CS 106B, Lecture 17
Linked Lists Il

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Modifying linked lists: Implementing add and delete from a Linked
List

e Common Linked Lists gotchas and Linked List tips

e Doubly-Linked Lists

e Linked List as a class

Recap

e Every element in a Linked List is stored in its own block, which we
call a ListNode

— Can only access an element by visiting every element before it
e When modifying the list, pass the front ListNode by reference

e When simply iterating through the list, the front ListNode can be
passed by value

— Do you see why?

Add to Back

e Yesterday, we talked about how to add to the front of a linked list
e How would we add to the back of a Linked List?

e Should the front be passed by reference or by value?

Add to Back: First Try

void addToBack(ListNode *&front, int val) {
ListNode *tmp = front;
while (tmp != nullptr) {
tmp = tmp->next;
}
tmp = new ListNode;
tmp->data = val;
tmp->next = nullptr;

Add to Back: First Try

. . Stack Heap
void addToBack(ListNode *&front, .
main N 0x5CB8C80
int Val) { ptr front int data
0
ListNode *tmp = front; ptr next
. addToBack

while (tmp != nullptr) { — . .
tmp = tmp->next; — it data

} int val ﬂ-

tmp = new ListNode;
tmp->data = val;
tmp->next = nullptr;

Add to Back: First Try

Stack Heap

void addToBack(ListNode *&front, -
int val) {
ListNode *tmp = front;
while (tmp != nullptr) {
tmp = tmp->next;

0x5CB8C80

int data

0

ptr next

ptr front

addToBack

ptr front

0x5CB8CDO

int data

8

ptr next

} int val —
tmp = new ListNode; ’

tmp->data = val;
tmp->next = nullptr;

Add to Back: First Try

Stack Heap

void addToBack(ListNode *&front, _— I
int Val) { ptr front / intedata
ListNode *tmp = front;
. addToBack
while (tmp != nullptr) {

ptr front 0x5(£3c00
tmp — tmp— >next; — / int8data

ptr next

}] int3va1 —
tmp = new ListNode;

tmp->data = val;
tmp->next = nullptr;

ptr next

Add to Back: First Try

Stack Heap
void addTOBaCk(LiStNOde *&'Fr‘ont, main 0x5CBBC80
i tr front int data
int val) { per f e -

1 3 — . tr next
ListNode *tmp = front; ddToBack pi
while (tmp | = nU].lptr‘) { ptr front 0x5CB8CDO

tmp = tmp->next; ptr tnp —
— ptr next
} int val —

tmp = new ListNode; ’

tmp->data = val;
tmp->next = nullptr;

Add to Back: First Try

Stack Hea

void addToBack(ListNode *&front, nain ox5CB8CE0 p
int val) { pter/ it data
ListNode *tmp = front; e ptr next
while (tmp != nullptr) { ptr front ox5CBCD0
tmp = tmp->next; ptr tmp e

} o et

tmp = new ListNode; oxsCa8D20
tmp->data = val; int date
tmp->next = nullptr; —

10

Add to Back: First Try

Stack Heap

void addToBack(ListNode *&front, . _ . I
int Val) { ptr front e int@data

ListNode *tmp = front; ptr next
while (tmp != nullptr) { OXscém
tmp = tmp->next; i dato
tmp = new ListNode; e
tmp->data = val; i ot
tmp->next = nullptr; o vet

}
// in main after call to addToBack

11

Add to Back: Key Point

e When modifying (adding to or removing from) a linked list, we need
to be one node away from the node we want to impact (layer of
indirection)

— In this case, we need to add the node after our current node — how
could we do that?

12

Add to Back: Second Try

Stack Heap

void addToBack(ListNode *&front, hain
int val) { RE/ELAERS
ListNode *tmp = front;
while (tmp->next != nullptr) {
tmp = tmp->next;

0x5CB8C80

int data

0

ptr next

addToBack

ptr front

0x5CB8CDO

int data

8

ptr next

} e —
tmp->next = new ListNode;

tmp->next->data = val;

tmp->next->next = nullptr;

}
// in main after call to addToBack

13

Add to Back: Second Try

// what if we pass in an empty list?
void addToBack(ListNode *&front,
int val) {
ListNode *tmp = front;
while (tmp->next != nullptr) {
tmp = tmp->next;

}

tmp->next = new ListNode;

tmp->next->data = val;

tmp->next->next = nullptr;

