	can	efficiently	insert	into	the	middle	(or	front)!	
• A	Linked	List	is	good	for	storing	elements	in	an	order	(similar	to	
Vector)	

• Elements	are	chained	together	in	a	sequence	
• Each	element	is	allocated	on	the	heap	–	why?	

4	 8	 15	 16	 23	 41	

9

Parts of a Linked List
• What	does	each	part	of	a	Linked	List	need	to	store?	

–  element	
–  pointer	to	the	next	element	
– We'll	say	the	last	node	points	to	nullptr	

• The	ListNode	struct:	
struct	ListNode	{	
				int	data;	//	assume	all	elements	are	ints	
				ListNode	*next;	
	
				//	constructor	
				ListNode(int	data,	ListNode	*next):	data(data),	next(next)	{}	
				//	constructor	w/out	params	
				ListNode():	data(0),	next(nullptr)	{}	
};	

	 4	 8	 15	 16	 23	 41	

10

Creating a Linked List
ListNode*	front	=	new	ListNode();	

	

11

Creating a Linked List
ListNode*	front	=	new	ListNode();	
front->data	=	42;	

12

Creating a Linked List
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	

	

13

Creating a Linked List
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	

	

14

Creating a Linked List
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	

	

15

Creating a Linked List
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	nullptr;	

	

16

Creating a Linked List
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	nullptr;	

	

17

No constructor?
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	new	ListNode;	

	

18

No constructor?
ListNode*	front	=	new	ListNode();	
front->data	=	42;	
front->next	=	new	ListNode();	
front->next->data	=	-3;	
front->next->next	=	new	ListNode();	
front->next->next->data	=	17;	
front->next->next->next	=	new	ListNode;	
front->next->next->next->next	=	new	ListNode;		
				//	KABOOM	

	

19

Announcements
• Assignment	4	is	due	on	Thursday	–	please	finish	it	before	then	
• You	will	get	assignment	3	feedback	on	Wednesday	
• Exam	logistics	

– Midterm	review	session	on	Tuesday	(tomorrow!),	from	7:00-8:30PM,	
in	Gates	B01,	led	by	SL	Peter	

– Midterm	is	on	Wednesday,	July	25,	from	7:00-9:00PM	in	Hewlett	200	
–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	

20

Linked List iteration
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

21

Linked List iteration
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

Initialize	ptr	to	the	first	node	in	(front	node	of)	
the	list	

22

Linked List iteration
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

Move	ptr	to	point	to	the	next	node	of	the	list	

23

Linked List iteration
•  Idea:	travel	each	ListNode	one	at	a	time	

– No	easy	way	to	"index	in"	like	with	Vector.	Why?	
• General	syntax:	
	
for	(ListNode*	ptr	=	list;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				/*	…	use	ptr	…	*/		
}	

Continue	doing	this	until	we	hit	the	end	of	the	list	

24

Practice Iteratively!
• Write	a	function	that	takes	in	the	pointer	to	the	front	of	a	Linked	
List	and	prints	out	all	the	elements	of	a	Linked	List	

	
void	printList(ListNode	*front)	{	
	
	
	
	
	
}	

25

Practice Iteratively!
• Write	a	function	that	takes	in	the	pointer	to	the	front	of	a	Linked	List	
and	prints	out	all	the	elements	of	a	Linked	List	

	
void	printList(ListNode	*front)	{	
		for	(ListNode*	ptr	=	front;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
						cout	<<	ptr->data	<<	endl;	
		}		
}	

26

Iterative Trace
• Write	a	function	that	takes	in	the	
pointer	to	the	front	of	a	Linked	List	
and	prints	out	all	the	elements	of	a	
Linked	List	

	
void	printList(ListNode	*front)	{	
		for	(ListNode*	ptr	=	front;		
							ptr	!=	nullptr;	
							ptr	=	ptr->next)	{		
						cout	<<	ptr->data	<<	endl;	
		}		
}	

27

Alternative Iteration
for	(ListNode*	ptr	=	front;	ptr	!=	nullptr;	ptr	=	ptr->next)	{		
				//	do	something	with	ptr	
}	
	

is	equivalent	to:	
	
ListNode	*ptr	=	front;	
while	(ptr	!=	nullptr)	{	//	or	while	(ptr)	
				//	do	something	with	ptr	
				ptr	=	ptr->next;	
}	

28

A Temporary Solution
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	

29

A Temporary Solution
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	

30

A Temporary Solution
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	

31

A Temporary Solution
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	continue	using	front	
		return	0;	
}	

32

A Temporary Solution
What's	wrong?	
	
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	

while	(front	!=	nullptr)	{	
				cout	<<	front->data	<<	"	";	
				front	=	front->next;	
		}	
		//	orphaned	memory	and	empty	list!	
		return	0;	
}	

33

Correct Version
int	main()	{	
		ListNode*	front	=	new	ListNode();	
		front->data	=	42;	
		front->next	=	new	ListNode();	
		front->next->data	=	-3;	
		front->next->next	=	nullptr;	
		ListNode	*ptr	=	front;	

while	(ptr	!=	nullptr)	{	
				cout	<<	ptr->data	<<	"	";	
				ptr	=	ptr->next;	
		}	
		//	front	still	has	pointer	to	list	
		return	0;	
}	

