CS 106B, Lecture 2
Functions and Strings

reading:
Programming Abstractions in C++, Chapters 2-3

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Functions

— Syntax

— Prototypes

— Pass by value vs. reference; the const keyword
e Strings

— Common functions and manipulations

— Cvs. C++ strings

Defining functions (2.3)

e A C++ function is like a Java method.

r et}m type parameters (arguments)
type functionName(type name, type name, ..., type name) {
statement;
statement;
statement;

return expression; // if return type is not void

parameters (arguments)

e Calling a function: e

functionName(value, value, ..., value);

Defining a function

#include "console.h"
using namespace std;
const string DRINK_TYPE = "Coke";

// Function Definition and Code
void bottles(int count) {
cout << count << " bottles of " << DRINK TYPE << " on the wall." << endl;
cout << count << " bottles of " << DRINK TYPE << "." << endl;
cout << "Take one down, pass it around, " << (count-1) <<
" bottles of " << DRINK TYPE << " on the wall." << endl << endl;

}

int main() {
for (int 1 =99; i > 0; i--) {
bottles(i);
}

return 0;

Declaration order

e Compiler error: unable to find the bottles function (!)
e C++ reads the file from top to bottom (unlike Java or Python)

int main() {
for (int 1 =99; i > @; i--) {
bottles(i);
}

return 0;

void bottles(int count) {
cout << count << " bottles of " << DRINK _TYPE << " on the wall." << endl;
cout << count << " bottles of " << DRINK TYPE << "." << endl;
cout << "Take one down, pass it around, " << (count-1) <<
" bottles of " << DRINK TYPE << " on the wall." << endl << endl;

Function prototypes (1.4)

type name(type name, type name, ..., type name);

— Declare the function (without writing its body) at top of program.

— Include everything up to the first curly brace
void bottles(int count); // Function prototype

int main() {
for (int 1 =99; i > 0; i--) {
bottles(i);
}

return 0;

}

void bottles(int count) {
cout << count << " bottles of " << DRINK TYPE << " on the wall." << endl;
cout << count << " bottles of " << DRINK TYPE << "." << endl;
cout << "Take one down, pass it around, " << (count-1) <<
" bottles of " << DRINK_TYPE << " on the wall." << endl << endl;

Pass by Value

e value semantics: In Java and C++, when variables (int, double)
are passed as parameters, their values are copied.

— Modifying a parameter will not affect the variable passed in.

void swap(int a, int b) {
int temp = a;

a = b;
b = temp;

}

int main() {
int x = 17;
int y = 35;

swap(Xx, Y);
cout << x << "," << y << endl; // 17,35
return 0;

Pass by Reference

e reference semantics: If you declare a
parameter with an & after its type, it will
link the caller and callee function
variables to the same place in memory. void swap(int& a, int& b) {

— Modifying a parameter will affect the int temp = a;

variable passed in. E) 2émp;
— The ampersand is only used in }
declaration, not in function call int main() {
.)) int x = 17;
— Can't pass in non-variables int y = 35;
(e.g. swap(1l, 3) won't work) swap(X, y);

cout << x << ","
<< y << endl; // 35,17
types return 0;

— Faster for larger types with many }
elements

— Slightly slower for primitive (e.g. int)

Const parameters

e What if you want to avoid copying a large variable but don't want to
change it?

e Use the const keyword to indicate that the parameter won't be
changed

— Usually used with strings and collections

— Passing in a non-variable (e.g. printString("hello")) does work
void printString(const string& str) {

cout << "I will print this string" << endl;

cout << str << endl;

¥

int main() {

printString("This could be a really really long
string");

Output parameters ...:!

e Can also pass by reference to return multiple items

e What is the minimum and maximum non-creepy age to date?
void datingRange(int age, int& min, int& max) {

min = age / 2 + 7; YES, OLDER SINGLES ARE RARER. BUT
max = (age - 7) * 2; AS YOU GET OLDER, THE DATEABLE AGE
RANGE GETS WIDER. AN 18-YEAROLD'S

} RANGE 15 16-22, VHERERS A 30-YEAR
| OLDS MIGHT BE MORE LIKE 22-46.

int main() { ' x&saﬁ%mmf’

: UNCER
int young; 9% (%+7)
int old; Ei%k

datingRange (48, young, old);
cout << "A 48-year-old could date someone from "
<< young << " to " << old " years old." << endl;

¥

// A 48-year-old could date someone from
// 31 to 82 years old. 10

Quadratic exercise

e Write a function quadratic to find roots of quadratic equations.
ax?+bx+c=0, forsome numbers a, b, and c.

— Find roots using the quadratic formula.
-b=+ \/ b* —4ac
— Example: x*-3x-4=0 —
roots: x=4, x=-1 a

— What parameters should our function accept? What should it return?
e Which parameters should be passed by value, and which by reference?

