
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	18	
Binary	Search	Trees	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Start	with	a	discussion	of	how	to	implement	a	Set	

–  The	importance	of	choosing	a	good	data	structure	
• Move	into	trees,	a	new	kind	of	data	structure	
• We'll	focus	on	"reading"	trees	today	–	modifying	trees	will	be	
tomorrow's	lecture	



3 

Designing a Set 
• We've	seen	how	to	implement:	

–  Stack	(array	or	linked	list)	
–  Vector	(array)	
– Queue	(linked	list)	

• How	would	we	implement	Set?	
–  Add	
–  Contains	
–  Remove	



4 

First Try 
• Store	all	the	elements	in	an	unsorted	array	or	linked	list	

– What	is	the	Big-Oh	of	contains?	
– What	is	the	Big-Oh	of	adding	an	element?	
– What	is	the	Big-Oh	of	removing	an	element?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

3	 8	 9	 7	 5	 12	 4	 8	 1	 6	 75	



5 

Another attempt 
• What	if	we	sorted	the	array?	

– What	is	the	Big-Oh	of	contains?	
– What	is	the	Big-Oh	of	adding	an	element?	
– What	is	the	Big-Oh	of	removing	an	element?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	



6 

Binary Search 
• Fast	way	to	search	for	elements	in	a	sorted	array	
• Looping	through	elements	one	by	one	is	slow	[O(N)]	
•  Idea:	
Jump	to	the	middle	element:	
				if	the	middle	is	what	we're	looking	for,	we're	done.	Hooray!	
				if	the	middle	is	too	small	(we	didn't	go	far	enough)	–	we	rule	out	
the	entire	left	side	of	elements	smaller	than	the	middle	element	
				if	the	middle	is	too	big(we	went	too	far)	–	we	rule	out	the	entire	
right	side	of	elements	bigger	than	the	middle	element	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	



7 

Binary Search in Action 
• Search	for	8:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	



8 

Binary Search in Action 
• Search	for	8:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



9 

Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



10 

Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



11 

Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



12 

Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	
• Look	at	8:	

–  it's	just	right!	We	return	true	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



13 

Binary Search in Action 
• Search	for	7:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



14 

Binary Search in Action 
• Search	for	7:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



15 

Binary Search in Action 
• Search	for	7:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



16 

Binary Search in Action 
• Search	for	7:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



17 

Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	
• Look	at	8:	

–  it's	too	big!	We	rule	out	elements	3-4	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



18 

Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	
• Look	at	8:	

–  it's	too	big!	We	rule	out	elements	3-4	
• No	elements	left	to	search	–	we	return	false	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 



19 

Sorted Array 
• What	if	we	sorted	the	array?	

– What	is	the	Big-Oh	of	contains?		
• O(log	N)	

– What	is	the	Big-Oh	of	adding	an	element?	
• O(N)	

– What	is	the	Big-Oh	of	removing	an	element?	
• O(N)	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	



20 

A Modification 
• Problem:	an	array	is	slow	to	insert	into	or	remove	from	
• Our	solution	was	a	linked	list	–	have	each	element	connected	to	
one	other	element	
–  Easy	to	add/remove	elements	
–  Can't	skip	elements	–	need	to	go	in	order	

• Maybe	we	can	find	some	way	to	implement	the	jumps	necessary	
for	binary	search...	



21 

A Modification 
• What	are	all	the	possible	paths	binary	search	could	take	on	this	
array	(ties	are	broken	by	choosing	the	smaller	element)?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

13 

6 

2 8 

5 11 

23 

17 29 

22 31 



22 

A Modification 
• Key	idea:	we	always	jump	to	one	of	two	elements	in	binary	search	
(depending	on	if	the	element	we're	looking	at	is	too	big	or	too	
small)	

• What	if	we	had	a	Linked	List	where	we	stored	two	pointers,	
allowing	us	to	make	those	jumps	quickly?	



