
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	17	
Linked	Lists	II	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Modifying	linked	lists:	Implementing	add	and	delete	from	a	Linked	
List	

• Common	Linked	Lists	gotchas	and	Linked	List	tips	
• Doubly-Linked	Lists	
• Linked	List	as	a	class	



3 

Recap 
• Every	element	in	a	Linked	List	is	stored	in	its	own	block,	which	we	
call	a	ListNode	
–  Can	only	access	an	element	by	visiting	every	element	before	it	

• When	modifying	the	list,	pass	the	front	ListNode	by	reference	
• When	simply	iterating	through	the	list,	the	front	ListNode	can	be	
passed	by	value	
– Do	you	see	why?	



4 

Add to Back 
• Yesterday,	we	talked	about	how	to	add	to	the	front	of	a	linked	list	
• How	would	we	add	to	the	back	of	a	Linked	List?	
• Should	the	front	be	passed	by	reference	or	by	value?	



5 

Add to Back: First Try 
void	addToBack(ListNode	*&front,	int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	



6 

Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	



7 

Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	



8 

Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	



9 

Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	



10 

Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	



11 

Add to Back: First Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp	=	new	ListNode;	
				tmp->data	=	val;	
				tmp->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
	



12 

Add to Back: Key Point 
• When	modifying	(adding	to	or	removing	from)	a	linked	list,	we	need	
to	be	one	node	away	from	the	node	we	want	to	impact	(layer	of	
indirection)	
–  In	this	case,	we	need	to	add	the	node	after	our	current	node	–	how	
could	we	do	that?	

	



13 

Add to Back: Second Try 
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
	



14 

Add to Back: Second Try 
//	what	if	we	pass	in	an	empty	list?	
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	



15 

Add to Back: Second Try 
//	good	edge	case:	empty	list	
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
	



16 

Add to Back: Second Try 
//	good	edge	case:	empty	list	
void	addToBack(ListNode	*&front,		
															int	val)	{	
				ListNode	*tmp	=	front;	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
//	in	main	after	call	to	addToBack	
	

KABOOM! 



17 

Add to Back: Solution 
void	addToBack(ListNode	*&front,	int	val)	{	
				ListNode	*tmp	=	front;	
				if	(front	==	nullptr)	{	
								front	=	new	ListNode{val,	nullptr};	
								return;	
				}	
				while	(tmp->next	!=	nullptr)	{	
								tmp	=	tmp->next;	
				}	
				tmp->next	=	new	ListNode;	
				tmp->next->data	=	val;	
				tmp->next->next	=	nullptr;	
}	
	



18 

Announcements 
• Assignment	4	is	due	on	Thursday	–	please	finish	it	before	then	
• You	will	get	assignment	3	feedback	on	Wednesday	(tomorrow)	
• Please	give	feedback	(if	you	have	the	next	30	minutes	free):	
cs198.stanford.edu	

• Exam	logistics	
– Midterm	review	session	today,	from	7:00-8:30PM,	in	Gates	B01,	led	by	
SL	Peter	

– Midterm	is	on	Wednesday	(tomorrow),	July	25,	from	7:00-9:00PM	in	
Hewlett	200	

–  Complete	assignment	4	before	the	midterm	–	backtracking	will	be	
tested	



19 

Remove Index 
• We've	seen	how	to	add	to	a	Linked	List	
• How	would	we	remove	an	element	from	a	specific	index	in	the	
linked	list?	
– How	do	we	want	to	rewire	the	pointers?	
– Do	we	need	a	layer	of	indirection?	
–  Should	we	pass	by	value	or	by	reference?	
– What	edge	cases	should	we	consider?	

• Empty	list	
• Removing	from	the	front	
• Removing	from	the	back	

• Assume	for	now	that	the	list	has	an	element	in	that	index.		
–  Thought	exercise:	how	would	you	modify	the	solution	if	to	handle	
shorter	lists?	