11

Quadratic solution

* Solves a quadratic equation ax”2 + bx + ¢ = 0,
* storing the results in output parameters rootl and root2.
* Assumes that the given equation has two real roots.
*/
void quadratic(double a, double b, double c,
double& rootl, double& root2) {
double d = sqrt(b * b - 4 * a * ¢);
rootl = +d) / (2 * a);

(-b
root2 = (-b - d) / (2 * a);

—bi\/b2 —4ac
2a

12

Good Decomposition

* Properties of a good function:

— Fully performs a single coherent task. main
— Does not do too large a share of the work. Cethodl
— Is not unnecessarily connected to other method2
functions. method3
— No "chaining" of functions method4
method5

e The main function should be a concise
summary of the overall program.

main

— Basically an overview of the steps needed to
solve the problem

Announcements

e Assignment O due Friday
— Fill out the exam survey by 5PM on Friday

— Qt Creator Installation help session today from 1:30-3:30PM in Gates
BO2

e Undergraduate students should be enrolled for 5 units
e Please make Piazza posts public as much as possible

e Sign up for section at cs198.stanford.edu

— Section signups close today at 5PM

— Make sure you sign up for the same sections as your partner (if you
have one)

14

Strings

Click to add Text

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Strings (3.1)

#include <string>

string s = "hello";

e A string is a (possibly empty) sequence of characters.

— Minor differences from Java:
¢ Different names/behavior for some member functions.
e Strings are mutable (can be changed) in C++.
e There are two types of strings in C++. :-/

16

e Characters are values of type char, with 0-based indexes:
string s = "Hi 106B!";

index 0 1 2 3 4 5 6 7

character | 'H" | "i" | " " | '"1'|'@e"' | '6" | 'B" | "I

e Individual characters can be accessed using [tndex] or at:
char cl1 = s[3]; // ‘1
char c2 = s.at(1); // i

e Characters have ASCII encodings (integer mappings):
cout << (int) s[@] << endl; /] 72

17

Member functions (3.2)

Member function name

Description

s.append(str) add text to the end of a string
s.compare(str) return <0, 0, or >0 depending on relative ordering
s.erase(index, Llength) delete text from a string starting at given index
s.find(str) first or last index where the start of str appears in
s.rfind(str) this string (returns string: :npos if not found)
s.insert(index, str) add text into a string at a given index
s.length() or s.size() number of characters in this string
s.replace(index, len, str) replaces len chars at given index with new text
s.substr(start, length) or the next length characters beginning at start
s.substr(start) (inclusive); if length omitted, grabs till end of string
string name = "Donald Knuth";

if (name.find("Knu") != string::npos) {

name.erase(7, 5);

¥

// "Donald"

18

Operators (3.2)

e Concatenate using + or +=:

string sl = "Ash";
Sl += llleyll; // "AShley"

e Compare using relational operators (ASCII ordering):

string s2 = "Shreya"; [/ == 1= < <= > >=
if (sl < s2 && s2 != "Joe") { // true
}

e Strings are mutable and can be changed (!):
sl.append(" Taylor") // "Ashley Taylor"
sl.erase(3, 3); // "Ash Taylor"

si[5] = '@"; // "Ash T@ylor"

19

Stanford library (3.7)

e #include "strlib.h"

Function name

Description

endsWith(str, suffix)
startsWith(str, prefix)

true if string begins or ends with the given text

integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str)

convert between numbers and strings

equalsIgnoreCase(sl, s2)

true if s1 and s2 have same chars, ignoring casing

toLowerCase(str returns an upper/lowercase version of a string
toUpperCase(str
trim(str) returns string with surrounding whitespace removed

if (startsWith(name, "Mr.")) {

name += integerToString(age) +

years old";

20

What's the output?

void mystery(string a, string& b) {

a.erase(0, 1); // erase 1 from index ©
b += a[@];
b.insert(3, "FO0"); // insert at index 3

}

// A. shley taylor

int main() { // 01234 // B. ashley taylor
string a = "ashley"; // C. shley ataylorFOO
string b = "taylor"; // D. ashley tayFOOlors
mystery(a, b); // E. shley tayFoolors
cout << a << " " << b << endl;
return 0;

21

eﬁ,{"
(] = 33]
String exercise

e Write a function nameDiamond that accepts a string parameter and
prints its letters in a "diamond" format as shown below.

— For example, nameDiamond ("SHREYA") should print:

S
SH
SHR
SHRE
SHREY
SHREYA
HREYA
REYA
EYA
YA
A

22

Exercise solution

void nameDiamond(string s) {
int len = s.length();

// print top half of diamond
for (int 1 = 1; i <= len; i++) {
cout << s.substr(@, i) << endl;

}
// print bottom half of diamond

for (int 1 = 1; i < len; i++) {
for (int j = 0; j < i; j++) { // indent

}

cout <« 5 // with spaces
cout << s.substr(i, len - i) << endl;

23

C vs. C++ strings (3.5)

e C++ has two kinds of strings:
— C strings (char arrays) and C++ strings (string objects)

e Astring literal such as "hi there" is a Cstring.