23 

Binary Search Tree 
• A	tree	is	a	data	structure	where	each	element	(parent)	stores	two	
or	more	pointers	to	other	elements	(its	children)	
–  A	doubly-linked	list	doesn't	count	because,	just	like	outside	of	
computer	science,	a	child	can	not	be	its	own	ancestor	

• Each	node	in	a	binary	tree	has	two	pointers	
–  Some	of	these	pointers	may	be	nullptr	(just	like	in	a	linked	list)	
– We'll	see	examples	of	non-binary	trees	in	future	lectures	

•  	A	binary	search	tree	is	a	binary	tree	with	special	ordering	
properties	that	make	it	easy	to	do	binary	search	

• Similar	to	a	Linked	List:	
–  Each	element	in	its	own	block	of	memory	
– Have	to	travel	through	pointers	(can't	skip	"generations")	



24 

(Binary) TreeNode 
struct	TreeNode	{	
				int	data;	//	assume	that	the	tree	stores	ints	
				TreeNode	*left;	
				TreeNode	*right;	
};	



25 

Binary Search Trees 
• We'll	say	a	binary	search	tree	has	the	following	property:	

–  All	elements	to	the	left	of	an	element	are	smaller	than	that	element	
–  All	elements	to	the	right	of	an	element	are	bigger	than	that	element	
–  Just	like	our	sorted	array!	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

13 

6 

2 8 

5 11 

23 

17 29 

22 31 



26 

Tree anatomy 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

leaves 

root 

subtree 



27 

BST Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• How	would	you	search	a	BST	for	an	element?		



28 

BST Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• How	would	you	search	a	BST	for	an	element?	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	



29 

Trees and Recursion 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Trees	are	fundamentally	recursive	(subtrees	are	smaller	trees)	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	



30 

Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 



31 

Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 



32 

Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 



33 

Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 



34 

Printing Trees 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• We	need	to	be	able	to	print	our	Set	
• How	would	we	print	a	tree?	



35 

Printing Trees 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• How	would	we	print	a	tree?	
–  Idea:	need	to	recurse	both	left	and	right	
–  Traverse	the	tree!	

• Most	tree	problems	involve	traversing	the	tree	



36 

Traversal trick 
•  To	quickly	generate	a	traversal:	
–  Trace	a	path	counterclockwise.	
–  As	you	pass	a	node	on	the	
proper	side,	process	it.	

• pre-order:	left	side	
•  in-order:	bottom	
• post-order:	right	side	

• What	kind	of	traversal	does	
		a	for-each	loop	in	a	Set	do?	

•  pre-order: 	17	41	29		6		9	81	40	
•  in-order: 	29	41		6	17	81		9	40	
•  post-order: 	29		6	41	81	40		9	17	

40	81	

9	41	

17	

6	29	

root	



37 

getMin/getMax 
• Sorted	arrays	can	find	the	smallest	or	largest	element	in	O(1)	time	
(how?)	

• How	could	we	get	the	same	values	in	a	binary	search	tree?	
	

91	60	

72	29	

55	

42	17	

root	

88	



38 

Announcements 
• Assignment	4	is	due	tomorrow		
• Assignment	5	will	be	released	tomorrow	

– More	time	to	complete	it,	but	this	assignment	will	be	significantly	
longer	than	the	others	you've	seen	this	quarter	

–  As	a	rough	guide,	part	c	took	SLs	about	four	times	as	long	to	solve	as	
part	a,	so	don't	wait	until	the	last	minute	

• You	will	get	assignment	3	feedback	on	today	
• Please	give	feedback	(if	you	have	the	next	30	minutes	free):	
cs198.stanford.edu	

• Exam	logistics	
– Midterm	today,	July	25,	from	7:00-9:00PM	in	Hewlett	200	



39 

AMA 
You've	worked	hard	and	have	an	exam	today	–	you	can	leave	early	or	
stick	around	to	ask	me	questions	J	


