
Click	to	add	Text	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	2	
Functions	and	Strings	

reading:	
Programming	Abstractions	in	C++,	Chapters	2-3	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Functions	
-  Syntax	
-  Prototypes	
-  Pass	by	value	vs.	reference;	the	const	keyword	

• Strings	
-  Common	functions	and	manipulations	
-  C	vs.	C++	strings	

3

Defining functions (2.3)
• A	C++	function	is	like	a	Java	method.	
	
	
	type	functionName(type	name,	type	name,	...,	type	name)	{	
					statement;	
					statement;	
					...	
					statement;	
					return	expression;			//	if	return	type	is	not	void	
	}	
	

• Calling	a	function:	
	
	functionName(value,	value,	...,	value);	

return	type	 parameters	(arguments)	

parameters	(arguments)	

4

Defining a function
#include	"console.h"		
using	namespace	std;		
const	string	DRINK_TYPE	=	"Coke";		
	
//	Function	Definition	and	Code		
void	bottles(int	count)	{		
				cout	<<	count	<<	"	bottles	of	"	<<	DRINK_TYPE	<<	"	on	the	wall."	<<	endl;		
				cout	<<	count	<<	"	bottles	of	"	<<	DRINK_TYPE	<<	"."	<<	endl;		
				cout	<<	"Take	one	down,	pass	it	around,	"	<<	(count-1)	<<		
								"	bottles	of	"	<<	DRINK_TYPE	<<	"	on	the	wall."	<<	endl	<<	endl;		
}		
	
int	main()	{		
				for	(int	i	=	99;	i	>	0;	i--)	{		
								bottles(i);		
				}		
				return	0;		
}	

5

Declaration order
• Compiler	error:	unable	to	find	the	bottles	function	(!)	

•  C++	reads	the	file	from	top	to	bottom	(unlike	Java	or	Python)	
	
int	main()	{		
				for	(int	i	=	99;	i	>	0;	i--)	{		
								bottles(i);		
				}		
				return	0;		
}	
	
	
void	bottles(int	count)	{		
				cout	<<	count	<<	"	bottles	of	"	<<	DRINK_TYPE	<<	"	on	the	wall."	<<	endl;		
				cout	<<	count	<<	"	bottles	of	"	<<	DRINK_TYPE	<<	"."	<<	endl;		
				cout	<<	"Take	one	down,	pass	it	around,	"	<<	(count-1)	<<		
								"	bottles	of	"	<<	DRINK_TYPE	<<	"	on	the	wall."	<<	endl	<<	endl;		
}		
	

6

Function prototypes (1.4)

	type	name(type	name,	type	name,	...,	type	name);	
	

– Declare	the	function	(without	writing	its	body)	at	top	of	program.	
–  Include	everything	up	to	the	first	curly	brace	

void	bottles(int	count);		//	Function	prototype	
	
int	main()	{		
				for	(int	i	=	99;	i	>	0;	i--)	{		
								bottles(i);		
				}		
				return	0;		
}	
	
void	bottles(int	count)	{		
				cout	<<	count	<<	"	bottles	of	"	<<	DRINK_TYPE	<<	"	on	the	wall."	<<	endl;		
				cout	<<	count	<<	"	bottles	of	"	<<	DRINK_TYPE	<<	"."	<<	endl;		
				cout	<<	"Take	one	down,	pass	it	around,	"	<<	(count-1)	<<		
								"	bottles	of	"	<<	DRINK_TYPE	<<	"	on	the	wall."	<<	endl	<<	endl;		
}		

7

Pass by Value
• value	semantics:	In	Java	and	C++,	when	variables	(int,	double)	
are	passed	as	parameters,	their	values	are	copied.	
– Modifying	a	parameter	will	not	affect	the	variable	passed	in.	
	
void	swap(int	a,	int	b)	{	
				int	temp	=	a;	
				a	=	b;	
				b	=	temp;	
}	
	
int	main()	{	
				int	x	=	17;	
				int	y	=	35;	
				swap(x,	y);	
				cout	<<	x	<<	","	<<	y	<<	endl;			//	17,35	
				return	0;	
}	

8

Pass by Reference
•  reference	semantics:	If	you	declare	a	
parameter	with	an	&	after	its	type,	it	will	
link	the	caller	and	callee	function	
variables	to	the	same	place	in	memory.	
– Modifying	a	parameter	will	affect	the	
variable	passed	in.		

