CS 106B, Lecture 18
Binary Search Trees

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Start with a discussion of how to implement a Set
— The importance of choosing a good data structure

e Move into trees, a new kind of data structure

e We'll focus on "reading" trees today — modifying trees will be
tomorrow's lecture

Designing a Set

e We've seen how to implement:
— Stack (array or linked list)
— Vector (array)
— Queue (linked list)

e How would we implement Set?
— Add
— Contains
— Remove

First Try

e Store all the elements in an unsorted array or linked list
— What is the Big-Oh of contains?
— What is the Big-Oh of adding an element?
— What is the Big-Oh of removing an element?

Another attempt

e What if we sorted the array?
— What is the Big-Oh of contains?
— What is the Big-Oh of adding an element?
— What is the Big-Oh of removing an element?

Binary Search

e Fast way to search for elements in a sorted array
e Looping through elements one by one is slow [O(N)]
e |dea:
Jump to the middle element:
if the middle is what we're looking for, we're done. Hooray!

if the middle is too small (we didn't go far enough) — we rule out
the entire left side of elements smaller than the middle element

if the middle is too big(we went too far) — we rule out the entire
right side of elements bigger than the middle element

Binary Search in Action

e Search for 8:

Binary Search in Action

e Search for 8:

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

10

Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:

— it's too small, so we rule out indices 0-3

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

11

Binary Search in Action

e Search for 8:
e Lookat 13
— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:
— it's too small, so we rule out indices 0-3
e Look at 8:

— it's just right! We return true
middle

l

12

Binary Search in Action

e Search for 7:

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

13

Binary Search in Action

e Search for 7:
e Look at 13

— it's too big, so we rule out indices 5-10

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

14

Binary Search in Action

e Search for 7:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

15

Binary Search in Action

e Search for 7:
e Look at 13

— it's too big, so we rule out indices 5-10
e Pick the new middle of the remaining elements
e Look at 6:

— it's too small, so we rule out indices 0-3

middle

l

2 5 6 8 11 | 13 | 17 | 22 | 23 | 29 | 31

16

Binary Search in Action

e Search for 8:
e Look at 13

— it's too big, so we rule out indices 5-10

e Look at 6:
— it's too small, so we rule out indices 0-3

e Look at 8:
— it's too big! We rule out elements 3-4

middle

l

2 5 6 8 11 | 13 { 17 | 22 | 23 | 29 | 31

17

Binary Search in Action

e Search for 8:
e Lookat 13

— it's too big, so we rule out indices 5-10
e Look at 6:

— it's too small, so we rule out indices 0-3
e Look at 8:

— it's too big! We rule out elements 3-4

e No elements left to search — we return false
middle

l

18

Sorted Array

e What if we sorted the array?
— What is the Big-Oh of contains?
e O(log N)
— What is the Big-Oh of adding an element?
* O(N)
— What is the Big-Oh of removing an element?
* O(N)

19

A Modification

e Problem: an array is slow to insert into or remove from

e Our solution was a linked list — have each element connected to
one other element

— Easy to add/remove elements
— Can't skip elements — need to go in order

e Maybe we can find some way to implement the jumps necessary
for binary search...

20

A Modification

e What are all the possible paths binary search could take on this
array (ties are broken by choosing the smaller element)?

13

11

17

22

29

31

11

13

17

22

23

29

31

21

A Modification

e Key idea: we always jump to one of two elements in binary search
(depending on if the element we're looking at is too big or too
small)

e What if we had a Linked List where we stored two pointers,
allowing us to make those jumps quickly?

22

Binary Search Tree

e A tree is a data structure where each element (parent) stores two
or more pointers to other elements (its children)

— A doubly-linked list doesn't count because, just like outside of
computer science, a child can not be its own ancestor

e Each node in a binary tree has two pointers
— Some of these pointers may be nullptr (just like in a linked list)
— We'll see examples of non-binary trees in future lectures

e A binary search tree is a binary tree with special ordering
properties that make it easy to do binary search

e Similar to a Linked List:
— Each element in its own block of memory
— Have to travel through pointers (can't skip "generations")

23

(Binary) TreeNode

struct TreeNode {
int data; // assume that the tree stores ints
TreeNode *left;
TreeNode *right;

s

24

Binary Search Trees

e \We'll say a binary search tree has the following property:
— All elements to the left of an element are smaller than that element
— All elements to the right of an element are bigger than that element
— Just like our sorted array!

13

17

22

29

31

11

13

17

22

23

29

31

25

Tree anatomy

root

23

17 29

22 31

leaves

subtree
26

13

BST Contains

e How would you search a BST for an element?

11

23

17

22

29

31

27

BST Contains

e How would you search a BST for an element?

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

13

17

22

29

31

28

Trees and Recursion

e Trees are fundamentally recursive (subtrees are smaller trees)

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

13

17

22

29

31

29

Trees and Contains

e Search for 5

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

curr

13

11

17

22

29

31

30

Trees and Contains

e Search for 5

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

curr

13

11

17

22

29

31

31

Trees and Contains

e Search for 5

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

curr

13

11

17

22

29

31

32

Trees and Contains

e Search for 5

e Start at root:
— If root is too big, go left (entire right subtree is too big)
— If root is too small, go right (entire left subtree is too small)

curr

13

11

17

22

29

31

33

Printing Trees

e \We need to be able to print our Set

e How would we print a tree?

13

11

23

17

22

29

31

34

Printing Trees

e How would we print a tree?

— Idea: need to recurse both left and right

— Traverse the tree!

e Most tree problems involve traversing the tree

13

23

17

22

29

31

35

Traversal trick

e To quickly generate a traversal:

— Trace a path counterclockwise. @
— As you pass a node on the

proper side, process it. @ e

e pre-order: left side
¢ in-order: bottom

* post-order: right side @ e @ @

e \What kind of traversal does

a for-each loop in a Set do?

e pre-order: 17 41 29 6 9 81 40
¢ in-order: 29 41 6 17 81 9 40
e post-order: 29 6 41 81 40 9 17 36

getMin/getMax

e Sorted arrays can find the smallest or largest element in O(1) time
(how?)

e How could we get the same values in a binary search tree?

root

37

Announcements

e Assignment 4 is due tomorrow

e Assignment 5 will be released tomorrow

— More time to complete it, but this assignment will be significantly
longer than the others you've seen this quarter

— As a rough guide, part c took SLs about four times as long to solve as
part a, so don't wait until the last minute

e You will get assignment 3 feedback on today

e Please give feedback (if you have the next 30 minutes free):
cs198.stanford.edu

e Exam logistics
— Midterm today, July 25, from 7:00-9:00PM in Hewlett 200

38

You've worked hard and have an exam today — you can leave early or
stick around to ask me questions ©

39

