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Plan for Today

e Start with a discussion of how to implement a Set
— The importance of choosing a good data structure

e Move into trees, a new kind of data structure

e We'll focus on "reading" trees today — modifying trees will be
tomorrow's lecture



Designing a Set

e We've seen how to implement:
— Stack (array or linked list)
— Vector (array)
— Queue (linked list)

e How would we implement Set?
— Add
— Contains
— Remove



First Try

e Store all the elements in an unsorted array or linked list
— What is the Big-Oh of contains?
— What is the Big-Oh of adding an element?
— What is the Big-Oh of removing an element?




Another attempt

e What if we sorted the array?
— What is the Big-Oh of contains?
— What is the Big-Oh of adding an element?
— What is the Big-Oh of removing an element?




Binary Search

e Fast way to search for elements in a sorted array
e Looping through elements one by one is slow [O(N)]
e |dea:
Jump to the middle element:
if the middle is what we're looking for, we're done. Hooray!

if the middle is too small (we didn't go far enough) — we rule out
the entire left side of elements smaller than the middle element

if the middle is too big(we went too far) — we rule out the entire
right side of elements bigger than the middle element




Binary Search in Action

e Search for 8:
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Binary Search in Action
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Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
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Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:

— it's too small, so we rule out indices 0-3
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Binary Search in Action

e Search for 8:
e Lookat 13
— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:
— it's too small, so we rule out indices 0-3
e Look at 8:

— it's just right! We return true
middle

l
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Binary Search in Action

e Search for 7:

middle
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Binary Search in Action
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Binary Search in Action

e Search for 7:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:

— it's too small, so we rule out indices 0-3

middle

l
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Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10

e Look at 6:
— it's too small, so we rule out indices 0-3

e Look at 8:
— it's too big! We rule out elements 3-4

middle

l

2 5 6 8 11 | 13 { 17 | 22 | 23 | 29 | 31

17



Binary Search in Action

e Search for 8:
e Lookat 13

— it's too big, so we rule out indices 5-10
e Look at 6:

— it's too small, so we rule out indices 0-3
e Look at 8:

— it's too big! We rule out elements 3-4

e No elements left to search — we return false
middle

l
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Sorted Array

e What if we sorted the array?
— What is the Big-Oh of contains?
e O(log N)
— What is the Big-Oh of adding an element?
* O(N)
— What is the Big-Oh of removing an element?
* O(N)
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A Modification

e Problem: an array is slow to insert into or remove from

e Our solution was a linked list — have each element connected to
one other element

— Easy to add/remove elements
— Can't skip elements — need to go in order

e Maybe we can find some way to implement the jumps necessary
for binary search...
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A Modification

e What are all the possible paths binary search could take on this
array (ties are broken by choosing the smaller element)?
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A Modification

e Key idea: we always jump to one of two elements in binary search
(depending on if the element we're looking at is too big or too
small)

e What if we had a Linked List where we stored two pointers,
allowing us to make those jumps quickly?
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Binary Search Tree

e A tree is a data structure where each element (parent) stores two
or more pointers to other elements (its children)

— A doubly-linked list doesn't count because, just like outside of
computer science, a child can not be its own ancestor

e Each node in a binary tree has two pointers
— Some of these pointers may be nullptr (just like in a linked list)
— We'll see examples of non-binary trees in future lectures

e A binary search tree is a binary tree with special ordering
properties that make it easy to do binary search

e Similar to a Linked List:
— Each element in its own block of memory
— Have to travel through pointers (can't skip "generations")
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(Binary) TreeNode

struct TreeNode {
int data; // assume that the tree stores ints
TreeNode *left;
TreeNode *right;

s
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Binary Search Trees

e \We'll say a binary search tree has the following property:
— All elements to the left of an element are smaller than that element
— All elements to the right of an element are bigger than that element
— Just like our sorted array!
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Tree anatomy

root

23

17 29

22 31

leaves

subtree
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13

BST Contains

e How would you search a BST for an element?
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BST Contains

e How would you search a BST for an element?

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)
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Trees and Recursion

e Trees are fundamentally recursive (subtrees are smaller trees)

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)
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Trees and Contains

e Search for 5

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

curr
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Trees and Contains

e Search for 5
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Trees and Contains

e Search for 5

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)
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Printing Trees

e \We need to be able to print our Set

e How would we print a tree?
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Printing Trees

e How would we print a tree?

— Idea: need to recurse both left and right

— Traverse the tree!

e Most tree problems involve traversing the tree
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Traversal trick

e To quickly generate a traversal:

— Trace a path counterclockwise. @
— As you pass a node on the

proper side, process it. @ e

e pre-order: left side
¢ in-order: bottom

* post-order: right side @ e @ @

e \What kind of traversal does

a for-each loop in a Set do?

e pre-order: 17 41 29 6 9 81 40
¢ in-order: 29 41 6 17 81 9 40
e post-order: 29 6 41 81 40 9 17 36



getMin/getMax

e Sorted arrays can find the smallest or largest element in O(1) time
(how?)

e How could we get the same values in a binary search tree?

root

37



Announcements

e Assignment 4 is due tomorrow

e Assignment 5 will be released tomorrow

— More time to complete it, but this assignment will be significantly
longer than the others you've seen this quarter

— As a rough guide, part c took SLs about four times as long to solve as
part a, so don't wait until the last minute

e You will get assignment 3 feedback on today

e Please give feedback (if you have the next 30 minutes free):
cs198.stanford.edu

e Exam logistics
— Midterm today, July 25, from 7:00-9:00PM in Hewlett 200
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You've worked hard and have an exam today — you can leave early or
stick around to ask me questions ©
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