–  The	ampersand	is	only	used	in	
declaration,	not	in	function	call	

–  Can't	pass	in	non-variables		
			(e.g.	swap(1,	3)	won't	work)	
–  Slightly	slower	for	primitive	(e.g.	int)	
types	

–  Faster	for	larger	types	with	many	
elements	

void	swap(int&	a,	int&	b)	{	
				int	temp	=	a;	
				a	=	b;	
				b	=	temp;	
}	
int	main()	{	
				int	x	=	17;	
				int	y	=	35;	
				swap(x,	y);	
				cout	<<	x	<<	","		
						<<	y	<<	endl;	//	35,17	
				return	0;	
}	

9

Const parameters
• What	if	you	want	to	avoid	copying	a	large	variable	but	don't	want	to	
change	it?	

• Use	the	const	keyword	to	indicate	that	the	parameter	won't	be	
changed	
-  Usually	used	with	strings	and	collections	
-  Passing	in	a	non-variable	(e.g.	printString("hello"))	does	work	
void	printString(const	string&	str)	{	
				cout	<<	"I	will	print	this	string"	<<	endl;	
				cout	<<	str	<<	endl;	
}	
	
int	main()	{	
				printString("This	could	be	a	really	really	long				
																	string");	
}	

10

Output parameters
• Can	also	pass	by	reference	to	return	multiple	items	
• What	is	the	minimum	and	maximum	non-creepy	age	to	date?	

void	datingRange(int	age,	int&	min,	int&	max)	{	
				min	=	age	/	2	+	7;	
				max	=	(age	-	7)	*	2;	
}	
	
int	main()	{	
				int	young;	
				int	old;	
				datingRange(48,	young,	old);	
				cout	<<	"A	48-year-old	could	date	someone	from	"	
									<<	young	<<	"	to	"	<<	old	"	years	old."	<<	endl;	
}	
	
//	A	48-year-old	could	date	someone	from	
//	31	to	82	years	old.	

http://xkcd.com/314/		

xkcdDatingRange	

11

Quadratic exercise
• Write	a	function	quadratic	to	find	roots	of	quadratic	equations.	

	a	x2	+	b	x	+	c	=	0,		for	some	numbers	a,	b,	and	c.	
	
–  Find	roots	using	the	quadratic	formula.	
–  Example: 	x2	-	3	x	-	4	=	0	
roots:		 	x	=	4	,		x	=	-1	

	
	
	
– What	parameters	should	our	function	accept?		What	should	it	return?	

• Which	parameters	should	be	passed	by	value,	and	which	by	reference?	

a
acbb

2
42 −±−

quadratic	

12

Quadratic solution
/*		
	*	Solves	a	quadratic	equation	ax^2	+	bx	+	c	=	0,	
	*	storing	the	results	in	output	parameters	root1	and	root2.	
	*	Assumes	that	the	given	equation	has	two	real	roots.	
	*/	
void	quadratic(double	a,	double	b,	double	c,	
															double&	root1,	double&	root2)	{	
				double	d	=	sqrt(b	*	b	-	4	*	a	*	c);	
				root1	=	(-b	+	d)	/	(2	*	a);	
				root2	=	(-b	-	d)	/	(2	*	a);	
}	

a
acbb

2
42 −±−

13

Good Decomposition
• Properties	of	a	good	function:	

–  Fully	performs	a	single	coherent	task.	
– Does	not	do	too	large	a	share	of	the	work.	
–  Is	not	unnecessarily	connected	to	other	
functions.	
–  No	"chaining"	of	functions	

	
• The	main	function	should	be	a	concise	
summary	of	the	overall	program.	
-  Basically	an	overview	of	the	steps	needed	to	

solve	the	problem	

14

Announcements
• Assignment	0	due	Friday	

–  Fill	out	the	exam	survey	by	5PM	on	Friday	
– Qt	Creator	Installation	help	session	today	from	1:30-3:30PM	in	Gates	
B02	

• Undergraduate	students	should	be	enrolled	for	5	units	
• Please	make	Piazza	posts	public	as	much	as	possible	
• Sign	up	for	section	at	cs198.stanford.edu	

–  Section	signups	close	today	at	5PM	
– Make	sure	you	sign	up	for	the	same	sections	as	your	partner	(if	you	
have	one)	

Click	to	add	Text	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Strings	

16

Strings (3.1)
#include	<string>	
...	
string	s	=	"hello";	
	
• A	string	is	a	(possibly	empty)	sequence	of	characters.	

