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Plan for Today 
• Non-Binary	Trees	

–  Tries	(how	to	implement	a	Lexicon)	
–  B-Trees	(how	to	implement	a	database)	
–  Idea:	each	node	can	store	more	than	two	pointers	and	have	more	than	
two	children	
• Generally	store	pointers	in	a	data	structure			
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The Lexicon 
• Lexicons	are	good	for	storing	words	

– contains	
– containsPrefix	
– add	

•  Implemented	with	a	trie	
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Trie (prefix tree) 
•  trie	("try"):	A	tree	structure	optimized	for	"prefix"	searches	

–  e.g.	Do	any	words	in	the	set	begin	with	the	prefix	"ash"?	
• containsPrefix	

–  The	idea:	instead	of	a	binary	tree,	store	a	pointer	for	each	character	in	
the	alphabet	

–  For	English:	each	node	has	26	children	for	A-Z	
• We're	going	to	use	a	simpler	alphabet	for	the	tries	in	class:	{A,	E,	H,	S}	
	

struct	TrieNode	{	
				bool	isWord;	
				TrieNode	*	children[26];		
				//	storing	children	depends	on	the	alphabet	
};	

	
	

A	 E	 H	 S	
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Let's "Trie" an Example 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

Yellow	nodes	are	words!	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Start	at	root	–	
corresponds	to	
empty	string	

• Every	pointer	we	
travel	contributes	
one	character	to	our	
final	string	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	""	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	"a"	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	"as"	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• Example:	
	"as"	
"as"	is	a	word	because	
its	corresponding	node	
is	yellow	(meaning	
isWord	is	true)	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• What	are	all	the	
words	in	this	trie?	
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Reading Words 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• What	are	all	the	
words	in	this	trie?	

	
a	
as	
ashes	
ha	
haha	
has	
he	
she	
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PrintAllWords 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• How	could	we	write	a	
function	that	prints	
all	words	in	a	trie?	
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PrintAllWords 
void	printAllWords(TrieNode	*root)	{	
				printAllWordsHelper(root,	"");	
}	
	
void	printAllWordsHelper(TrieNode	*root,	string	str)	{	
				if	(root	==	nullptr)	{	
								return;	
				}	
				if	(root->isWord)	{	
								cout	<<	str	<<	endl;	
				}	
				for	(int	i	=	0;	i	<	26;	i++)	{	
								printAllWordsHelper(root->children[i],	str	+	char('a'	+	i));	
				}	
}	
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ContainsPrefix 

A	 E	 H	 S	
/	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

A	 E	 H	 S	
/	 /	 /	 /	

• How	could	we	write	
containsPrefix?	
–  containsPrefix("a")	=	
true	

–  containsPrefix("hahas")	
=	false	

– What	are	some	
prefixes	that	don't	
exist	in	this	trie?	



16 

containsPrefix 
bool	containsPrefix(TrieNode*	node,	string	prefix)	{	
				if	(node	==	nullptr)	{	
								return	false;	
				}	
				if	(prefix.length()	==	0)	{	
								return	true;	
				}	
				return	containsPrefix(node->children[prefix[0]	-	'a'],	
																										prefix.substr(1));	
}	
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Announcements 
• You	should	be	finishing	MiniBrowser's	Cache	today.	LineManager	is	
hard.	The	last	part	is	a	trie,	which	you	can	get	started	with	now	J	

• Please	give	us	feedback!	cs198.stanford.edu	
• Feel	free	to	use	seepluspl.us	to	help	you	understand	trees	or	
pointers.	It's	still	in	development,	so	be	patient	with	quirks	

•  I	read	your	feedback,	and	several	people	wanted	more	real-world	
examples	of	concepts	in	class.	Let's	talk	about	databases	
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Databases 
• Computers	are	famous	for	storing	lots	of	information	for	fast	
retrieval	

• Common	solution:	databases	
–  Store	keys	and	values	(like	a	fancy	map)	but	can	have	millions	or	
billions	of	"records"	(key-value	pairs)	

–  Common	example:	return	all	students	who	are	at	least	21	
–  Another	example:	give	me	the	record	associated	with	"Ashley	Taylor"	

• Basically,	just	a	BST	
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Database Problems 
• Databases	can't	store	all	the	information	in	main	memory	

– Have	to	read	from	"disk",	which	is	VERY	slow	
–  For	the	purposes	of	this	class,	reading	a	small	chunk	of	memory	from	
disk	takes	the	same	amount	of	time	as	reading	a	large	chunk	of	
memory	

• Problem:	each	binary	search	tree	node	is	pretty	small,	and	we	have	
to	read	a	lot	(O(log	N))	of	them	
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Database Problems 
•  Idea:	what	if	we	stored	more	elements	per	node	in	a	BST?	

–  If	we	store	3	elements	per	node,	we	cut	out	¾	of	the	tree	at	each	level,	
so	we'll	reach	the	leaf	nodes	in	half	the	number	of	disk	reads	
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B-Tree 
•  Idea:	besides	the	root,	every	node	has	between	k	and	2k	children	
(and	between	k	-	1	and	2k	-	1	elements)	

• Below	is	a	B-Tree	with	k	=	2	
– Nodes	have	between	2	and	4	children	

• All	leaf	nodes	are	at	the	same	height	(balanced)	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 
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B-Tree and Contains 
• How	would	we	write	contains	for	a	B-tree?	
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B-Tree and Contains 
• How	would	we	write	contains	for	a	B-tree?	
• Start	at	root:	

–  closest	element	(at	index	i)	is	the	smallest	element	in	the	root	<=	to	
the	target	[we	can	binary	search!]	

–  if	closest	element	is	equal	to	target,	we've	found	it	
–  else,	search	the	i	+	1	child	

13 21 

8 11 17 28 47 
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Printing B-Trees 
• How	would	we	print	the	tree	in-order?	
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Printing B-Trees 
• How	would	we	print	the	tree	in-order?	
• Print	the	0th	subtree,	then	the	0th	element,	then	the	1st	subtree,	
then	the	1st	element…	

13 21 

8 11 17 28 47 

1 2 

57 

9 25 27 49 61 19 14 16 12 4 37 