14

Add to Back: Second Try

Stack Heap

// good edge case: empty list __
void addToBack(ListNode *&front, i

. p—
int val) {

. addToBack
ListNode *tmp = front; S o
while (tmp->next != nullptr) { —

/
tmp = tmp->next; int val

3

¥

tmp->next = new ListNode;
tmp->next->data = val;
tmp->next->next = nullptr;

}
// 1in main after call to addToBack

15

Add to Back: Second Try

Stack Heap

// good edge case: empty list
void addToBack(ListNode *&front,
int val) {
ListNode *tmp = front;

= RABOOMI

tmp—>next = new ListNode;
tmp->next->data = val;
tmp->next->next = nullptr;

main

ptr front

S —

addToBack

ptr front

}
// 1in main after call to addToBack

16

Add to Back: Solution

void addToBack(ListNode *&front, int val) {
ListNode *tmp = front;
if (front == nullptr) {
front = new ListNode{val, nullptr};
return;
}
while (tmp->next != nullptr) {
tmp = tmp->next;
}
tmp->next = new ListNode;
tmp->next->data = val;
tmp->next->next = nullptr;

Announcements

e Assignment 4 is due on Thursday — please finish it before then

e You will get assighment 3 feedback on Wednesday (tomorrow)

e Please give feedback (if you have the next 30 minutes free):
cs198.stanford.edu
e Exam logistics

— Midterm review session today, from 7:00-8:30PM, in Gates BO1, led by
SL Peter

— Midterm is on Wednesday (tomorrow), July 25, from 7:00-9:00PM in
Hewlett 200

— Complete assignment 4 before the midterm — backtracking will be
tested

18

Remove Index

e \We've seen how to add to a Linked List

e How would we remove an element from a specific index in the
linked list?

— How do we want to rewire the pointers?
— Do we need a layer of indirection?
— Should we pass by value or by reference?

— What edge cases should we consider?
e Empty list
e Removing from the front
e Removing from the back

e Assume for now that the list has an element in that index.

— Thought exercise: how would you modify the solution if to handle
shorter lists?

19

Remove Middle

Stack Heap

main 0x5CBBC80

ptr front int val
(%]

ptr next

0x5CB8CDO

int val
8

ptr next

OXSE;BDZO

int val
3

ptr next

- —

Heap

0x5CB8C80

int val
("]

ptr next

0x5CB8CDO

int val
3

ptr next

- —

20

Remove 0O

Stack Heap

main 0x5CBBC80

ptr front int val
(%]

ptr next

0x5CB8CDO

int val
8

ptr next

OXSE;BDZO

int val
3

ptr next

- —

Heap

0x5CB8C80

int val
8

ptr next

OXSC{BCDO

int val
3

ptr next

- —

21

Remove Index: First Try

void removelIndex(ListNode *&front, int index) {
if (index == 0) {
front = front->next;
} else {
ListNode *tmp = front;
for (int i = 0; i < index - 1; i++) {
tmp = tmp->next;

¥

tmp->next = tmp->next->next;

}

22

Remove Index: First Try

void removelIndex(ListNode *&front, int index) { Heap
if (index == 0) {
front = front->next; int val int val

} else { 0 8
ListNode *tmp = front; BEISE Ptr next

for (int i = @; i < index - 1; i++) { ; l

0x5CB8D20
tmp = tmp->next;

@x5CB8C80 (Orphaned) @x5CB8CD@

int val
} 3
tmp->next = tmp->next->next; ptr next
) S —

23

Remove Index

e We also need to free memory. How would we do that?

Stack Heap Stack Heap
main 0x5CB8C80 main 0x5CB8C80
ptr front int val ptr front int val
0 0
ptr next ptr next
OXSCL!CDO 0x5CB8CDO
int val int val
8 3
ptr next ptr next
; /
0x5CB8D20
int val
3
ptr next
/

24

Remove Index: Solution

void removelIndex(ListNode *&front, int index) {
if (index == 0) {
ListNode *trash = front;
front = front->next;
delete trash;
} else {
ListNode *tmp = front;
for (int 1 = 0; i < index - 1; i++) {
tmp = tmp->next;
}
ListNode *trash = tmp->next;
tmp->next = tmp->next->next;
delete trash;

25

Remove Index: Solution

void removeIndex(ListNode *&front, int index) { Stack Heap

if (index == 0) { main
ListNode *trash = front; T“r"“t
front = front->next;

