
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	19	
Binary	Search	Trees	

reading:	
Programming	Abstractions	in	C++,	Chapter	16	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Continue	our	discussion	of	Binary	Search	Trees	

–  Implement	add	
– Discuss	remove	

• MiniBrowser!	New	Assignment!	



3 

Adding to a BST 
• Suppose	we	want	to	add	new	values	to	the	BST	below.	

– Where	should	the	value	14	be	added?	
– Where	should	3	be	added?		7?	

–  If	the	tree	is	empty,	where	
should	a	new	value	be	added?	

• What	is	the	general	algorithm?	
19	10	

11	5	

8	

4	

2	 7	

25	

22	

root	



4 

Adding exercise 
• Draw	what	a	binary	search	tree	would	look	like	if	the	following	
values	were	added	to	an	initially	empty	tree	in	this	order:	

50	
20	
75	
98	
80	
31	
150	
39	
23	
11	
77	

50	

20	 75	

80	

98	11	

39	

31	

150	23	

77	



5 

Exercise: add 
• Write	a	function	add	that	adds	a	given	integer	value	to	the	BST.	

–  Add	the	new	value	in	the	proper	place	to	maintain	BST	ordering.	

• tree.add(root,	49);	

91 60 

87 29 

55 

42 -3 

root 

49	

bstAdd 



6 

Add Solution 
void	add(TreeNode*&	node,	int	value)	{	
				if	(node	==	nullptr)	{	
								node	=	new	TreeNode(value);	
				}	else	if	(node->data	>	value)	{	
								add(node->left,	value);	
				}	else	if	(node->data	<	value)	{	
								add(node->right,	value);	
				}	
}	
	
	
	
	

• Must	pass	the	current	node	by	reference	for	changes	to	be	seen.	

91	60	

87	29	

55	

42	-3	

root	

node	

45	



7 

Free Tree 
• To	avoid	leaking	memory	when	discarding	a	tree,	we	must	free	the	
memory	for	every	node.	
–  Like	most	tree	problems,	often	written	recursively	
– must	free	the	node	itself,	and	its	left/right	subtrees	

–  this	is	another	traversal	of	the	tree	
• should	it	be	pre-,	in-,	or	post-order?	

91	60	

87	29	

55	

42	

36	

root	

73	



8 

Removing from a BST 
• Suppose	we	want	to	remove	values	from	the	BST	below.	

–  Removing	a	leaf	like	4	or	22	is	easy.	
– What	about	removing	2?		19?	

– How	can	you	remove	a	node	with	
two	large	subtrees	under	it,	
such	as	15	or	9?	

• What	is	the	general	algorithm?	 19	10	

15	5	

9	

4	

2	 7	

25	

22	

root	

12	8	



9 

Cases for removal 
1. 	a	leaf: 		
2. 	a	node	with	a	left	child	only: 		
3. 	a	node	with	a	right	child	only: 		

29	

55	

42	17	

root	

remove(root,	17);	

29	

55	

42	

root	

29	

42	

root	

42	

root	

remove(root,	55);	

remove(root,	29);	

Replace	with	nullptr	
Replace	with	left	child	
Replace	with	right	child	



10 

Cases for removal 
4. 	a	node	with	both	children: 		

91	60	

87	29	

55	

42	17	

root	

91	

87	29	

60	

42	17	

root	

remove(root,	55);	

72	

72	

replace with min from right 
(replacing with max from left would also work) 

 



11 

Exercise: remove 
• Add	a	function	remove	that	accepts	a	root	pointer	and	removes	a	
given	integer	value	from	the	tree,	if	present.		Remove	the	value	in	
such	a	way	as	to	maintain	BST	ordering.	
 

• remove(root,	73);	
• remove(root,	29);	
• remove(root,	87);	
• remove(root,	55);	

91	60	

87	29	

55	

42	

36	

root	

73	

bstRemove 



12 

remove solution 
//	Removes	the	given	value	from	this	BST,	if	it	exists.	
//	Assumes	that	the	given	tree	is	in	valid	BST	order.	
void	remove(TreeNode*&	node,	int	value)	{	
				if	(node	==	nullptr)	{	
								return;	
				}	else	if	(value	<	node->data)	{	
								remove(node->left,	value);				//	too	small;	go	left	
				}	else	if	(value	>	node->data)	{	
								remove(node->right,	value);			//	too	big;	go	right	
				}	else	{	
								//	value	==	node->data;	remove	this	node!	
								//	(continued	on	next	slide)	
								...	



13 

remove solution 
								//	value	==	node->data;	remove	this	node!	
								if	(node->right	==	nullptr)	{	
												//	case	1	or	2:	no	R	child;	replace	w/	left	
												TreeNode*	trash	=	node;	
												node	=	node->left;	
												delete	trash;	
								}	else	if	(node->left	==	nullptr)	{	
												//	case	3:	no	L	child;	replace	w/	right	
												TreeNode*	trash	=	node;	
												node	=	node->right;	
												delete	trash;	
								}	else	{	
												//	case	4:	L+R	both;	replace	w/	min	from	right	
												int	min	=	getMin(node->right);	
												remove(node->right,	min);	
												node->data	=	min;	
								}	
				}	
}	



14 

Announcements 
• Assignment	4	is	due	today	
• Assignment	5	will	be	released	later	today	

– More	time	to	complete	it,	but	this	assignment	will	be	significantly	
longer	than	the	others	you've	seen	this	quarter	

–  As	a	rough	guide,	part	c	took	SLs	about	four	times	as	long	to	solve	as	
part	a,	so	don't	wait	until	the	last	minute	

• You	will	get	assignment	3	feedback	on	today	
• Please	give	feedback	(if	you	have	the	next	30	minutes	free):	
cs198.stanford.edu	

• Exam	logistics	
– Midterm	today,	July	25,	from	7:00-9:00PM	in	Hewlett	200	


