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Plan for Today 
• Modifying	linked	lists:	Implementing	add	and	delete	from	a	Linked	
List	

• Common	Linked	Lists	gotchas	and	Linked	List	tips	
• Doubly-Linked	Lists	
• Linked	List	as	a	class	
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Recap 
• Every	element	in	a	Linked	List	is	stored	in	its	own	block,	which	we	
call	a	ListNode	
–  Can	only	access	an	element	by	visiting	every	element	before	it	

• When	modifying	the	list,	pass	the	front	ListNode	by	reference	
• When	simply	iterating	through	the	list,	the	front	ListNode	can	be	
passed	by	value	
– Do	you	see	why?	



4 

Add to Back 
• Yesterday,	we	talked	about	how	to	add	to	the	front	of	a	linked	list	
• How	would	we	add	to	the	back	of	a	Linked	List?	
• Should	the	front	be	passed	by	reference	or	by	value?	
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Add to Back: First Try 
void	addToBack(ListNode	*&front,	int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	
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Add to Back: First Try 
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															int	val)	{	
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Add to Back: First Try 
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Add to Back: First Try 
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Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
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Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
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Add to Back: Key Point 
• When	modifying	(adding	to	or	removing	from)	a	linked	list,	we	need	
to	be	one	node	away	from	the	node	we	want	to	impact	(layer	of	
indirection)	
–  In	this	case,	we	need	to	add	the	node	after	our	current	node	–	how	
could	we	do	that?	

	



13 

Add to Back: Second Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
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Add to Back: Second Try 
//	what	if	we	pass	in	an	empty	list?	
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
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Add to Back: Second Try 
//	good	edge	case:	empty	list	
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
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Add to Back: Second Try 
//	good	edge	case:	empty	list	
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
	

KABOOM! 
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Add to Back: Solution 
void	addToBack(ListNode	*&front,	int	val)	{	
				ListNode	*tmp	=	front;	
				if	(front	==	nullptr)	{	
								front	=	new	ListNode{val,	nullptr};	
								return;	
				}	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
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Announcements 
• Assignment	4	is	due	on	Thursday	–	please	finish	it	before	then	
• You	will	get	assignment	3	feedback	on	Wednesday	(tomorrow)	
• Please	give	feedback	(if	you	have	the	next	30	minutes	free):	
cs198.stanford.edu	

• Exam	logistics	
– Midterm	review	session	today,	from	7:00-8:30PM,	in	Gates	B01,	led	by	
SL	Peter	

– Midterm	is	on	Wednesday	(tomorrow),	July	25,	from	7:00-9:00PM	in	
Hewlett	200	

–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	
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Remove Index 
• We've	seen	how	to	add	to	a	Linked	List	
• How	would	we	remove	an	element	from	a	specific	index	in	the	
linked	list?	
– How	do	we	want	to	rewire	the	pointers?	
– Do	we	need	a	layer	of	indirection?	
–  Should	we	pass	by	value	or	by	reference?	
– What	edge	cases	should	we	consider?	

• Empty	list	
• Removing	from	the	front	
• Removing	from	the	back	

• Assume	for	now	that	the	list	has	an	element	in	that	index.		
–  Thought	exercise:	how	would	you	modify	the	solution	if	to	handle	
shorter	lists?	
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Remove Middle 
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Remove 0 
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Remove Index: First Try 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				front	=	front->next;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				tmp->next	=	tmp->next->next;			
		}							
}	
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Remove Index: First Try 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				front	=	front->next;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				tmp->next	=	tmp->next->next;			
		}							
}	
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Remove Index 
• We	also	need	to	free	memory.	How	would	we	do	that?	
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Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
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Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
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Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
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Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
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Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
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Linked List as a Class 
• What	instance	variables	(fields)	do	we	need?	
• What	should	the	constructor	do?	The	destructor?	
•  Idea:	instead	of	passing	in	front	explicitly,	store	it	as	an	instance	
variable!	



31 

LinkedIntList.h 
//	Represents	a	linked	list	of	integers.	
class	LinkedIntList	{	
public:	
				LinkedIntList();	
				~LinkedIntList();	
				void	addBack(int	value);	
				void	addFront(int	value);	
				void	deleteList();	
				void	print()	const;	
				bool	isEmpty()	const;	
				...	
	

private:	
				ListNode*	front;			//	nullptr	if	empty	
};	
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LinkedIntList.cpp 
//	(partial)	
#include	"LinkedIntList.h"	
LinkedIntList::LinkedIntList()	{	
				front	=	nullptr;	
}	
	
bool	LinkedIntList::isEmpty()	{	
				return	front	==	nullptr;	
}	
	
void	LinkedIntList::addFront(int	value)	{	
				ListNode*	newNode	=	new	ListNode(value);	
				newNode->next	=	front;	
				front	=	newNode;	
}	
...	
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Linked List: Pros and Cons 
• Pros:	

–  Fast	to	add/remove	near	the	front	of	the	list	
• Great	for	queues,	especially	if	we	keep	a	pointer	to	the	end	of	the	LL	

–  Can	merge	or	concatenate	two	linked	lists	without	allocating	any	more	
memory	
• Thought	experiment:	how?	

– Only	uses	the	memory	to	store	the	number	of	elements	in	the	list	
• Cons:	

–  Slow	to	"index"	into	the	list	
–  Slow	to	add/remove	in	the	middle	or	near	the	end	of	the	list	
–  Can	only	iterate	one	way	
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Doubly-Linked List 
• Have	each	node	point	to	the	next	node	in	the	
list	and	the	previous	node	in	the	list	

• Generally	store	pointer	to	the	front	and	back	
• Advantages:	

–  easy	to	add	to	the	front	and	the	back	of	the	list	
–  don't	need	a	level	of	indirection	for	adding/
removing	nodes	

• You'll	see	these	on	your	next	homework	
struct	DoublyListNode	{	
				int	data;	
				ListNode	*prev;	
				ListNode	*next;	
};	
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Final Thoughts on LL 
• Every	element	in	a	Linked	List	is	stored	in	its	own	block,	which	we	
call	a	ListNode	
–  Can	only	access	an	element	by	visiting	every	element	before	it	

• When	modifying	the	list,	pass	the	front	ListNode	by	reference	
• When	simply	iterating	through	the	list,	the	front	ListNode	can	be	
passed	by	value	

• Edge	cases:	Test	your	code	with	a	Linked	List	of	size	0,	1,	2,	and	3,	
and	with	operations	on	the	beginning,	middle,	and	end	

• When	in	doubt,	draw	out	a	memory	diagram	(we've	had	a	lot	of	
these	in	class!)	

• Practice	safe	pointers:	always	check	for	null	before	dereferencing!	


