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Plan for Today 
• Start	with	a	discussion	of	how	to	implement	a	Set	

–  The	importance	of	choosing	a	good	data	structure	
• Move	into	trees,	a	new	kind	of	data	structure	
• We'll	focus	on	"reading"	trees	today	–	modifying	trees	will	be	
tomorrow's	lecture	



3 

Designing a Set 
• We've	seen	how	to	implement:	

–  Stack	(array	or	linked	list)	
–  Vector	(array)	
– Queue	(linked	list)	

• How	would	we	implement	Set?	
–  Add	
–  Contains	
–  Remove	
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First Try 
• Store	all	the	elements	in	an	unsorted	array	or	linked	list	

– What	is	the	Big-Oh	of	contains?	
– What	is	the	Big-Oh	of	adding	an	element?	
– What	is	the	Big-Oh	of	removing	an	element?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

3	 8	 9	 7	 5	 12	 4	 8	 1	 6	 75	
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Another attempt 
• What	if	we	sorted	the	array?	

– What	is	the	Big-Oh	of	contains?	
– What	is	the	Big-Oh	of	adding	an	element?	
– What	is	the	Big-Oh	of	removing	an	element?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	
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Binary Search 
• Fast	way	to	search	for	elements	in	a	sorted	array	
• Looping	through	elements	one	by	one	is	slow	[O(N)]	
•  Idea:	
Jump	to	the	middle	element:	
				if	the	middle	is	what	we're	looking	for,	we're	done.	Hooray!	
				if	the	middle	is	too	small	(we	didn't	go	far	enough)	–	we	rule	out	
the	entire	left	side	of	elements	smaller	than	the	middle	element	
				if	the	middle	is	too	big(we	went	too	far)	–	we	rule	out	the	entire	
right	side	of	elements	bigger	than	the	middle	element	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	
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Binary Search in Action 
• Search	for	8:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	
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Binary Search in Action 
• Search	for	8:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	
• Look	at	8:	

–  it's	just	right!	We	return	true	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	7:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	7:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	7:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	7:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Pick	the	new	middle	of	the	remaining	elements	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	
• Look	at	8:	

–  it's	too	big!	We	rule	out	elements	3-4	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Binary Search in Action 
• Search	for	8:	
• Look	at	13	

–  it's	too	big,	so	we	rule	out	indices	5-10	
• Look	at	6:	

–  it's	too	small,	so	we	rule	out	indices	0-3	
• Look	at	8:	

–  it's	too	big!	We	rule	out	elements	3-4	
• No	elements	left	to	search	–	we	return	false	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

middle 
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Sorted Array 
• What	if	we	sorted	the	array?	

– What	is	the	Big-Oh	of	contains?		
• O(log	N)	

– What	is	the	Big-Oh	of	adding	an	element?	
• O(N)	

– What	is	the	Big-Oh	of	removing	an	element?	
• O(N)	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	
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A Modification 
• Problem:	an	array	is	slow	to	insert	into	or	remove	from	
• Our	solution	was	a	linked	list	–	have	each	element	connected	to	
one	other	element	
–  Easy	to	add/remove	elements	
–  Can't	skip	elements	–	need	to	go	in	order	

• Maybe	we	can	find	some	way	to	implement	the	jumps	necessary	
for	binary	search...	
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A Modification 
• What	are	all	the	possible	paths	binary	search	could	take	on	this	
array	(ties	are	broken	by	choosing	the	smaller	element)?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

13 

6 

2 8 

5 11 

23 

17 29 

22 31 
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A Modification 
• Key	idea:	we	always	jump	to	one	of	two	elements	in	binary	search	
(depending	on	if	the	element	we're	looking	at	is	too	big	or	too	
small)	

• What	if	we	had	a	Linked	List	where	we	stored	two	pointers,	
allowing	us	to	make	those	jumps	quickly?	
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Binary Search Tree 
• A	tree	is	a	data	structure	where	each	element	(parent)	stores	two	
or	more	pointers	to	other	elements	(its	children)	
–  A	doubly-linked	list	doesn't	count	because,	just	like	outside	of	
computer	science,	a	child	can	not	be	its	own	ancestor	

