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Plan for Today

e Modifying linked lists: Implementing add and delete from a Linked
List

e Common Linked Lists gotchas and Linked List tips

e Doubly-Linked Lists

e Linked List as a class



Recap

e Every element in a Linked List is stored in its own block, which we
call a ListNode

— Can only access an element by visiting every element before it
e When modifying the list, pass the front ListNode by reference

e When simply iterating through the list, the front ListNode can be
passed by value

— Do you see why?



Add to Back

e Yesterday, we talked about how to add to the front of a linked list
e How would we add to the back of a Linked List?

e Should the front be passed by reference or by value?



Add to Back: First Try

void addToBack(ListNode *&front, int val) {
ListNode *tmp = front;
while (tmp != nullptr) {
tmp = tmp->next;
}
tmp = new ListNode;
tmp->data = val;
tmp->next = nullptr;



Add to Back: First Try

. . Stack Heap
void addToBack(ListNode *&front, .
main N 0x5CB8C80
int Val) { ptr front int data
0
ListNode *tmp = front; ptr next
. addToBack

while (tmp != nullptr) { — . .
tmp = tmp->next; — it data

} int val ﬂ-

tmp = new ListNode;
tmp->data = val;
tmp->next = nullptr;



Add to Back: First Try

Stack Heap

void addToBack(ListNode *&front, -
int val) {
ListNode *tmp = front;
while (tmp != nullptr) {
tmp = tmp->next;

0x5CB8C80

int data
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ptr next

ptr front

addToBack

ptr front

0x5CB8CDO

int data
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ptr next

} int val —
tmp = new ListNode; ’

tmp->data = val;
tmp->next = nullptr;



Add to Back: First Try

Stack Heap

void addToBack(ListNode *&front, _— I
int Val) { ptr front / intedata
ListNode *tmp = front;
. addToBack
while (tmp != nullptr) {

ptr front 0x5(£3c00
tmp — tmp— >next; — / int8data

ptr next

} ] int3va1 —
tmp = new ListNode;

tmp->data = val;
tmp->next = nullptr;

ptr next




Add to Back: First Try

Stack Heap
void addTOBaCk(LiStNOde *&'Fr‘ont, main 0x5CBBC80
i tr front int data
int val) { per f e -

1 3 — . tr next
ListNode *tmp = front; ddToBack pi
while (tmp | = nU].lptr‘) { ptr front 0x5CB8CDO

tmp = tmp->next; ptr tnp —
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} int val —

tmp = new ListNode; ’

tmp->data = val;
tmp->next = nullptr;



Add to Back: First Try

Stack Hea

void addToBack(ListNode *&front, nain ox5CB8CE0 p
int val) { pter/ it data
ListNode *tmp = front; e ptr next
while (tmp != nullptr) { ptr front ox5CBCD0
tmp = tmp->next; ptr tmp e

} o et

tmp = new ListNode; oxsCa8D20
tmp->data = val; int date
tmp->next = nullptr; —
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Add to Back: First Try

Stack Heap

void addToBack(ListNode *&front, . _ . I
int Val) { ptr front e int@data

ListNode *tmp = front; ptr next
while (tmp != nullptr) { OXscém
tmp = tmp->next; i dato
tmp = new ListNode; e
tmp->data = val; i ot
tmp->next = nullptr; o vet

}
// in main after call to addToBack
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Add to Back: Key Point

e When modifying (adding to or removing from) a linked list, we need
to be one node away from the node we want to impact (layer of
indirection)

— In this case, we need to add the node after our current node — how
could we do that?
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Add to Back: Second Try

Stack Heap

void addToBack(ListNode *&front, hain
int val) { RE/ELAERS
ListNode *tmp = front;
while (tmp->next != nullptr) {
tmp = tmp->next;
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int data
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ptr next

addToBack

ptr front
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int data

8

ptr next

} e —
tmp->next = new ListNode;

tmp->next->data = val;

tmp->next->next = nullptr;

}
// in main after call to addToBack
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Add to Back: Second Try

// what if we pass in an empty list?
void addToBack(ListNode *&front,
int val) {
ListNode *tmp = front;
while (tmp->next != nullptr) {
tmp = tmp->next;

}

tmp->next = new ListNode;

tmp->next->data = val;

tmp->next->next = nullptr;
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Add to Back: Second Try