	

– Minor	differences	from	Java:	
• Different	names/behavior	for	some	member	functions.	
• Strings	are	mutable	(can	be	changed)	in	C++.	
• There	are	two	types	of	strings	in	C++.				:-/	

17

Characters
• Characters	are	values	of	type	char,	with	0-based	indexes:	

	string	s	=	"Hi	106B!";	
	
	
	
	

•  Individual	characters	can	be	accessed	using	[index]		or		at:	
	char	c1	=	s[3];														//	'1'	
	char	c2	=	s.at(1);											//	'i'	
	

• Characters	have	ASCII	encodings		(integer	mappings):	
	cout	<<	(int)	s[0]	<<	endl;			//	72	

index	 0	 1	 2	 3	 4	 5	 6	 7	

character	 'H'	 'i'	 '	'	 '1'	 '0'	 '6'	 'B'	 '!'	

18

Member functions (3.2)
	

	
	
	
	
	
	
	
	
	
	
	
	
string	name	=	"Donald	Knuth";	
if	(name.find("Knu")	!=	string::npos)	{	
				name.erase(7,	5);												//	"Donald"	
}	

Member	function	name	 Description	

s.append(str)	 add	text	to	the	end	of	a	string	

s.compare(str)	 return	<0,	0,	or	>0	depending	on	relative	ordering	

s.erase(index,	length)	 delete	text	from	a	string	starting	at	given	index	

s.find(str)	
s.rfind(str)	

first	or	last	index	where	the	start	of	str	appears	in	
this	string	(returns	string::npos	if	not	found)	

s.insert(index,	str)	 add	text	into	a	string	at	a	given	index	

s.length()		or		s.size()	 number	of	characters	in	this	string	

s.replace(index,	len,	str)	 replaces	len	chars	at	given	index	with	new	text	

s.substr(start,	length)		or	
s.substr(start)	

the	next	length	characters	beginning	at	start	
(inclusive);	if	length	omitted,	grabs	till	end	of	string	

19

Operators (3.2)
• Concatenate	using	+	or	+=	:	

	

string	s1	=	"Ash";	
s1	+=	"ley";																				//	"Ashley"	
	

• Compare	using	relational	operators	(ASCII	ordering):	
	

string	s2	=	"Shreya";									//	==	!=	<	<=	>	>=	
if	(s1	<	s2	&&	s2	!=	"Joe")	{		//	true	
				...	
}	
	

• Strings	are	mutable	and	can	be	changed	(!):	
	

s1.append("	Taylor")												//	"Ashley	Taylor"	
s1.erase(3,	3);																//	"Ash	Taylor"	
s1[5]	=	'@';																			//	"Ash	T@ylor"	
	

20

Stanford library (3.7)
• #include	"strlib.h"	
	

	
	
	
	
	
	
	
	
	
if	(startsWith(name,	"Mr."))	{	
				name	+=	integerToString(age)	+	"	years	old";	
}	

Function	name	 Description	

endsWith(str,	suffix)	
startsWith(str,	prefix)	

true	if	string	begins	or	ends	with	the	given	text	

integerToString(int)	
realToString(double)	
stringToInteger(str)	
stringToReal(str)	

convert	between	numbers	and	strings	

equalsIgnoreCase(s1,	s2)	 true	if	s1	and	s2	have	same	chars,	ignoring	casing	

toLowerCase(str)	
toUpperCase(str)	

returns	an	upper/lowercase	version	of	a	string	

trim(str)	 returns	string	with	surrounding	whitespace	removed	

21

What's the output?
void	mystery(string	a,	string&	b)	{	
				a.erase(0,	1);								//	erase	1	from	index	0	
				b	+=	a[0];	
				b.insert(3,	"FOO");			//	insert	at	index	3	
}												
																																					//	A.	shley	taylor	
int	main()	{	//	01234																//	B.	ashley	taylor	
				string	a	=	"ashley";														//	C.	shley	ataylorFOO	
				string	b	=	"taylor";														//	D.	ashley	tayFOOlors	
				mystery(a,	b);																			//	E.	shley	tayFoolors	
				cout	<<	a	<<	"	"	<<	b	<<	endl;	
				return	0;	
}	