• Each	node	in	a	binary	tree	has	two	pointers	
–  Some	of	these	pointers	may	be	nullptr	(just	like	in	a	linked	list)	
– We'll	see	examples	of	non-binary	trees	in	future	lectures	

•  	A	binary	search	tree	is	a	binary	tree	with	special	ordering	
properties	that	make	it	easy	to	do	binary	search	

• Similar	to	a	Linked	List:	
–  Each	element	in	its	own	block	of	memory	
– Have	to	travel	through	pointers	(can't	skip	"generations")	
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(Binary) TreeNode 
struct	TreeNode	{	
				int	data;	//	assume	that	the	tree	stores	ints	
				TreeNode	*left;	
				TreeNode	*right;	
};	
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Binary Search Trees 
• We'll	say	a	binary	search	tree	has	the	following	property:	

–  All	elements	to	the	left	of	an	element	are	smaller	than	that	element	
–  All	elements	to	the	right	of	an	element	are	bigger	than	that	element	
–  Just	like	our	sorted	array!	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

2	 5	 6	 8	 11	 13	 17	 22	 23	 29	 31	

13 

6 

2 8 

5 11 

23 

17 29 

22 31 
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Tree anatomy 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

leaves 

root 

subtree 
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BST Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• How	would	you	search	a	BST	for	an	element?		
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BST Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• How	would	you	search	a	BST	for	an	element?	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	
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Trees and Recursion 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Trees	are	fundamentally	recursive	(subtrees	are	smaller	trees)	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	
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Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 
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Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 
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Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 
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Trees and Contains 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• Search	for	5	
• Start	at	root:	

–  If	root	is	too	big,	go	left	(entire	right	subtree	is	too	big)	
–  If	root	is	too	small,	go	right	(entire	left	subtree	is	too	small)	

curr 
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Printing Trees 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• We	need	to	be	able	to	print	our	Set	
• How	would	we	print	a	tree?	
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Printing Trees 

13 

6 

2 8 

5 11 

23 

17 29 

22 31 

• How	would	we	print	a	tree?	
–  Idea:	need	to	recurse	both	left	and	right	
–  Traverse	the	tree!	

• Most	tree	problems	involve	traversing	the	tree	
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Traversal trick 
•  To	quickly	generate	a	traversal:	
–  Trace	a	path	counterclockwise.	
–  As	you	pass	a	node	on	the	
proper	side,	process	it.	

• pre-order:	left	side	
•  in-order:	bottom	
• post-order:	right	side	

• What	kind	of	traversal	does	
		a	for-each	loop	in	a	Set	do?	

•  pre-order: 	17	41	29		6		9	81	40	
•  in-order: 	29	41		6	17	81		9	40	
•  post-order: 	29		6	41	81	40		9	17	

40	81	

9	41	

17	

6	29	

root	
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getMin/getMax 
• Sorted	arrays	can	find	the	smallest	or	largest	element	in	O(1)	time	
(how?)	

• How	could	we	get	the	same	values	in	a	binary	search	tree?	
	

91	60	

72	29	

55	

42	17	

root	

88	
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Announcements 
• Assignment	4	is	due	tomorrow		
• Assignment	5	will	be	released	tomorrow	

– More	time	to	complete	it,	but	this	assignment	will	be	significantly	
longer	than	the	others	you've	seen	this	quarter	

–  As	a	rough	guide,	part	c	took	SLs	about	four	times	as	long	to	solve	as	
part	a,	so	don't	wait	until	the	last	minute	

• You	will	get	assignment	3	feedback	on	today	
• Please	give	feedback	(if	you	have	the	next	30	minutes	free):	
cs198.stanford.edu	

• Exam	logistics	
– Midterm	today,	July	25,	from	7:00-9:00PM	in	Hewlett	200	
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AMA 
You've	worked	hard	and	have	an	exam	today	–	you	can	leave	early	or	
stick	around	to	ask	me	questions	J	