Stack Heap

// good edge case: empty list __
void addToBack(ListNode *&front, i

. p—
int val) {

. addToBack
ListNode *tmp = front; S o
while (tmp->next != nullptr) { —

/
tmp = tmp->next; int val

3

¥

tmp->next = new ListNode;
tmp->next->data = val;
tmp->next->next = nullptr;

}
// 1in main after call to addToBack
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Add to Back: Second Try

Stack Heap

// good edge case: empty list
void addToBack(ListNode *&front,
int val) {
ListNode *tmp = front;

= RABOOMI

tmp—>next = new ListNode;
tmp->next->data = val;
tmp->next->next = nullptr;

main

ptr front

S —

addToBack

ptr front

}
// 1in main after call to addToBack
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Add to Back: Solution

void addToBack(ListNode *&front, int val) {
ListNode *tmp = front;
if (front == nullptr) {
front = new ListNode{val, nullptr};
return;
}
while (tmp->next != nullptr) {
tmp = tmp->next;
}
tmp->next = new ListNode;
tmp->next->data = val;
tmp->next->next = nullptr;



Announcements

e Assignment 4 is due on Thursday — please finish it before then

e You will get assighment 3 feedback on Wednesday (tomorrow)

e Please give feedback (if you have the next 30 minutes free):
cs198.stanford.edu
e Exam logistics

— Midterm review session today, from 7:00-8:30PM, in Gates BO1, led by
SL Peter

— Midterm is on Wednesday (tomorrow), July 25, from 7:00-9:00PM in
Hewlett 200

— Complete assignment 4 before the midterm — backtracking will be
tested
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Remove Index

e \We've seen how to add to a Linked List

e How would we remove an element from a specific index in the
linked list?

— How do we want to rewire the pointers?
— Do we need a layer of indirection?
— Should we pass by value or by reference?

— What edge cases should we consider?
e Empty list
e Removing from the front
e Removing from the back

e Assume for now that the list has an element in that index.

— Thought exercise: how would you modify the solution if to handle
shorter lists?
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Remove Middle

Stack Heap
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Remove 0O

Stack Heap

main 0x5CBBC80

ptr front int val
(%]

ptr next
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int val
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ptr next
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int val
3

ptr next

- —
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int val
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int val
3

ptr next

- —
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Remove Index: First Try

void removelIndex(ListNode *&front, int index) {
if (index == 0) {
front = front->next;
} else {
ListNode *tmp = front;
for (int i = 0; i < index - 1; i++) {
tmp = tmp->next;

¥

tmp->next = tmp->next->next;

}
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Remove Index: First Try

void removelIndex(ListNode *&front, int index) { Heap
if (index == 0) {
front = front->next; int val int val

} else { 0 8
ListNode *tmp = front; BEISE Ptr next

for (int i = @; i < index - 1; i++) { ; l

0x5CB8D20
tmp = tmp->next;

@x5CB8C80 (Orphaned) @x5CB8CD@

int val
} 3
tmp->next = tmp->next->next; ptr next
) S —
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Remove Index

e We also need to free memory. How would we do that?

Stack Heap Stack Heap
main 0x5CB8C80 main 0x5CB8C80
ptr front int val ptr front int val
0 0
ptr next ptr next
OXSCL!CDO 0x5CB8CDO
int val int val
8 3
ptr next ptr next
; /
0x5CB8D20
int val
3
ptr next
/

24



Remove Index: Solution

void removelIndex(ListNode *&front, int index) {
if (index == 0) {
ListNode *trash = front;
front = front->next;
delete trash;
} else {
ListNode *tmp = front;
for (int 1 = 0; i < index - 1; i++) {
tmp = tmp->next;
}
ListNode *trash = tmp->next;
tmp->next = tmp->next->next;
delete trash;
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Remove Index: Solution

void removeIndex(ListNode *&front, int index) { Stack Heap

if (index == 0) { main
ListNode *trash = front; T“r"“t
front = front->next;

