
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	22	
Graphs	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Arguably	the	single	most	useful	abstraction	computer	science:	the	
graph	
– How	to	model	problems	using	a	graph	

• Today	and	some	of	next	week	is	algorithms	to	answer	common	
graph	questions	
–  Learning	these	algorithms	will	help	you	solve	very	different	problems	
more	quickly	



3 

Google Maps 

Source:	https://www.google.com/maps		



4 

ADT Flowchart 



5 

Molecules 

http://pngimg.com/uploads/molecule/molecule_PNG50.png 



6 

Introducing: The Graph 
• A	graph	is	a	mathematical	structure	for	representing	relationships	
• Consists	of	nodes	(aka	vertices)	and	edges	(aka	arcs)	

–  edges	are	the	relationships,	nodes	are	the	items	that	have	the	
relationship	

• Examples:	
– Map:	cities	(nodes)	are	connected	by	roads	(edges)	
–  Flowchart:	questions	and	recommendations	(nodes)	are	connected	by	
answers	(edges	

– Molecules:	atoms	(nodes)	are	connected	by	bonds	(edges)	



7 

Graph examples 
• For	each,	what	are	the	nodes	and	what	are	the	edges?	

– Web	pages	with	links	
–  Functions	in	a	program	that	call	each	other	
–  Airline	routes	
–  Facebook	friends	
–  Course	pre-requisites	
–  Family	trees	
–  Paths	through	a	maze	



8 

Boggle as a graph 
• Q:	If	a	Boggle	board	is	a	graph,	what	is	a	node?	What	is	an	edge?	

A.	 	Node	=	letter	cube,		Edge	=	Dictionary	(lexicon)	
B.	 	Node	=	dictionary	word;		Edge	=	letter	cube	
C.	 	Node	=	letter;		Edge	=	between	each	letter	that	is	part	of	a	word	
D.	 	Node	=	letter	cube;		Edge	=	connection	to	neighboring	cube	
E.	 	None	of	the	above	



9 

Undirected vs. Directed 

• Some	relationships	are	
mutual	
– Facebook	

• Some	are	one-way	
– Twitter	
– Doesn't	mean	that	all	
relationships	are	non-mutual	



10 

Representing Graphs 
• Two	main	ways:	

– Have	each	node	store	the	nodes	it's	connected	to	(adjacency	list)	
• Enemies	in	problem	4	of	the	midterm	
• NGrams	
• Doctors	without	Orders	

– Have	a	list	of	all	the	edges/edges	(edge	list)	
• Similar	to	Marbles	

• The	choice	depends	on	the	problem	you're	trying	to	solve	
• You	can	sometimes	represent	graphs	implicitly	instead	of	explicitly	
storing	the	edges	and	nodes	
–  e.g.	Boggle,	WordLadder	
–  draw	a	picture	to	see	the	graph	more	clearly!	



11 

Adjacency List 
• Map<Node,	Vector<Node>>	

–  or	Map<Node,	Set<Node>> 			Node				Set<Node>	



12 

Adjacency Matrix 
• Store	a	boolean	grid,	rows/columns	correspond	to	nodes	

–  Alternative	to	Adjacency	List	

F	 T	 F	 T	 F	

F	 F	 F	 F	 T	

T	 F	 F	 F	 T	

F	 F	 T	 F	 F	

F	 F	 T	 F	 F	



13 

Edge List 
• Store	a	Vector<Edge>	(or	Set<Edge>)	

– Edge	struct	would	have	the	two	nodes	
	 	 	 	 														Vector<Edge>	



14 

Edge Properties 
• Not	all	edges	are	created	equally	

–  Some	have	greater	weight	
• Real	life	examples:	

–  Flight	costs	
– Miles	on	a	road	
–  Time	spent	on	a	road	

• Store	a	number	with	each	edge	
corresponding	to	its	weight	

Source:	https://www.google.com/maps		



15 

Paths 
•  I	want	a	job	at	Google.	Do	I	know	anyone	who	works	there?	What	
about	someone	who	knows	someone?	

•  I	want	to	find	this	word	on	a	board	made	of	letters	"next	to"	each	
other	(Boggle)	

• A	path	is	a	sequence	of	nodes	with	edges	between	them	
connecting	two	nodes	
–  Could	store	edges	instead	of	nodes	(why?)	
	–  You	know	Jane.	Jane	knows	
Sally.	Sally	knows	knows	Sergey	
Brin,	the	founder	of	Google,	so	
the	path	is:	

				You->Jane->Sally->Sergey	



16 

Other graph properties 
•  reachable:	Vertex	u	is	reachable	from	v	
if	a	path	exists	from	u	to	v.	

• connected:	A	graph	is	connected	if	every	
vertex	is	reachable	from	every	other.	

• complete:	If	every	vertex	has	a	direct	
edge	to	every	other.	

X	U	

V	

W	

Z	

Y	

a	

c	

b	

e	

d	

f

g	

h	

a	

c	

b	

d	

a	

c	

b	

d	

e	



17 

Loops and cycles 
• cycle:	A	path	that	begins	and	ends	at	the	same	node.	