0x5CB8C80

int val

0
ptr next

OXSG;%CDO

int val

8

ptr next

0 56;5020
tmp = tmp—}next; Nr?uh X
: int val

} 3
ptr next

ListNode *trash = tmp->next; - —

removeIndex
delete trash; ptr front

} else { int index
ListNode *tmp = front; 1

ptr tmp

for (int i = @; i < index - 1; i++) {

tmp->next = tmp->next->next;
delete trash;

26

Remove Index: Solution

void removeIndex(ListNode *&front, int index) { Stack Heap

if (index == @) { e

. ptr front
ListNode *trash = front; T

front = front->next; removeIndex

0x5CB8C80

int val
0

ptr next

OXSGé%CDO

int val
8

ptr next

delete trash; ptr front
} else { int index
ListNode *tmp = front; 1
for (int 1 = 0; i < index - 1; i++) { R ;
tmp = tmp->next; ozi j:o
} 3
ListNode *trash = tmp->next; Eiff;
tmp->next = tmp->next->next;

delete trash;

ptr trash

27

Remove Index: Solution

void removeIndex(ListNode *&front,
if (index 9) {
ListNode *trash = front;
front = front->next;
delete trash;
} else {
ListNode *tmp = front;
0; 1 < index - 1;

for (int i =
tmp = tmp->next;

}

ListNode *trash = tmp->next;

tmp->next = tmp->next->next;

delete trash;

int index) {

i++) {

Stack Heap

0x5CB8C80 0x5CB8CDO

main

Tpt r front

removeIndex

int val
8

ptr next

int val

ptr front
e

int index

1
ptr tmp

ptr next

- —

ptr trash

28

Remove Index: Solution

void removelIndex(ListNode *&front, int index) {

if (index == @) { Stack Heap
ListNode *trash = front; main 0x5CBBC80
front = front->next; Tﬂrﬁmt iMJﬂ
delete trash; ptr next
} else { removeIndex
. ptr front OXSC;SDZO
ListNode *tmp = front; ——— —
. int ind
for (int i = ©; i < index - 1; i++) { e 3
ptr next
tmp = tmp->next; ptr top _—

} ptr trash _¥ (Freed) @x5CB8CDO

ListNode *trash = tmp->next;
tmp->next = tmp->next->next;
delete trash;

29

Linked List as a Class

e What instance variables (fields) do we need?
e What should the constructor do? The destructor?

e |dea: instead of passing in front explicitly, store it as an instance
variable!

30

LinkedIntList.h

// Represents a linked list of integers.
class LinkedIntList {
public:

LinkedIntList();

~LinkedIntList();

void addBack(int value);

void addFront(int value);

void deletelList();

void print() const;

bool isEmpty() const;

private:
ListNode* front; // nullptr if empty
}s

31

LinkedIntList.cpp

// (partial)
#include "LinkedIntList.h"

LinkedIntList::LinkedIntList() {
front = nullptr;

}

bool LinkedIntList::isEmpty() {
return front == nullptr;

}

void LinkedIntList::addFront(int value) {

ListNode* newNode = new ListNode(value);
newNode->next = front;
front = newNode;

32

Linked List: Pros and Cons

¢ Pros:
— Fast to add/remove near the front of the list

e Great for queues, especially if we keep a pointer to the end of the LL

— Can merge or concatenate two linked lists without allocating any more
memory

e Thought experiment: how?
— Only uses the memory to store the number of elements in the list
e Cons:
— Slow to "index" into the list
— Slow to add/remove in the middle or near the end of the list
— Can only iterate one way

33

Doubly-Linked List

Stack Heap

0x5CB8C80

e Have each node point to the next node in the = main
list and the previous node in the list P

e Generally store pointer to the front and back

int val
1

ptr prev
/

ptr next

ptr end

e Advantages:
— easy to add to the front and the back of the list

— don't need a level of indirection for adding/
removing nodes
e You'll see these on your next homework
struct DoublylListNode {
int data;
ListNode *prev; AR
. —
ListNode *next;

s

0x5CB8CE®@

int val
2

ptr prev

ptr next

0x5£§%040

int val

3
ptr prev

34

Final Thoughts on LL

e Every element in a Linked List is stored in its own block, which we
call a ListNode

— Can only access an element by visiting every element before it
e When modifying the list, pass the front ListNode by reference

e When simply iterating through the list, the front ListNode can be
passed by value

e Edge cases: Test your code with a Linked List of size O, 1, 2, and 3,
and with operations on the beginning, middle, and end

e When in doubt, draw out a memory diagram (we've had a lot of
these in class!)

e Practice safe pointers: always check for null before dereferencing!

35