0x5CB8C80

int val

0
ptr next

OXSG;%CDO

int val

8

ptr next

0 56;5020
tmp = tmp—}next; Nr?uh X
: int val

} 3
ptr next

ListNode *trash = tmp->next; - —

removeIndex
delete trash; ptr front

} else { int index
ListNode *tmp = front; 1

ptr tmp

for (int i = @; i < index - 1; i++) {

tmp->next = tmp->next->next;
delete trash;
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Remove Index: Solution

void removeIndex(ListNode *&front, int index) { Stack Heap

if (index == @) { e

. ptr front
ListNode *trash = front; T

front = front->next; removeIndex

0x5CB8C80

int val
0

ptr next

OXSGé%CDO

int val
8

ptr next

delete trash; ptr front
} else { int index
ListNode *tmp = front; 1
for (int 1 = 0; i < index - 1; i++) { R ;
tmp = tmp->next; ozi j:o
} 3
ListNode *trash = tmp->next; Eiff;
tmp->next = tmp->next->next;

delete trash;

ptr trash
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Remove Index: Solution

void removeIndex(ListNode *&front,
if (index 9) {
ListNode *trash = front;
front = front->next;
delete trash;
} else {
ListNode *tmp = front;
0; 1 < index - 1;

for (int i =
tmp = tmp->next;

}

ListNode *trash = tmp->next;

tmp->next = tmp->next->next;

delete trash;

int index) {

i++) {

Stack Heap

0x5CB8C80 0x5CB8CDO

main

Tpt r front

removeIndex

int val
8

ptr next

int val

ptr front
e

int index

1
ptr tmp

ptr next

- —

ptr trash
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Remove Index: Solution

void removelIndex(ListNode *&front, int index) {

if (index == @) { Stack Heap
ListNode *trash = front; main 0x5CBBC80
front = front->next; Tﬂrﬁmt iMJﬂ
delete trash; ptr next
} else { removeIndex
. ptr front OXSC;SDZO
ListNode *tmp = front; ——— —
. . . . . int ind
for (int i = ©; i < index - 1; i++) { e 3
ptr next
tmp = tmp->next; ptr top _—

} ptr trash _¥ (Freed) @x5CB8CDO

ListNode *trash = tmp->next;
tmp->next = tmp->next->next;
delete trash;
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Linked List as a Class

e What instance variables (fields) do we need?
e What should the constructor do? The destructor?

e |dea: instead of passing in front explicitly, store it as an instance
variable!
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LinkedIntList.h

// Represents a linked list of integers.
class LinkedIntList {
public:

LinkedIntList();

~LinkedIntList();

void addBack(int value);

void addFront(int value);

void deletelList();

void print() const;

bool isEmpty() const;

private:
ListNode* front; // nullptr if empty
}s
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LinkedIntList.cpp

// (partial)
#include "LinkedIntList.h"

LinkedIntList::LinkedIntList() {
front = nullptr;

}

bool LinkedIntList::isEmpty() {
return front == nullptr;

}

void LinkedIntList::addFront(int value) {

ListNode* newNode = new ListNode(value);
newNode->next = front;
front = newNode;
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Linked List: Pros and Cons

¢ Pros:
— Fast to add/remove near the front of the list

e Great for queues, especially if we keep a pointer to the end of the LL

— Can merge or concatenate two linked lists without allocating any more
memory

e Thought experiment: how?
— Only uses the memory to store the number of elements in the list
e Cons:
— Slow to "index" into the list
— Slow to add/remove in the middle or near the end of the list
— Can only iterate one way
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Doubly-Linked List

Stack Heap

0x5CB8C80

e Have each node point to the next node in the = main
list and the previous node in the list P

e Generally store pointer to the front and back

int val
1

ptr prev
/

ptr next

ptr end

e Advantages:
— easy to add to the front and the back of the list

— don't need a level of indirection for adding/
removing nodes
e You'll see these on your next homework
struct DoublylListNode {
int data;
ListNode *prev; AR
. —
ListNode *next;

s

0x5CB8CE®@

int val
2

ptr prev

ptr next

0x5£§%040

int val

3
ptr prev
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Final Thoughts on LL

e Every element in a Linked List is stored in its own block, which we
call a ListNode

— Can only access an element by visiting every element before it
e When modifying the list, pass the front ListNode by reference

e When simply iterating through the list, the front ListNode can be
passed by value

e Edge cases: Test your code with a Linked List of size O, 1, 2, and 3,
and with operations on the beginning, middle, and end

e When in doubt, draw out a memory diagram (we've had a lot of
these in class!)

e Practice safe pointers: always check for null before dereferencing!
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