
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	21	
Other	Kinds	of	Trees	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Non-Binary	Trees	

–  Tries	(how	to	implement	a	Lexicon)	
–  B-Trees	(how	to	implement	a	database)	
–  Idea:	each	node	can	store	more	than	two	pointers	and	have	more	than	
two	children	
• Generally	store	pointers	in	a	data	structure			



3 

The Lexicon 
• Lexicons	are	good	for	storing	words	

– contains	
– containsPrefix	
– add	

•  Implemented	with	a	trie	



4 

Trie (prefix tree) 
•  trie	("try"):	A	tree	structure	optimized	for	"prefix"	searches	

–  e.g.	Do	any	words	in	the	set	begin	with	the	prefix	"ash"?	
• containsPrefix	

–  The	idea:	instead	of	a	binary	tree,	store	a	pointer	for	each	character	in	
the	alphabet	

–  For	English:	each	node	has	26	children	for	A-Z	
• We're	going	to	use	a	simpler	alphabet	for	the	tries	in	class:	{A,	E,	H,	S}	
	

struct	TrieNode	{	
				bool	isWord;	
				TrieNode	*	children[26];		
				//	storing	children	depends	on	the	alphabet	
};	

	
	

A	 E	 H	 S	



5 

Let's "Trie" an Example 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

Yellow	nodes	are	words!	



6 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Start	at	root	–	
corresponds	to	
empty	string	

• Every	pointer	we	
travel	contributes	
one	character	to	our	
final	string	



7 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	""	



8 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	"a"	



9 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	"as"	



10 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	"as"	
"as"	is	a	word	because	
its	corresponding	node	
is	yellow	(meaning	
isWord	is	true)	



11 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• What	are	all	the	
words	in	this	trie?	



12 

Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• What	are	all	the	
words	in	this	trie?	

	
a	
as	
ashes	
ha	
haha	
has	
he	
she	



13 

PrintAllWords 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• How	could	we	write	a	
function	that	prints	
all	words	in	a	trie?	



14 

PrintAllWords 
void	printAllWords(TrieNode	*root)	{	
				printAllWordsHelper(root,	"");	
}	
	
void	printAllWordsHelper(TrieNode	*root,	string	str)	{	
				if	(root	==	nullptr)	{	
								return;	
				}	
				if	(root->isWord)	{	
								cout	<<	str	<<	endl;	
				}	
				for	(int	i	=	0;	i	<	26;	i++)	{	
								printAllWordsHelper(root->children[i],	str	+	char('a'	+	i));	
				}	
}	



15 

ContainsPrefix 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• How	could	we	write	
containsPrefix?	
–  containsPrefix("a")	=	
true	

–  containsPrefix("hahas")	
=	false	

– What	are	some	
prefixes	that	don't	
exist	in	this	trie?	



16 

containsPrefix 
bool	containsPrefix(TrieNode*	node,	string	prefix)	{	
				if	(node	==	nullptr)	{	
								return	false;	
				}	
				if	(prefix.length()	==	0)	{	
								return	true;	
				}	
				return	containsPrefix(node->children[prefix[0]	-	'a'],	
																										prefix.substr(1));	
}	



17 

Announcements 
• You	should	be	finishing	MiniBrowser's	Cache	today.	LineManager	is	
hard.	The	last	part	is	a	trie,	which	you	can	get	started	with	now	J	

• Please	give	us	feedback!	cs198.stanford.edu	
• Feel	free	to	use	seepluspl.us	to	help	you	understand	trees	or	
pointers.	It's	still	in	development,	so	be	patient	with	quirks	

•  I	read	your	feedback,	and	several	people	wanted	more	real-world	
examples	of	concepts	in	class.	Let's	talk	about	databases	



18 

Databases 
• Computers	are	famous	for	storing	lots	of	information	for	fast	
retrieval	

• Common	solution:	databases	
–  Store	keys	and	values	(like	a	fancy	map)	but	can	have	millions	or	
billions	of	"records"	(key-value	pairs)	

–  Common	example:	return	all	students	who	are	at	least	21	
–  Another	example:	give	me	the	record	associated	with	"Ashley	Taylor"	

• Basically,	just	a	BST	



19 

Database Problems 
• Databases	can't	store	all	the	information	in	main	memory	

– Have	to	read	from	"disk",	which	is	VERY	slow	
–  For	the	purposes	of	this	class,	reading	a	small	chunk	of	memory	from	
disk	takes	the	same	amount	of	time	as	reading	a	large	chunk	of	
memory	

• Problem:	each	binary	search	tree	node	is	pretty	small,	and	we	have	
to	read	a	lot	(O(log	N))	of	them	



20 

Database Problems 
•  Idea:	what	if	we	stored	more	elements	per	node	in	a	BST?	

–  If	we	store	3	elements	per	node,	we	cut	out	¾	of	the	tree	at	each	level,	
so	we'll	reach	the	leaf	nodes	in	half	the	number	of	disk	reads	



21 

B-Tree 
•  Idea:	besides	the	root,	every	node	has	between	k	and	2k	children	
(and	between	k	-	1	and	2k	-	1	elements)	

• Below	is	a	B-Tree	with	k	=	2	
– Nodes	have	between	2	and	4	children	

• All	leaf	nodes	are	at	the	same	height	(balanced)	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 



22 

B-Tree and Contains 
• How	would	we	write	contains	for	a	B-tree?	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 



23 

B-Tree and Contains 
• How	would	we	write	contains	for	a	B-tree?	
• Start	at	root:	

–  closest	element	(at	index	i)	is	the	smallest	element	in	the	root	<=	to	
the	target	[we	can	binary	search!]	

–  if	closest	element	is	equal	to	target,	we've	found	it	
–  else,	search	the	i	+	1	child	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 



24 

Printing B-Trees 
• How	would	we	print	the	tree	in-order?	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 



25 

Printing B-Trees 
• How	would	we	print	the	tree	in-order?	
• Print	the	0th	subtree,	then	the	0th	element,	then	the	1st	subtree,	
then	the	1st	element…	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 


