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Plan for Today 
• Continue	our	discussion	of	Binary	Search	Trees	

–  Implement	add	
– Discuss	remove	

• MiniBrowser!	New	Assignment!	
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Adding to a BST 
• Suppose	we	want	to	add	new	values	to	the	BST	below.	

– Where	should	the	value	14	be	added?	
– Where	should	3	be	added?		7?	

–  If	the	tree	is	empty,	where	
should	a	new	value	be	added?	

• What	is	the	general	algorithm?	
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Adding exercise 
• Draw	what	a	binary	search	tree	would	look	like	if	the	following	
values	were	added	to	an	initially	empty	tree	in	this	order:	
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Exercise: add 
• Write	a	function	add	that	adds	a	given	integer	value	to	the	BST.	

–  Add	the	new	value	in	the	proper	place	to	maintain	BST	ordering.	

• tree.add(root,	49);	
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Add Solution 
void	add(TreeNode*&	node,	int	value)	{	
				if	(node	==	nullptr)	{	
								node	=	new	TreeNode(value);	
				}	else	if	(node->data	>	value)	{	
								add(node->left,	value);	
				}	else	if	(node->data	<	value)	{	
								add(node->right,	value);	
				}	
}	
	
	
	
	

• Must	pass	the	current	node	by	reference	for	changes	to	be	seen.	
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Free Tree 
• To	avoid	leaking	memory	when	discarding	a	tree,	we	must	free	the	
memory	for	every	node.	
–  Like	most	tree	problems,	often	written	recursively	
– must	free	the	node	itself,	and	its	left/right	subtrees	

–  this	is	another	traversal	of	the	tree	
• should	it	be	pre-,	in-,	or	post-order?	
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Removing from a BST 
• Suppose	we	want	to	remove	values	from	the	BST	below.	

–  Removing	a	leaf	like	4	or	22	is	easy.	
– What	about	removing	2?		19?	

– How	can	you	remove	a	node	with	
two	large	subtrees	under	it,	
such	as	15	or	9?	

• What	is	the	general	algorithm?	 19	10	
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Cases for removal 
1. 	a	leaf: 		
2. 	a	node	with	a	left	child	only: 		
3. 	a	node	with	a	right	child	only: 		
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remove(root,	17);	
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Replace	with	nullptr	
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Replace	with	right	child	
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Cases for removal 
4. 	a	node	with	both	children: 		
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replace with min from right 
(replacing with max from left would also work) 
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Exercise: remove 
• Add	a	function	remove	that	accepts	a	root	pointer	and	removes	a	
given	integer	value	from	the	tree,	if	present.		Remove	the	value	in	
such	a	way	as	to	maintain	BST	ordering.	
 

• remove(root,	73);	
• remove(root,	29);	
• remove(root,	87);	
• remove(root,	55);	
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remove solution 
//	Removes	the	given	value	from	this	BST,	if	it	exists.	
//	Assumes	that	the	given	tree	is	in	valid	BST	order.	
void	remove(TreeNode*&	node,	int	value)	{	
				if	(node	==	nullptr)	{	
								return;	
				}	else	if	(value	<	node->data)	{	
								remove(node->left,	value);				//	too	small;	go	left	
				}	else	if	(value	>	node->data)	{	
								remove(node->right,	value);			//	too	big;	go	right	
				}	else	{	
								//	value	==	node->data;	remove	this	node!	
								//	(continued	on	next	slide)	
								...	
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remove solution 
								//	value	==	node->data;	remove	this	node!	
								if	(node->right	==	nullptr)	{	
												//	case	1	or	2:	no	R	child;	replace	w/	left	
												TreeNode*	trash	=	node;	
												node	=	node->left;	
												delete	trash;	
								}	else	if	(node->left	==	nullptr)	{	
												//	case	3:	no	L	child;	replace	w/	right	
												TreeNode*	trash	=	node;	
												node	=	node->right;	
												delete	trash;	
								}	else	{	
												//	case	4:	L+R	both;	replace	w/	min	from	right	
												int	min	=	getMin(node->right);	
												remove(node->right,	min);	
												node->data	=	min;	
								}	
				}	
}	
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Announcements 
• Assignment	4	is	due	today	
• Assignment	5	will	be	released	later	today	

– More	time	to	complete	it,	but	this	assignment	will	be	significantly	
longer	than	the	others	you've	seen	this	quarter	

–  As	a	rough	guide,	part	c	took	SLs	about	four	times	as	long	to	solve	as	
part	a,	so	don't	wait	until	the	last	minute	

• You	will	get	assignment	3	feedback	on	today	
• Please	give	feedback	(if	you	have	the	next	30	minutes	free):	
cs198.stanford.edu	

• Exam	logistics	
– Midterm	today,	July	25,	from	7:00-9:00PM	in	Hewlett	200	


