CS 106B, Lecture 21
Other Kinds of Trees

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Non-Binary Trees
— Tries (how to implement a Lexicon)
— B-Trees (how to implement a database)

— Idea: each node can store more than two pointers and have more than
two children

e Generally store pointers in a data structure

The Lexicon

e Lexicons are good for storing words
- contains
- containsPrefix
- add

e Implemented with a trie

Trie (prefix tree)

e trie ("try"): A tree structure optimized for "prefix" searches

— e.g. Do any words in the set begin with the prefix "ash"?
e containsPrefix

— The idea: instead of a binary tree, store a pointer for each character in
the alphabet

— For English: each node has 26 children for A-Z
e We're going to use a simpler alphabet for the tries in class: {A, E, H, S}

struct TrieNode {
bool isWord;
TrieNode * children[26];
// storing children depends on the alphabet

}s

Let's "Trie" an Example

A|E|H|S

v B! v
A E H S A E H S A E H S
AVAVaY L /17 VARV,

v \ J

A E H S A E H S A E H S AEH S
AVinY, [1/14] AViVAY, T /17

J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. AVANAY.
A E H S
/1717 A EHS

Y AVANAY.
AEHS Yellow nodes are words!
AVANAY.

5

Reading Words

e Start at root -

W EH S corresponds to

| /] Lv l empty string
AEHS AEHS AEHS e Every pointer we
AP Y AV, travel contributes

v : v one character to our

A E H S A E H S A E H S . .
ANy, NN TN O final string

J o
A E H S A E H S A E H S A E H S
AN L/ 1/1/ AV, AV,
A E H S
(/11 AL S

Y ANy
A E H S
ANy

Reading Words

e Example:
1ni
A E H S
[=]
A E H S A E H S A E H S
AVAVaY L /17 VARV,
J \ v
A E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17
J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. ANV
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY

Reading Words

e Example:
AEHS llall
L/ \L
A E H S A E H S A E H S
Annm | /17 VARV,
J \ v
E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17
J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. AVANAY.
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY

Reading Words

e Example:
AEHS IIaSII
\L L/ \L
A E H S A E H S A E H S
AVAVaY L /17 VARV,
J \ v
A E H S A E H S A E H S
A E H S
Ainm AV AVANAY. I T/]
ANy,
\ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY ANV
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY

Reading Words

e Example:
AEH S IIaSII
/1] L
v v v as" is a word because
4 £ S A £ S e its corresponding node
v [is yellow (meaning
A . .
isWord is true)
A E H S A E H S A E H S AEHS
nnmn [1/14] AVAVAY, T /17
\ \
A E H S A E H S A E H S A E H S
AN L/ 1/1/ AV, AV,
A E H S
(/11 AL S
Y ANy
A E H S
ANy

10

Reading Words

e What are all the

D EH s words in this trie?
\L L/ \L
A E H S A E H S A E H S
AVAVaY L /17 VARV,
J \ v
A E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17
J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. AVANAY.
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY

11

Reading Words

e What are all the

e s words in this trie?
/1
v = v
A E H S A E H S A E H S a
VAV L /1 AVAINY
v \ y s
A EHS A EH S A EH S AEH S ashes
AVinY, [1/14] AVAVAY, T /17
‘/ ha
\ A
A E H S A E H S A E H S A E H S haha
ARV L/ 1/1/ VANV ANV has
1' he
A|E|HS A EH S
/17117
NV /171717 she
A E H S
AVANAY.

12

PrintAllWords

e How could we write a

W EH S function that prints

| /] Lv l all words in a trie?
A E H S A E H S A E H S
AVAVaY L /17 VARV,

J \ v

A E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17

J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. ANV
A E H S
/1717 A EHS

Y AVANAY
A E H S
AVANAY

13

PrintAllWords

void printAllWords(TrieNode *root) {
printAllWordsHelper(root, "");

void printAllWordsHelper(TrieNode *root, string str) {
if (root == nullptr) {
return;

}
if (root->isWord) {

cout << str << endl;

}
for (int 1 = 0; 1 < 26; i++) {
printAllWordsHelper(root->children[i], str + char('a' + 1i));

14

ContainsPrefix

e How could we write

AIEIHIS containsPrefix?
AN . . nny _
v = v containsPrefix("a") =
A E H S A E H S A E H S true
/17171, | /17 AV, _Containspreﬁx(nhahasn)
v \ v = false
A E H S A E H S A E H S
AVAmY, T/, AVATAY, Ry — What are some
/ prefixes that don't
\ \
exist in this trie?
A E H S A E H S A E H S A E H S
ARV L/ 1/1/ VANV AVANAY.
A E H S
/1717 AEHS
Y AVANAY.
A E H S
AVANAY.

15

containsPrefix

bool containsPrefix(TrieNode* node, string prefix) {
if (node == nullptr) {
return false;
}
if (prefix.length() == 0) {
return true;
}
return containsPrefix(node->children[prefix[0] - 'a'],
prefix.substr(l));

16

Announcements

e You should be finishing MiniBrowser's Cache today. LineManager is
hard. The last part is a trie, which you can get started with now ©

e Please give us feedback! cs198.stanford.edu

e Feel free to use seepluspl.us to help you understand trees or
pointers. It's still in development, so be patient with quirks

e | read your feedback, and several people wanted more real-world
examples of concepts in class. Let's talk about databases

17

Databases

e Computers are famous for storing lots of information for fast
retrieval

e Common solution: databases

— Store keys and values (like a fancy map) but can have millions or
billions of "records" (key-value pairs)

— Common example: return all students who are at least 21
— Another example: give me the record associated with "Ashley Taylor"

e Basically, just a BST

18

Database Problems

e Databases can't store all the information in main memory
— Have to read from "disk", which is VERY slow

— For the purposes of this class, reading a small chunk of memory from
disk takes the same amount of time as reading a large chunk of
memory

e Problem: each binary search tree node is pretty small, and we have
to read a lot (O(log N)) of them

19

Database Problems

e |dea: what if we stored more elements per node in a BST?

— If we store 3 elements per node, we cut out % of the tree at each level,
so we'll reach the leaf nodes in half the number of disk reads

20

B-Tree

e |dea: besides the root, every node has between k and 2k children
(and between k - 1 and 2k - 1 elements)

e Below is a B-Tree with k =2
— Nodes have between 2 and 4 children

e All leaf nodes are at the same height (balanced)

/8 11\ 17\ 28 | 47 57\

21

B-Tree and Contains

e How would we write contains for a B-tree?

22

B-Tree and Contains

e How would we write contains for a B-tree?

e Start at root:

— closest element (at index i) is the smallest element in the root <=to
the target [we can binary search!]

— if closest element is equal to target, we've found it

— else, search the j + 1 child

23

Printing B-Trees

e How would we print the tree in-order?

24

Printing B-Trees

e How would we print the tree in-order?

e Print the Ot subtree, then the 0t element, then the 15t subtree,
then the 15t element...

25

