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Plan for Today

e Arguably the single most useful abstraction computer science: the
graph
— How to model problems using a graph
e Today and some of next week is algorithms to answer common
graph questions

— Learning these algorithms will help you solve very different problems
more quickly
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Molecules

http://pngimg.com/uploads/molecule/molecule_PNG50.png
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Introducing: The Graph

e A graph is a mathematical structure for representing relationships
e Consists of nodes (aka vertices) and edges (aka arcs)

— edges are the relationships, nodes are the items that have the
relationship

e Examples:

— Map: cities (nodes) are connected by roads (edges)

— Flowchart: questions and recommendations (nodes) are connected by
answers (edges

— Molecules: atoms (nodes) are connected by bonds (edges)



Graph examples

e For each, what are the nodes and what are the edges?

— Web pages with links
— Functions in a program that call each other ”@@

L ®.\N ®
— Airline routes '\A@\ :
— Facebook friends @\ @

— Course pre-requisites '\@@

— Family trees
— Paths through a maze
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Boggle as a graph

e Q: If a Boggle board is a graph, what is a node? What is an edge?

m oo WP

Node = |letter cube, Edge = Dictionary (lexicon)

Node = dictionary word; Edge = letter cube

Node = letter; Edge = between each letter that is part of a word
Node = letter cube; Edge = connection to neighboring cube

None of the above - .




Undirected vs. Directed

e Some relationships are e Some are one-way
mutual — Twitter
— Facebook — Doesn't mean that all

relationships are non-mutual
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Representing Graphs

e Two main ways:

— Have each node store the nodes it's connected to (adjacency list)
e Enemies in problem 4 of the midterm
e NGrams
e Doctors without Orders

— Have a list of all the edges/edges (edge list)
e Similar to Marbles

e The choice depends on the problem you're trying to solve

e You can sometimes represent graphs implicitly instead of explicitly
storing the edges and nodes

— e.g. Boggle, WordLadder
— draw a picture to see the graph more clearly!
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Adjacency List

e Map<Node, Vector<Node>>
— or Map<Node, Set<Node>> Node Set<Node>
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Adjacency Matrix

e Store a boolean grid, rows/columns correspond to nodes
— Alternative to Adjacency List
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e Store a Vector<Edge> (or Set<Edge>)
— Edge struct would have the two nodes
Vector<Edge>
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Edge Properties

e Not all edges are created equally

— Some have greater weight

e Real life examples:
— Flight costs
— Miles on a road
— Time spent on a road

e Store a number with each edge

corresponding to its weight
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e | want a job at Google. Do | know anyone who works there? What
about someone who knows someone?

¢ | want to find this word on a board made of letters "next to" each
other (Boggle)

e A path is a sequence of nodes with edges between them
connecting two nodes

o )
— Could store edges instead of nodes (why?) U
— You know Jane. Jane knows =
Sally. Sally knows knows Sergey P
Brin, the founder of Google, so <
the path is: G

You->Jane->Sally->Sergey




Other graph properties

e reachable: Vertex u is reachable from v
if a path exists from u to v.

e connected: A graph is connected if every
vertex is reachable from every other.

e complete: If every vertex has a direct
edge to every other.
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Loops and cycles

e cycle: A path that begins and ends at the same node.
— example: {b, g, f,c,alor{V, X, Y, W, U, V}.
— example: {c,d, a}or {U, W, V, U}.

— acyclic graph: One that does
not contain any cycles.

e loop: An edge directly from
a node to itself.

— Many graphs don't allow loops.
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Types of Graphs

e NGrams?

— directed, weighted, cyclic, connected
e Boggle?

— undirected, unweighted, cyclic, connected
e A molecule?

— undirected, weighted, potentially cyclic, connected
e A map of flights?

— directed, weighted, cyclic, perhaps not connected
e Atree?

— directed, acyclic graph (not connected)

— DAGs are especially important because of topological sort. More on
that later!
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Announcements

e You should be starting LineManager — it's hard.
e Please give us feedback! cs198.stanford.edu

e Feel free to use seepluspl.us to help you understand trees or
pointers. It's still in development, so be patient with quirks

e Notes on course feedback:

— If you have a question outside the scope of the class, please post on
Piazza or come talk to me during OH! | don't want to stop your
guestions, but | sometimes have to make choices to ensure that | don't
confuse other students or run out of time for material we need to

cover.
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Working with Graphs

e \We've seen how to model data with a graph

e There are lots of cool graph algorithms that make it easy to solve
certain problems

— Goal: know how to apply a model a problem as a graph and apply the
relevant graph algorithm to it

e \We'll spend most of the rest of this unit learning about graph
algorithms
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Finding Paths

e Easiest way: Depth-First Search (DFS)
— Recursive backtracking!
e Finds a path between two nodes if it exists

— Or can find all the nodes reachable from a node
e Where can | travel to starting in San Francisco?

e |f all my friends (and their friends, and so on) share my post, how many will
eventually see it?
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If we've seen the node
before, stop

Otherwise, visit all the
unvisited nodes from this
node 22
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DFS Detalls

e [n an n-node, m-edge graph, takes O(m + n) time with an adjacency
list
— Visit each edge once, visit each node at most once

e Pseudocode:
dfs from v,:
mark v, as seen.

for each of v,'s unvisited neighbors n:
dfs(n)

* How could we modify the pseudocode to look for a specific path?

— Recursive Backtracking
— Look at maze example from week 4
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Finding Shortest Paths

e We can find paths between two nodes, but how can we find the
shortest path?

— Fewest number of steps to complete a task?
— Least amount of edits between two words?

e When have we solved this problem before?
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Breadth-First Search (BFS)

e |dea: processing a node involves knowing we need to visit all its
neighbors (just like DFS)

e Need to keep a TODO list of nodes to process

e Which node from our TODO list should we process first if we want
the shortest path?

— The first one we saw?
— The last one we saw?
— A random node?
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Breadth-First Search (BFS)

e Keep a Queue of nodes as our TODO list

e |dea: dequeue a node, enqueue all its neighbors

e Still will return the same nodes as reachable, just might have
shorter paths
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queue: a

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: e, g

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: e, g

pN

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: g, f

pN

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: g, f

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: f, h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: f, h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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gueue: h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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gueue: h

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: i

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: i

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: C

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: C

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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queue: C

Dequeue a node

Otherwise, add all its
unseen neighbors to the
queue
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BFS Detalls

e [n an n-node, m-edge graph, takes O(m + n) time with an adjacency
list
— Visit each edge once, visit each node at most once

e Pseudocode:
bfs from v;:
add v, to the queue.
while queue is not empty:
dequeue a node n
enqueue n's unseen neighbors

* How could we modify the pseudocode to look for a specific path?
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