— C strings don't include any methods/behavior shown previously.
e No member functions like length, find, or operators.

e Converting between the two types:

- string("text") Cstring to C++ string
- string.c_str() C++ string to C string

24

string s = "hi" + "there"; // C-string + C-string

string s = "hi" + '?°; // C-string + char

string s = "hi" + 41; // C-string + int
— Cstrings can't be concatenated with +.
— C-string + char/int produces garbage, not "hi?" or "hi41".

— This bug usually manifests in print statements, and you'll see partial
strings

string s = "hi";
S += 41; // "hi)"
— Adds character with ASCll value 41, ') ', doesn't produce "hi41".

int n = (int) "42"; // n = 0x7ffdcbo8
— Bug; sets n to the memory address of the C string "42" (ack!).

25

C string bugs fixed

string s = string("hi") + "there";

string s "hi"; // convert to C++ string
s += "there";
— These both compile and work properly.

string s = "hi"; // C++ string + char
S 4= I?l; // "hi?"

— Works, because of auto-conversion.

—stringa=...

s += integerToString(41); // "hi?41"
int n = stringToInteger("42"); // 42
— Explicit string <-> int conversion using Stanford library.

26

Overflow (extra) slides

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Ref param mystery ...

e What is the output of this code?

void mystery(int& b, int c, int& a) {

a++;

b--;

C += a; // A. 5 2 8
} // B. 537

// C. 618

int main() { // D. 6 1 13

int a = 5; // E. other

int b = 2;

int ¢ = 8;

mystery(c, a, b);

cout << a << " " << b << " " << c << endl;

return 0;

28

Return mystery

e What is the output of the following program?

int mystery(int b, int c) {
return ¢ + 2 * b;

}
int main() {
int a = 4;
int b = 2;
int ¢ = 5;
a = mystery(c, b);
¢ = mystery(b, a);
cout << a << " " k< b << " " << c << endl;
return 0;
}
// A. B. C D. E

// 12 2 16 9 2 10 12 2 8 9 2 12 N/A

29

Default parameters

e You can make a parameter optional by supplying a default value:
— All parameters with default values must appear last in the list.

// Prints a line of characters of the given width.
void printLine(int width = 10, char letter = "*") {
for (int 1 = 0; i < width; i++) {
cout << letter;

¥

printLine(7, "?"); // 2220022
printLine(5);)] FEEEx
printLine(); [REEEEEKKKK

30

Exercise: BMI

e Write code to calculate 2 people's body mass index (BMI):

‘weight
height’

BMI = ——=——x703

e Match the following example output:

This program reads data for two people

and computes their Body Mass Index (BMI).

Enter Person 1's information:
height (in inches)? 70.0
weight (in pounds)? 194.25
BMI = 27.8689, class 3

Enter Person 2's information:
height (in inches)? 62.5
weight (in pounds)? 130.5
BMI = 23.4858, class 2

BMI difference = 4.3831

BMI Category
below 18.5 class 1
18.5-24.9 class 2
25.0-29.9 class 3
30.0 and up class 4

31

BMI solution

/* Prints a welcome message explaining the program. */
void introduction() {
cout << "This program reads data for two people" << endl;
cout << "and computes their body mass index (BMI)." << endl << endl;

}

/* Computes/returns a person's BMI based on their height and weight. */
double computeBMI(double height, double weight) {

return weight * 703 / height / height;
}

/* Outputs information about a person's BMI and weight status. */
int bmiClass(double bmi) {
if (bmi < 18.5) {
return 1;

} else if (bmi < 25) {
return 2;

} else if (bmi < 30) {
return 3;

} else {
return 4;

}

32

BMI solution, cont'd

/* Reads information for one person, computes their BMI, and returns it. */
double person(int number) {
cout << "Enter person "

<< humber << s information:
double height = getReal("height (in inches)? ");
double weight = getReal("weight (in pounds)? ");
double bmi = computeBMI(height, weight);

cout << "BMI = " << bmi << ", class " << bmiClass(bmi) << endl << endl;
return bmi;

<< endl;

}

/* Main function to run the overall program. */
int main() {
introduction();
double bmil = person(1l);
double bmi2 = person(2);
cout << "BMI difference = " << abs(bmil - bmi2) << endl;
return 0;

33

Char and cctype (3.3)

e #include <cctype>

— Useful functions to process char values (not entire strings):

Function name

Description

isalpha(c) isalnum(c)
isdigit(c) isspace(c)
isupper(c) ispunct(c)
islower(c)

returns true if the given character is an alphabetic
character from a-z or A-Z, a digit from 0-9, an
alphanumeric character (a-z, A-Z, or 0-9), an uppercase
letter (A-Z), a space character (space, \t, \n, etc.), or a
punctuation character (., ; !), respectively

tolower(c) toupper(c)

returns lower/uppercase equivalent of a character

// index ©123456789012345678960
string s = "Grace Hopper Bot v2.0";
if (isalpha(s[6]) && isnumer(s[18])
&& isspace(s[5]) && ispunct(s[19])) {
cout << "Grace Hopper Smash!!" << endl;

34

