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Plan for Today

e Non-Binary Trees
— Tries (how to implement a Lexicon)
— B-Trees (how to implement a database)

— Idea: each node can store more than two pointers and have more than
two children

e Generally store pointers in a data structure



The Lexicon

e Lexicons are good for storing words
- contains
- containsPrefix
- add

e Implemented with a trie



Trie (prefix tree)

e trie ("try"): A tree structure optimized for "prefix" searches

— e.g. Do any words in the set begin with the prefix "ash"?
e containsPrefix

— The idea: instead of a binary tree, store a pointer for each character in
the alphabet

— For English: each node has 26 children for A-Z
e We're going to use a simpler alphabet for the tries in class: {A, E, H, S}

struct TrieNode {
bool isWord;
TrieNode * children[26];
// storing children depends on the alphabet

}s




Let's "Trie" an Example

A|E|H|S

v B! v
A E H S A E H S A E H S
AVAVaY L /17 VARV,

v \ J

A E H S A E H S A E H S AEH S
AVinY, [1/14] AViVAY, T /17

J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. AVANAY.
A E H S
/1717 A EHS

Y AVANAY.
AEHS Yellow nodes are words!
AVANAY.
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Reading Words

e Start at root -

W EH S corresponds to

| /] Lv l empty string
AEHS AEHS AEHS e Every pointer we
AP Y AV, travel contributes

v : v one character to our

A E H S A E H S A E H S . .
ANy, NN TN O final string

J o
A E H S A E H S A E H S A E H S
AN L/ 1/1/ AV, AV,
A E H S
(/11 AL S

Y ANy
A E H S
ANy




Reading Words

e Example:
1ni
A E H S
[ = ]
A E H S A E H S A E H S
AVAVaY L /17 VARV,
J \ v
A E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17
J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. ANV
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY




Reading Words

e Example:
AEHS llall
L/ \L
A E H S A E H S A E H S
Annm | /17 VARV,
J \ v
E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17
J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. AVANAY.
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY




Reading Words

e Example:
AEHS IIaSII
\L L/ \L
A E H S A E H S A E H S
AVAVaY L /17 VARV,
J \ v
A E H S A E H S A E H S
A E H S
Ainm AV AVANAY. I T/]
ANy,
\ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY ANV
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY




Reading Words

e Example:
AEH S IIaSII
/1] L
v v v as" is a word because
4 £ S A £ S e its corresponding node
v [ is yellow (meaning
A . .
isWord is true)
A E H S A E H S A E H S AEHS
nnmn [1/14] AVAVAY, T /17
\ \
A E H S A E H S A E H S A E H S
AN L/ 1/1/ AV, AV,
A E H S
(/11 AL S
Y ANy
A E H S
ANy
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Reading Words

e What are all the

D EH s words in this trie?
\L L/ \L
A E H S A E H S A E H S
AVAVaY L /17 VARV,
J \ v
A E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17
J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. AVANAY.
A E H S
/1717 A EHS
Y AVANAY
A E H S
AVANAY
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Reading Words

e What are all the

e s words in this trie?
/1
v = v
A E H S A E H S A E H S a
VAV L /1 AVAINY
v \ y s
A EHS A EH S A EH S AEH S ashes
AVinY, [1/14] AVAVAY, T /17
‘/ ha
\ A
A E H S A E H S A E H S A E H S haha
ARV L/ 1/1/ VANV ANV has
1' he
A|E|HS A EH S
/17117
NV /171717 she
A E H S
AVANAY.
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PrintAllWords

e How could we write a

W EH S function that prints

| /] Lv l all words in a trie?
A E H S A E H S A E H S
AVAVaY L /17 VARV,

J \ v

A E H S A E H S A E H S AEHS
AVinY, [1/14] AVAVAY, T /17

J \ \
A E H S A E H S A E H S A E H S
ARV, L/1/1/ AVANAY. ANV
A E H S
/1717 A EHS

Y AVANAY
A E H S
AVANAY
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PrintAllWords

void printAllWords(TrieNode *root) {
printAllWordsHelper(root, "");

void printAllWordsHelper(TrieNode *root, string str) {
if (root == nullptr) {
return;

}
if (root->isWord) {

cout << str << endl;

}
for (int 1 = 0; 1 < 26; i++) {
printAllWordsHelper(root->children[i], str + char('a' + 1i));
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ContainsPrefix

e How could we write

AIEIHIS containsPrefix?
AN . . nny _
v = v containsPrefix("a") =
A E H S A E H S A E H S true
/17171, | /17 AV, _Containspreﬁx(nhahasn)
v \ v = false
A E H S A E H S A E H S
AVAmY, T/, AVATAY, Ry — What are some
/ prefixes that don't
\ \ . . . .
exist in this trie?
A E H S A E H S A E H S A E H S
ARV L/ 1/1/ VANV AVANAY.
A E H S
/1717 AEHS
Y AVANAY.
A E H S
AVANAY.
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containsPrefix

bool containsPrefix(TrieNode* node, string prefix) {
if (node == nullptr) {
return false;
}
if (prefix.length() == 0) {
return true;
}
return containsPrefix(node->children[prefix[0] - 'a'],
prefix.substr(l));
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Announcements

e You should be finishing MiniBrowser's Cache today. LineManager is
hard. The last part is a trie, which you can get started with now ©

e Please give us feedback! cs198.stanford.edu

e Feel free to use seepluspl.us to help you understand trees or
pointers. It's still in development, so be patient with quirks

e | read your feedback, and several people wanted more real-world
examples of concepts in class. Let's talk about databases
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Databases

e Computers are famous for storing lots of information for fast
retrieval

e Common solution: databases

— Store keys and values (like a fancy map) but can have millions or
billions of "records" (key-value pairs)

— Common example: return all students who are at least 21
— Another example: give me the record associated with "Ashley Taylor"

e Basically, just a BST
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Database Problems

e Databases can't store all the information in main memory
— Have to read from "disk", which is VERY slow

— For the purposes of this class, reading a small chunk of memory from
disk takes the same amount of time as reading a large chunk of
memory

e Problem: each binary search tree node is pretty small, and we have
to read a lot (O(log N)) of them
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Database Problems

e |dea: what if we stored more elements per node in a BST?

— If we store 3 elements per node, we cut out % of the tree at each level,
so we'll reach the leaf nodes in half the number of disk reads
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B-Tree

e |dea: besides the root, every node has between k and 2k children
(and between k - 1 and 2k - 1 elements)

e Below is a B-Tree with k =2
— Nodes have between 2 and 4 children

e All leaf nodes are at the same height (balanced)

/8 11\ 17\ 28 | 47 57\
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B-Tree and Contains

e How would we write contains for a B-tree?
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B-Tree and Contains

e How would we write contains for a B-tree?

e Start at root:

— closest element (at index i) is the smallest element in the root <=to
the target [we can binary search!]

— if closest element is equal to target, we've found it

— else, search the j + 1 child
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Printing B-Trees

e How would we print the tree in-order?
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Printing B-Trees

e How would we print the tree in-order?

e Print the Ot subtree, then the 0t element, then the 15t subtree,
then the 15t element...
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