20 

Remove Middle 



21 

Remove 0 



22 

Remove Index: First Try 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				front	=	front->next;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				tmp->next	=	tmp->next->next;			
		}							
}	
	



23 

Remove Index: First Try 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				front	=	front->next;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				tmp->next	=	tmp->next->next;			
		}							
}	
	



24 

Remove Index 
• We	also	need	to	free	memory.	How	would	we	do	that?	



25 

Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
	



26 

Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
	



27 

Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
	



28 

Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
	



29 

Remove Index: Solution 
void	removeIndex(ListNode	*&front,	int	index)	{	
		if	(index	==	0)	{	
				ListNode	*trash	=	front;	
				front	=	front->next;	
				delete	trash;	
		}	else	{	
				ListNode	*tmp	=	front;	
				for	(int	i	=	0;	i	<	index	–	1;	i++)	{	
						tmp	=	tmp->next;	
				}	
				ListNode	*trash	=	tmp->next;	
				tmp->next	=	tmp->next->next;	
				delete	trash;	
		}							
}	
	



30 

Linked List as a Class 
• What	instance	variables	(fields)	do	we	need?	
• What	should	the	constructor	do?	The	destructor?	
•  Idea:	instead	of	passing	in	front	explicitly,	store	it	as	an	instance	
variable!	



31 

LinkedIntList.h 
//	Represents	a	linked	list	of	integers.	
class	LinkedIntList	{	
public:	
				LinkedIntList();	
				~LinkedIntList();	
				void	addBack(int	value);	
				void	addFront(int	value);	
				void	deleteList();	
				void	print()	const;	
				bool	isEmpty()	const;	
				...	
	

private:	
				ListNode*	front;			//	nullptr	if	empty	
};	



32 

LinkedIntList.cpp 
//	(partial)	
#include	"LinkedIntList.h"	
LinkedIntList::LinkedIntList()	{	
				front	=	nullptr;	
}	
	
bool	LinkedIntList::isEmpty()	{	
				return	front	==	nullptr;	
}	
	
void	LinkedIntList::addFront(int	value)	{	
				ListNode*	newNode	=	new	ListNode(value);	
				newNode->next	=	front;	
				front	=	newNode;	
}	
...	



33 

Linked List: Pros and Cons 
• Pros:	

–  Fast	to	add/remove	near	the	front	of	the	list	
• Great	for	queues,	especially	if	we	keep	a	pointer	to	the	end	of	the	LL	

–  Can	merge	or	concatenate	two	linked	lists	without	allocating	any	more	
memory	
• Thought	experiment:	how?	

– Only	uses	the	memory	to	store	the	number	of	elements	in	the	list	
• Cons:	

–  Slow	to	"index"	into	the	list	
–  Slow	to	add/remove	in	the	middle	or	near	the	end	of	the	list	
–  Can	only	iterate	one	way	



34 

Doubly-Linked List 
• Have	each	node	point	to	the	next	node	in	the	
list	and	the	previous	node	in	the	list	

• Generally	store	pointer	to	the	front	and	back	
• Advantages:	

–  easy	to	add	to	the	front	and	the	back	of	the	list	
–  don't	need	a	level	of	indirection	for	adding/
removing	nodes	

• You'll	see	these	on	your	next	homework	
struct	DoublyListNode	{	
				int	data;	
				ListNode	*prev;	
				ListNode	*next;	
};	
	



35 

Final Thoughts on LL 
• Every	element	in	a	Linked	List	is	stored	in	its	own	block,	which	we	
call	a	ListNode	
–  Can	only	access	an	element	by	visiting	every	element	before	it	

• When	modifying	the	list,	pass	the	front	ListNode	by	reference	
• When	simply	iterating	through	the	list,	the	front	ListNode	can	be	
passed	by	value	

• Edge	cases:	Test	your	code	with	a	Linked	List	of	size	0,	1,	2,	and	3,	
and	with	operations	on	the	beginning,	middle,	and	end	

• When	in	doubt,	draw	out	a	memory	diagram	(we've	had	a	lot	of	
these	in	class!)	

• Practice	safe	pointers:	always	check	for	null	before	dereferencing!	