22

String exercise
• Write	a	function	nameDiamond	that	accepts	a	string	parameter	and	
prints	its	letters	in	a	"diamond"	format	as	shown	below.	
–  For	example,	nameDiamond("SHREYA")	should	print:	
	

S	
SH	
SHR	
SHRE	
SHREY	
SHREYA	
	HREYA	
		REYA	
			EYA	
				YA	
					A	

nameDiamond	

23

Exercise solution
void	nameDiamond(string	s)	{	
				int	len	=	s.length();	
	

				//	print	top	half	of	diamond	
				for	(int	i	=	1;	i	<=	len;	i++)	{	
								cout	<<	s.substr(0,	i)	<<	endl;	
				}	
	
				//	print	bottom	half	of	diamond	
				for	(int	i	=	1;	i	<	len;	i++)	{	
								for	(int	j	=	0;	j	<	i;	j++)	{	//	indent	
												cout	<<	"	";														//	with	spaces	
								}	
								cout	<<	s.substr(i,	len	-	i)	<<	endl;	
				}	
}	

24

C vs. C++ strings (3.5)
• C++	has	two	kinds	of	strings:	

–  C	strings	(char	arrays)		and		C++	strings	(string	objects)	
	

• A	string	literal	such	as	"hi	there"	is	a	C	string.	
–  C	strings	don't	include	any	methods/behavior	shown	previously.	

• No	member	functions	like	length,	find,	or	operators.	
	

• Converting	between	the	two	types:		
– string("text")		C	string	to	C++	string	
– string.c_str()		C++	string	to	C	string	

25

C string bugs
• string	s	=	"hi"	+	"there";			//	C-string	+	C-string	
• string	s	=	"hi"	+	'?';							//	C-string	+	char	
• string	s	=	"hi"	+	41;								//	C-string	+	int	

–  C	strings	can't	be	concatenated	with	+.	
–  C-string	+	char/int	produces	garbage,	not	"hi?"	or	"hi41".	
–  This	bug	usually	manifests	in	print	statements,	and	you'll	see	partial	
strings	

• string	s	=	"hi";	
s	+=	41;																					//	"hi)"	
–  Adds	character	with	ASCII	value	41,	')',	doesn't	produce	"hi41".	
	

•  int	n	=	(int)	"42";													//	n	=	0x7ffdcb08	
–  Bug;		sets	n	to	the	memory	address	of	the	C	string	"42"		(ack!).	

26

C string bugs fixed
• string	s	=	string("hi")	+	"there";	
• string	s	=	"hi";											//	convert	to	C++	string	
s	+=	"there";	
–  These	both	compile	and	work	properly.	
	

• string	s	=	"hi";											//	C++	string	+	char	
s	+=	'?';																		//	"hi?"	
– Works,	because	of	auto-conversion.	

– string	a	=	…	
	

• s	+=	integerToString(41);								//	"hi?41"	
• int	n	=	stringToInteger("42");			//	42	

–  Explicit	string	<->	int	conversion	using	Stanford	library.	

Click	to	add	Text	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Overflow	(extra)	slides	

28

Ref param mystery
• What	is	the	output	of	this	code?	
	
void	mystery(int&	b,	int	c,	int&	a)	{	
				a++;	
				b--;	
				c	+=	a;																														//	A.	5	2	8	
}																																								//	B.	5	3	7	
																																									//	C.	6	1	8	
int	main()	{																													//	D.	6	1	13	
				int	a	=	5;																											//	E.	other	
				int	b	=	2;	
				int	c	=	8;	
				mystery(c,	a,	b);	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	<<	endl;	
				return	0;	
}	

parameterMysteryBCA	

29

Return mystery
• What	is	the	output	of	the	following	program?	

	

int	mystery(int	b,	int	c)	{	
				return	c	+	2	*	b;	
}	
	
int	main()	{	
				int	a	=	4;	
				int	b	=	2;	
				int	c	=	5;	
	

				a	=	mystery(c,	b);	
				c	=	mystery(b,	a);	
				cout	<<	a	<<	"	"	<<	b	<<	"	"	<<	c	<<	endl;	
				return	0;	
}	
	

				//		A.									B.								C.								D.							E.	
				//		12	2	16				9	2	10				12	2	8				9	2	12			N/A	

returnMystery1	

30

Default parameters
• You	can	make	a	parameter	optional	by	supplying	a	default	value:	

–  All	parameters	with	default	values	must	appear	last	in	the	list.	
	
