
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	20	
Advanced	Binary	Trees	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Discuss	how	to	make	a	BST	class	(hint:	useful	for	MiniBrowser)	
• Advanced	BSTs	

–  Balancing	
–  Red-Black	Trees		
–  Splay	Trees	

• Non-BST	binary	trees	
– Heaps	
–  Cartesian	Trees	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Implementing	TreeSet	
and	TreeMap	



4 

A BST set class 
//	TreeSet.h	
//	A	set	of	integers	represented	as	a	binary	search	tree.	
class	TreeSet	{	
				members;	
				...	
private:	
				TreeNode*	root;			//	NULL	for	an	empty	tree	
};	
	

–  This	is	basically	how	Stanford	library's	
Set	class	is	implemented.	

–  Client	code	talks	to	the	TreeSet,	
not	to	the	node	objects	inside	it.	

– Members	of	TreeSet	create	and	
manipulate	nodes	and	pointers.	

40 81 

9 41 

17 

6 29 

root 



5 

Tree member template 
returnType	TreeSet::functionName(parameters)	{	
			helperName(root,	parameters);	
}	
	
returnType	helperName(TreeNode*	node,	parameters)	{	
				...	
}	
	
•  Tree	methods	are	often	implemented	recursively	in	2	steps:	

–  a	public	function	intended	to	be	called	by	the	client	
–  a	"helper"	function	that	accepts	a	pointer	to	the	node	to	process	

–  the	public	function	typically	just	calls	the	helper	and	passes	root	node	



6 

Tree maps 
• Converting	a	tree	set	into	a	tree	map:	

–  Each	tree	node	will	store	both	a	key	and	a	value	
–  tree	is	BST-ordered	by	its	keys	
–  keys	must	be	comparable	(have	a	<	operator)	for	ordering	
	

struct	TreeMapNode	{	
				string	key;	
				int	value;	
				TreeMapNode*	left;	
				TreeMapNode*	right;	
};	

root	

	key 	=	"Locke"	
	val 	=	51	

	key 	=	"Jack"	
	val 	=	36	

	key 	=	"Kate"	
	val 	=	28	

	key 	=	"Sayid"	
	val 	=	36	

	key 	=	"Sawyer"	
	val 	=	49	

	key 	=	"Desmond"	
	val 	=	49	



7 

Tree map details 
• Each	tree	set	operation	corresponds	to	one	in	the	tree	map:	

–  add(value) 	→ 	put(key,	value)	
–  contains(value) 	→ 	containsKey(key)	
–  remove(value) 	→ 	remove(key)	
–  must	add	an	operation: 	 	get(key)	

– What	about	containsValue?	
• Would	its	code	be	similar	to	the	
code	for	containsKey?	

root	

	key 	=	"Locke"	
	val 	=	51	

	key 	=	"Jack"	
	val 	=	36	

	key 	=	"Kate"	
	val 	=	28	

	key 	=	"Sayid"	
	val 	=	36	

	key 	=	"Sawyer"	
	val 	=	49	

	key 	=	"Desmond"	
	val 	=	49	



8 

Announcements 
• You	should	be	mostly	done	with	Cache	in	MiniBrowser.	
LineManager	is	hard	

• Homework	3	is	graded.	Here's	the	grade	distribution:	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Balanced	Trees	



10 

Trees and balance 
• balanced	tree:	One	where	for	every	node	R,	the	height	of	R's	
subtrees	differ	by	at	most	1,	and	R's	subtrees	are	also	balanced.	
–  Runtime	of	add	/	remove	/	contains	are	closely	related	to	height.	
–  Balanced	tree's	height	is	roughly	log2	N.		Unbalanced	is	closer	to	N.	

19	

7	

14	6	

9	

8	4	

	root	

height	=	4	
(balanced)	

14	

19	

4	

11	

root	

9	

7	

6	
height	=	7	
(unbalanced)	



11 

BST balance question 
• Adding	the	following	nodes	to	an	empty	BST	in	the	following	order	
produces	the	tree	at	right:		22,	9,	34,	18,	3.	

• Q:	What	is	an	order	in	which	we	
could	have	added	the	nodes	to	
produce	an	unbalanced	tree?	
	A.		18,	9,	34,	3,	22	
	B.		9,	18,	3,	34,	22	
	C.		9,	22,	3,	18,	34	
	D.		none	of	the	above	

22	

9	 34	

18	3	



12 

AVL trees 
• AVL	tree:	A	binary	search	tree	that	uses	modified	add	and	remove	
operations	to	stay	balanced	as	its	elements	change.	
–  basic	idea:	When	nodes	are	added/removed,	
repair	tree	shape	until	balance	is	restored.	
• rebalancing	is	O(1);	overall	tree	maintains	an	O(log	N)	height	

8	

25	

3	

rotate	

8	

25	3	

11	 11	



13 

Red-Black trees 
•  red-black	tree:	Gives	each	node	a	"color"	of	red	or	black.		(video)	

–  Root	is	black.		Root's	direct	children	are	red.		All	leaves	are	black.	
–  If	a	node	is	red,	its	children	must	all	be	black.	
–  Every	path	downward	from	a	node	to	the	bottom	must	contain	the	
same	number	of	"black"	nodes.	