–  example:	{b,	g,	f,	c,	a}	or	{V,	X,	Y,	W,	U,	V}.	
–  example:	{c,	d,	a}	or	{U,	W,	V,	U}.	

–  acyclic	graph:	One	that	does	
not	contain	any	cycles.	

•  loop:	An	edge	directly	from	
a	node	to	itself.	
– Many	graphs	don't	allow	loops.	

X	U	

V	

W	

Z	

Y	

a

c

b

e

d

f

g	

h



18 

Types of Graphs 
• NGrams?	

–  directed,	weighted,	cyclic,	connected	
• Boggle?	

–  undirected,	unweighted,	cyclic,	connected	
• A	molecule?	

–  undirected,	weighted,	potentially	cyclic,	connected	
• A	map	of	flights?	

–  directed,	weighted,	cyclic,	perhaps	not	connected	
• A	tree?	

–  directed,	acyclic	graph	(not	connected)	
– DAGs	are	especially	important	because	of	topological	sort.	More	on	
that	later!	



19 

Announcements 
• You	should	be	starting	LineManager	–	it's	hard.		
• Please	give	us	feedback!	cs198.stanford.edu	
• Feel	free	to	use	seepluspl.us	to	help	you	understand	trees	or	
pointers.	It's	still	in	development,	so	be	patient	with	quirks	

• Notes	on	course	feedback:	
–  If	you	have	a	question	outside	the	scope	of	the	class,	please	post	on	
Piazza	or	come	talk	to	me	during	OH!	I	don't	want	to	stop	your	
questions,	but	I	sometimes	have	to	make	choices	to	ensure	that	I	don't	
confuse	other	students	or	run	out	of	time	for	material	we	need	to	
cover.	



20 

Working with Graphs 
• We've	seen	how	to	model	data	with	a	graph	
• There	are	lots	of	cool	graph	algorithms	that	make	it	easy	to	solve	
certain	problems	
– Goal:	know	how	to	apply	a	model	a	problem	as	a	graph	and	apply	the	
relevant	graph	algorithm	to	it	

• We'll	spend	most	of	the	rest	of	this	unit	learning	about	graph	
algorithms	



21 

Finding Paths 
• Easiest	way:	Depth-First	Search	(DFS)	

–  Recursive	backtracking!	
• Finds	a	path	between	two	nodes	if	it	exists	

– Or	can	find	all	the	nodes	reachable	from	a	node	
• Where	can	I	travel	to	starting	in	San	Francisco?	
• If	all	my	friends	(and	their	friends,	and	so	on)	share	my	post,	how	many	will	
eventually	see	it?	



22 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



23 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



24 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



25 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



26 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



27 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



28 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



29 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



30 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



31 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



32 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



33 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



34 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



35 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



36 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



37 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



38 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



39 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



40 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



41 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



42 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



43 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



44 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



45 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



46 

DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	



47 

DFS Details 
•  In	an	n-node,	m-edge	graph,	takes	O(m	+	n)	time	with	an	adjacency	
list	
–  Visit	each	edge	once,	visit	each	node	at	most	once	

• Pseudocode:	
dfs	from	v1:	
				mark	v1	as	seen.	
				for	each	of	v1's	unvisited	neighbors	n:	
				dfs(n)	

• How	could	we	modify	the	pseudocode	to	look	for	a	specific	path?	
–  Recursive	Backtracking	
–  Look	at	maze	example	from	week	4	

	



48 

Finding Shortest Paths 
• We	can	find	paths	between	two	nodes,	but	how	can	we	find	the	
shortest	path?	
–  Fewest	number	of	steps	to	complete	a	task?	
–  Least	amount	of	edits	between	two	words?	

• When	have	we	solved	this	problem	before?	



49 

Breadth-First Search (BFS) 
•  Idea:	processing	a	node	involves	knowing	we	need	to	visit	all	its	
neighbors	(just	like	DFS)	

• Need	to	keep	a	TODO	list	of	nodes	to	process	
• Which	node	from	our	TODO	list	should	we	process	first	if	we	want	
the	shortest	path?	
–  The	first	one	we	saw?	
–  The	last	one	we	saw?	
–  A	random	node?	



50 

Breadth-First Search (BFS) 
• Keep	a	Queue	of	nodes	as	our	TODO	list	
•  Idea:	dequeue	a	node,	enqueue	all	its	neighbors	
• Still	will	return	the	same	nodes	as	reachable,	just	might	have	
shorter	paths	



51 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		a	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



52 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		e,	g	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



53 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		e,	g	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



54 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		g,	f	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



55 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		g,	f	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



56 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		f,	h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



57 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		f,	h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



58 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



59 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



60 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		i	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



61 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		i	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



62 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		c	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



63 

BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		c	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	



64 

BFS 

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		c	



65 

BFS Details 
•  In	an	n-node,	m-edge	graph,	takes	O(m	+	n)	time	with	an	adjacency	
list	
–  Visit	each	edge	once,	visit	each	node	at	most	once	

• Pseudocode:	
bfs	from	v1:	
				add	v1	to	the	queue.	
				while	queue	is	not	empty:	
	 			dequeue	a	node	n	
	 			enqueue	n's	unseen	neighbors	

• How	could	we	modify	the	pseudocode	to	look	for	a	specific	path?	


