CS 106B, Lecture 22
Graphs

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Arguably the single most useful abstraction computer science: the
graph
— How to model problems using a graph
e Today and some of next week is algorithms to answer common
graph questions

— Learning these algorithms will help you solve very different problems
more quickly

® m B8 7

Google Maps

University of California, Berkeley

Stanford University

Add destination

Leavenow ~

—a Send directions to your phone

(=) vial-880S

Fastest route now, avoids slowdown on

the Bay Bridge
A\ This route has tolls

DETAILS

() vial-280S

Heavy traffic, as usual

M viaUS-101S

Heavy traffic, as usual

Source: https://www.google.com/maps

OPTIONS

1h 16 min
38.8 miles

1h 19 min
47.5 miles

1 h 32 min
46.2 miles

Stinson Beach Mill Valley

Satellite

%

San Rafael San Pabl Ko
an Fablo
. Pleasant Hill
Larkspur 580 Richmond
El Cerrito Walnut Creel
Lafayette .
Golden Gate o
National
Recreation

Area

San Francisco Alan)
gn“ﬁandro
Daly City a 1h 16 min Nﬁtro Valley
SouthjSan m ayward
Franmsco

SaffBruno

Pacifica @
E 1 h 32 min S
462m||es "‘ﬁl

. \ Nk

Bair Island (84

Don Edwards
El Granada San Francisco
Bay National
Half D) Wildlife...
Moon Bay
& 1h 19 min 260, ?«)
47 5 miles M
- — ountain
LObItOS View
© @
San Gregorio LatGo gle Cuperti

ADT Flowchart

Start

Two N\
No - need duplicates or order | Do | only care about
membership?

Frequent looping or
middle elements

A\

How many dimensions | One | |Yes
of data do | have? 4 el

Y

Which elements do | need to
access?

First element

Yes

Last element

Molecules

http://pngimg.com/uploads/molecule/molecule_PNG50.png

5

Introducing: The Graph

e A graph is a mathematical structure for representing relationships
e Consists of nodes (aka vertices) and edges (aka arcs)

— edges are the relationships, nodes are the items that have the
relationship

e Examples:

— Map: cities (nodes) are connected by roads (edges)

— Flowchart: questions and recommendations (nodes) are connected by
answers (edges

— Molecules: atoms (nodes) are connected by bonds (edges)

Graph examples

e For each, what are the nodes and what are the edges?

— Web pages with links
— Functions in a program that call each other ”@@

L ®.\N ®
— Airline routes '\A@\ :
— Facebook friends @\ @

— Course pre-requisites '\@@

— Family trees
— Paths through a maze

et s et L
BB

e e e et it e e
..... AN N
e Pt e o
,u\""".

o o BT o
o] o

R e
e =

N N P

S Y

- PR P e

el e oo
S AT P I S
- e e *

.'.,‘w“" i

Boggle as a graph

e Q: If a Boggle board is a graph, what is a node? What is an edge?

m oo WP

Node = |letter cube, Edge = Dictionary (lexicon)

Node = dictionary word; Edge = letter cube

Node = letter; Edge = between each letter that is part of a word
Node = letter cube; Edge = connection to neighboring cube

None of the above - .

Undirected vs. Directed

e Some relationships are e Some are one-way
mutual — Twitter
— Facebook — Doesn't mean that all

relationships are non-mutual

o O
~_ —
g ! ! 9

Representing Graphs

e Two main ways:

— Have each node store the nodes it's connected to (adjacency list)
e Enemies in problem 4 of the midterm
e NGrams
e Doctors without Orders

— Have a list of all the edges/edges (edge list)
e Similar to Marbles

e The choice depends on the problem you're trying to solve

e You can sometimes represent graphs implicitly instead of explicitly
storing the edges and nodes

— e.g. Boggle, WordLadder
— draw a picture to see the graph more clearly!

10

Adjacency List

e Map<Node, Vector<Node>>
— or Map<Node, Set<Node>> Node Set<Node>

BIPIBIB]
©

11

Adjacency Matrix

e Store a boolean grid, rows/columns correspond to nodes
— Alternative to Adjacency List

0000

F

OO0

12

e Store a Vector<Edge> (or Set<Edge>)
— Edge struct would have the two nodes
Vector<Edge>

COEOO0L
OO

13

Edge Properties

e Not all edges are created equally

— Some have greater weight

e Real life examples:
— Flight costs
— Miles on a road
— Time spent on a road

e Store a number with each edge

corresponding to its weight

w
5 Concc
} San Pablo
. Pleasant Hill
@“" Richmond
El Cerrito Walnut Creel
131 Lafayette ..

:te [©
A ¥
®)

San Fram.qsco Alamed:
oAl |
280 SamLeandro

)aly City \\ & 1h 16 min Qis.tro Valley
SoutpSan 38.8 miles ayward
Fr§1r10§sco
SamiBruno

icifica @‘s‘

) RN\ N é= 1h32min ()

w 6.2 miles < |
; \ 4 % .
\\ “\Bair Island (89

Don Edwards

| Granada 750 N D San Francisco
' Redwood Gitye. @ Bay National
Half G \\ wildlife...
Moon Bay »

& 1h 19 min | &5 1

47.5 miles
‘ Mountain
Lobitos View
©) D
San Gregorio e PGO g|€ Cuperti

Source: https://www.google.com/maps 14

e | want a job at Google. Do | know anyone who works there? What
about someone who knows someone?