14 

Splay trees 
• splay	tree:	Rotates	each	element	you	access	to	the	top/root	

–  very	efficient	when	that	element	is	accessed	again	(happens	a	lot)	
–  easy	to	implement	and	does	not	need	height	field	in	each	node	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Non-BST	Binary	Trees	



16 

Heaps 

• What	if	you	want	to	find	the	k-smallest	elements	in	an	unsorted	
Vector?	
–  Find	the	top	10	students	in	a	class?	

• What	if	you	wanted	to	constantly	insert	and	remove	in	sorted	
order?	
– Model	a	hospital	emergency	room	where	individuals	are	seen	in	order	
of	their	urgency	

–  Priority	Queue	
• What's	a	good	choice?	



17 

Heaps 

•  Idea:	if	we	use	a	Vector,	it	takes	a	long	time	to	insert	or	remove	in	
sorted	order	(or	search	the	Vector	for	the	smallest	element)	

•  If	we	use	a	binary	search	tree,	it's	fast	to	insert	and	remove	(O(log	
N))	but	it's	slow	to	find	the	minimum/maximum	element	(O(log	N))	

•  Idea:	use	a	tree,	but	store	the	minimum/maximum	element	as	the	
root	
–  Trees	have	log(N)	insertion/deletion	
–  Looking	at	the	root	is	O(1)	



18 

Heaps 

• heap:	A	complete	binary	tree	with	vertical	ordering:	
– min-heap:	all	children	must	be	≥	parent's	value	
– max-heap:	all	children	must	be	≤	parent's	value	

–  complete	tree:	all	levels	are	full	of	children	except	perhaps	the	bottom	
level,	in	which	all	existing	nodes	are	maximally	to	the	left.	
• Nice	corollary:	heaps	are	always	balanced	

99	60	40	

80	20	

10	

50	 76	

85	

65	

a	min-heap	



19 

Heap enqueue 
• When	adding	to	a	heap,	the	value	is	first	placed	at	bottom-right.	

–  To	restore	heap	ordering,	the	newly	added	element	is	shifted	
("bubbled")	up	the	tree	until	it	reaches	its	proper	place	(we	reach	the	
root,	or	the	element	is	smaller	than	its	parent	[min-heap]).	

–  Enqueue	15	at	bottom-right;	bubble	up	until	in	order.	

99	60	40	

80	20	

10	

50	 700	

85	

65	 15	

99	20	40	

80	15	

10	

50	 700	

85	

65	 60	

20	

15	

60	



20 

Heap dequeue 
• Remove	the	root,	and	replace	it	with	the	furthest-right	ancestor	
• To	restore	heap	order,	the	improper	root	is	shifted	("bubbled")	
down	the	tree	by	swapping	with	its	smaller	child.	
–  dequeue	min	of	10;	swap	up	bottom-right	leaf	of	65;	bubble	down.	

99	60	40	

80	20	

65	

74	 50	

85	 99	60	50	

80	40	

20	

74	 65	

85	

10	

65	

40	

20	

50	

40	

20	

65	

50	

40	

20	



21 

Cartesian Trees 

• How	would	you	quickly	find	the	minimum/maximum	element	in	an		
range?	
– Maximum	elevation	on	a	hike?	
–  Best	time	to	buy/sell	a	stock	within	a	certain	range	of	times?	



22 

Cartesian Trees 

• The	root	stores	the	minimum	(or	maximum)	element	in	the	entire	
array	

• The	left	subtree	is	then	the	minimum	(or	maximum)	element	in	the	
range	to	the	left	of	the	root;	the	right	subtree	is	the	minimum	(or	
maximum)	element	in	the	range	to	the	right	of	the	root	
–  Follows	the	min-	(or	max)-heap	property:	every	parent	is	smaller	(or	
bigger)	than	its	child	



23 

Cartesian Trees 

• What	would	the	Cartesian	tree	look	like	for	this	array	if	we're	trying	
to	find	the	minimum	value	in	a	range?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

9	 13	 8	 4	 6	 12	 2	 14	 3	 7	 5	



24 

Cartesian Trees 

• What	would	the	Cartesian	tree	look	like	for	this	array	if	we're	trying	
to	find	the	minimum	value	in	a	range?	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

9	 13	 8	 4	 6	 12	 2	 14	 3	 7	 5	

2 

4 

8 6 

9 12 

3 

14 5 

7 

13 



25 

Cartesian Trees 

• How	would	we	write	the	following	function:		
	
findMinElemInRange(CartesianNode	*node,	int	start,	int	end)	
	
struct	CartesianNode	{	
				int	index;	
				CartesianNode	*left;	
				CartesianNode	*right;	
};	



26 

Exam 
• This	exam	was	a	little	harder	than	I	intended.	You	all	did	really	well	
and	showed	a	lot	of	knowledge	of	hard	topics.	

• Common	mistakes:	
–  Big	O	question,	part	c:	the	inner	for	loop	is	actually	O(1)	
–  ADT	trace	problem:	misreading	the	first	for	loop	
–  Recursive	trace:	integer	division	with	the	parameters,	wrong	indices	
with	substring	

–  Recursive	Backtracking:	modified	parameters	after	the	recursive	call,	
going	out	of	bounds	on	the	grid,	not	declaring	and	returning	the	Grid,	
improper	base	cases	(returning	true/false	or	failing	to	prune	the	tree)	

–  ADT	write,	part	a:	bad	scoping	for	the	values	of	the	Map	and	OBOB	for	
string	parsing	

–  ADT	write,	part	b:	incomplete	submissions	(low	on	time?)	



27 

Exam 