	
//	Prints	a	line	of	characters	of	the	given	width.	
void	printLine(int	width	=	10,	char	letter	=	'*')	{	
				for	(int	i	=	0;	i	<	width;	i++)	{	
								cout	<<	letter;	
				}	
}	
	

...	
	

printLine(7,	'?');			//	???????	
printLine(5);								//	*****	
printLine();									//	**********	
	

31

Exercise: BMI
• Write	code	to	calculate	2	people's	body	mass	index	(BMI):	

	
	
	

• Match	the	following	example	output:	
	

This	program	reads	data	for	two	people	
and	computes	their	Body	Mass	Index	(BMI).	
	
Enter	Person	1's	information:	
height	(in	inches)?	70.0	
weight	(in	pounds)?	194.25	
BMI	=	27.8689,	class	3	
	

Enter	Person	2's	information:	
height	(in	inches)?	62.5	
weight	(in	pounds)?	130.5	
BMI	=	23.4858,	class	2	
	

BMI	difference	=	4.3831	

BMI	 Category	

below	18.5	 class	1	

18.5	-	24.9	 class	2	

25.0	-	29.9	 class	3	

30.0	and	up	 class	4	

7032 ×=
height
weightBMI

BMI	

32

BMI solution
/*	Prints	a	welcome	message	explaining	the	program.	*/	
void	introduction()	{	
				cout	<<	"This	program	reads	data	for	two	people"	<<	endl;	
				cout	<<	"and	computes	their	body	mass	index	(BMI)."	<<	endl	<<	endl;	
}	
	
/*	Computes/returns	a	person's	BMI	based	on	their	height	and	weight.	*/	
double	computeBMI(double	height,	double	weight)	{	
				return	weight	*	703	/	height	/	height;	
}	
	
/*	Outputs	information	about	a	person's	BMI	and	weight	status.	*/	
int	bmiClass(double	bmi)	{	
				if	(bmi	<	18.5)	{	
								return	1;	
				}	else	if	(bmi	<	25)	{	
								return	2;	
				}	else	if	(bmi	<	30)	{	
								return	3;	
				}	else	{	
								return	4;	
				}	
}	

33

BMI solution, cont'd
/*	Reads	information	for	one	person,	computes	their	BMI,	and	returns	it.	*/	
double	person(int	number)	{	
				cout	<<	"Enter	person	"	<<	number	<<	"'s	information:"	<<	endl;	
				double	height	=	getReal("height	(in	inches)?	");	
				double	weight	=	getReal("weight	(in	pounds)?	");	
				double	bmi	=	computeBMI(height,	weight);	
				cout	<<	"BMI	=	"	<<	bmi	<<	",	class	"	<<	bmiClass(bmi)	<<	endl	<<	endl;	
				return	bmi;	
}	
	
/*	Main	function	to	run	the	overall	program.	*/	
int	main()	{	
				introduction();	
				double	bmi1	=	person(1);	
				double	bmi2	=	person(2);	
				cout	<<	"BMI	difference	=	"	<<	abs(bmi1	-	bmi2)	<<	endl;	
				return	0;	
}	

34

Char and cctype (3.3)
•  #include	<cctype>	

– Useful	functions	to	process	char	values		(not	entire	strings):	
	
	
	
	
	
	
//				index	012345678901234567890	
string	s	=	"Grace	Hopper	Bot	v2.0";	
if	(isalpha(s[6])	&&	isnumer(s[18])	
								&&	isspace(s[5])	&&	ispunct(s[19]))	{	
				cout	<<	"Grace	Hopper	Smash!!"	<<	endl;	
}	

Function	name	 Description	

isalpha(c)			isalnum(c)	
isdigit(c)			isspace(c)	
isupper(c)			ispunct(c)	
islower(c)	

returns	true	if	the	given	character	is	an	alphabetic	
character	from	a-z	or	A-Z,	a	digit	from	0-9,	an	
alphanumeric	character	(a-z,	A-Z,	or	0-9),	an	uppercase	
letter	(A-Z),	a	space	character	(space,	\t,	\n,	etc.),	or	a	
punctuation	character	(.	,	;	!),	respectively	

tolower(c)			toupper(c)	 returns	lower/uppercase	equivalent	of	a	character	