¢ | want to find this word on a board made of letters "next to" each
other (Boggle)

e A path is a sequence of nodes with edges between them
connecting two nodes

o)
— Could store edges instead of nodes (why?) U
— You know Jane. Jane knows =
Sally. Sally knows knows Sergey P
Brin, the founder of Google, so <
the path is: G

You->Jane->Sally->Sergey

Other graph properties

e reachable: Vertex u is reachable from v
if a path exists from u to v.

e connected: A graph is connected if every
vertex is reachable from every other.

e complete: If every vertex has a direct
edge to every other.

O>—®
o0 %
Josss I

16

Loops and cycles

e cycle: A path that begins and ends at the same node.
— example: {b, g, f,c,alor{V, X, Y, W, U, V}.
— example: {c,d, a}or {U, W, V, U}.

— acyclic graph: One that does
not contain any cycles.

e loop: An edge directly from
a node to itself.

— Many graphs don't allow loops.

17

Types of Graphs

e NGrams?

— directed, weighted, cyclic, connected
e Boggle?

— undirected, unweighted, cyclic, connected
e A molecule?

— undirected, weighted, potentially cyclic, connected
e A map of flights?

— directed, weighted, cyclic, perhaps not connected
e Atree?

— directed, acyclic graph (not connected)

— DAGs are especially important because of topological sort. More on
that later!

18

Announcements

e You should be starting LineManager — it's hard.
e Please give us feedback! cs198.stanford.edu

e Feel free to use seepluspl.us to help you understand trees or
pointers. It's still in development, so be patient with quirks

e Notes on course feedback:

— If you have a question outside the scope of the class, please post on
Piazza or come talk to me during OH! | don't want to stop your
guestions, but | sometimes have to make choices to ensure that | don't
confuse other students or run out of time for material we need to

cover.

19

Working with Graphs

e \We've seen how to model data with a graph

e There are lots of cool graph algorithms that make it easy to solve
certain problems

— Goal: know how to apply a model a problem as a graph and apply the
relevant graph algorithm to it

e \We'll spend most of the rest of this unit learning about graph
algorithms

20

Finding Paths

e Easiest way: Depth-First Search (DFS)
— Recursive backtracking!
e Finds a path between two nodes if it exists

— Or can find all the nodes reachable from a node
e Where can | travel to starting in San Francisco?

e |f all my friends (and their friends, and so on) share my post, how many will
eventually see it?

21

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 22

(RS RE

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 23

[2O

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 24

pN

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 25

RS

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 26

pN

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 27

pN

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 28

pN

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 29

N

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 30

N

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 31

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 32

oo

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 33

0 @

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 34

0@

If we've seen the node
before, stop

Otherwise, visit all the

unvisited nodes from this
node 35

0 @

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 36

QO (O

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 37

@ O

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 38

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 39

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 40

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 41

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 42

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 43

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 44

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 45

If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 46

DFS Detalls

e [n an n-node, m-edge graph, takes O(m + n) time with an adjacency
list
— Visit each edge once, visit each node at most once

e Pseudocode:
dfs from v,:
mark v, as seen.

for each of v,'s unvisited neighbors n:
dfs(n)

* How could we modify the pseudocode to look for a specific path?

— Recursive Backtracking
— Look at maze example from week 4

47

Finding Shortest Paths

e We can find paths between two nodes, but how can we find the
shortest path?

— Fewest number of steps to complete a task?
— Least amount of edits between two words?

e When have we solved this problem before?

48

Breadth-First Search (BFS)

e |dea: processing a node involves knowing we need to visit all its
neighbors (just like DFS)

e Need to keep a TODO list of nodes to process

e Which node from our TODO list should we process first if we want
the shortest path?

— The first one we saw?
— The last one we saw?
— A random node?

49

Breadth-First Search (BFS)

e Keep a Queue of nodes as our TODO list

e |dea: dequeue a node, enqueue all its neighbors

e Still will return the same nodes as reachable, just might have
shorter paths

50

@ o

queue: a

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

51

queue: e, g

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

52

queue: e, g

pN

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

53

queue: g, f

pN

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

54

[

queue: g, f

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

55

queue: f, h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

56

queue: f, h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

57

gueue: h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

58

gueue: h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

59

queue: i

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

60

queue: i

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

61

queue: C

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

62

queue: C

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

63

queue: C

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue

64

BFS Detalls

e [n an n-node, m-edge graph, takes O(m + n) time with an adjacency
list
— Visit each edge once, visit each node at most once

e Pseudocode:
bfs from v;:
add v, to the queue.
while queue is not empty:
dequeue a node n
enqueue n's unseen neighbors

* How could we modify the pseudocode to look for a specific path?

65

