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Plan for Today 
• Arguably	the	single	most	useful	abstraction	computer	science:	the	
graph	
– How	to	model	problems	using	a	graph	

• Today	and	some	of	next	week	is	algorithms	to	answer	common	
graph	questions	
–  Learning	these	algorithms	will	help	you	solve	very	different	problems	
more	quickly	
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Google Maps 

Source:	https://www.google.com/maps		
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ADT Flowchart 
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Molecules 

http://pngimg.com/uploads/molecule/molecule_PNG50.png 
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Introducing: The Graph 
• A	graph	is	a	mathematical	structure	for	representing	relationships	
• Consists	of	nodes	(aka	vertices)	and	edges	(aka	arcs)	

–  edges	are	the	relationships,	nodes	are	the	items	that	have	the	
relationship	

• Examples:	
– Map:	cities	(nodes)	are	connected	by	roads	(edges)	
–  Flowchart:	questions	and	recommendations	(nodes)	are	connected	by	
answers	(edges	

– Molecules:	atoms	(nodes)	are	connected	by	bonds	(edges)	
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Graph examples 
• For	each,	what	are	the	nodes	and	what	are	the	edges?	

– Web	pages	with	links	
–  Functions	in	a	program	that	call	each	other	
–  Airline	routes	
–  Facebook	friends	
–  Course	pre-requisites	
–  Family	trees	
–  Paths	through	a	maze	
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Boggle as a graph 
• Q:	If	a	Boggle	board	is	a	graph,	what	is	a	node?	What	is	an	edge?	

A.	 	Node	=	letter	cube,		Edge	=	Dictionary	(lexicon)	
B.	 	Node	=	dictionary	word;		Edge	=	letter	cube	
C.	 	Node	=	letter;		Edge	=	between	each	letter	that	is	part	of	a	word	
D.	 	Node	=	letter	cube;		Edge	=	connection	to	neighboring	cube	
E.	 	None	of	the	above	
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Undirected vs. Directed 

• Some	relationships	are	
mutual	
– Facebook	

• Some	are	one-way	
– Twitter	
– Doesn't	mean	that	all	
relationships	are	non-mutual	
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Representing Graphs 
• Two	main	ways:	

– Have	each	node	store	the	nodes	it's	connected	to	(adjacency	list)	
• Enemies	in	problem	4	of	the	midterm	
• NGrams	
• Doctors	without	Orders	

– Have	a	list	of	all	the	edges/edges	(edge	list)	
• Similar	to	Marbles	

• The	choice	depends	on	the	problem	you're	trying	to	solve	
• You	can	sometimes	represent	graphs	implicitly	instead	of	explicitly	
storing	the	edges	and	nodes	
–  e.g.	Boggle,	WordLadder	
–  draw	a	picture	to	see	the	graph	more	clearly!	



11 

Adjacency List 
• Map<Node,	Vector<Node>>	

–  or	Map<Node,	Set<Node>> 			Node				Set<Node>	
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Adjacency Matrix 
• Store	a	boolean	grid,	rows/columns	correspond	to	nodes	

–  Alternative	to	Adjacency	List	

F	 T	 F	 T	 F	

F	 F	 F	 F	 T	

T	 F	 F	 F	 T	

F	 F	 T	 F	 F	

F	 F	 T	 F	 F	
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Edge List 
• Store	a	Vector<Edge>	(or	Set<Edge>)	

– Edge	struct	would	have	the	two	nodes	
	 	 	 	 														Vector<Edge>	
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Edge Properties 
• Not	all	edges	are	created	equally	

–  Some	have	greater	weight	
• Real	life	examples:	

–  Flight	costs	
– Miles	on	a	road	
–  Time	spent	on	a	road	

• Store	a	number	with	each	edge	
corresponding	to	its	weight	

Source:	https://www.google.com/maps		
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Paths 
•  I	want	a	job	at	Google.	Do	I	know	anyone	who	works	there?	What	
about	someone	who	knows	someone?	

•  I	want	to	find	this	word	on	a	board	made	of	letters	"next	to"	each	
other	(Boggle)	

• A	path	is	a	sequence	of	nodes	with	edges	between	them	
connecting	two	nodes	
–  Could	store	edges	instead	of	nodes	(why?)	
	–  You	know	Jane.	Jane	knows	
Sally.	Sally	knows	knows	Sergey	
Brin,	the	founder	of	Google,	so	
the	path	is:	

				You->Jane->Sally->Sergey	
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Other graph properties 
•  reachable:	Vertex	u	is	reachable	from	v	
if	a	path	exists	from	u	to	v.	

• connected:	A	graph	is	connected	if	every	
vertex	is	reachable	from	every	other.	

• complete:	If	every	vertex	has	a	direct	
edge	to	every	other.	
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Loops and cycles 
• cycle:	A	path	that	begins	and	ends	at	the	same	node.	

–  example:	{b,	g,	f,	c,	a}	or	{V,	X,	Y,	W,	U,	V}.	
–  example:	{c,	d,	a}	or	{U,	W,	V,	U}.	

–  acyclic	graph:	One	that	does	
not	contain	any	cycles.	

•  loop:	An	edge	directly	from	
a	node	to	itself.	
– Many	graphs	don't	allow	loops.	
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Types of Graphs 
• NGrams?	

–  directed,	weighted,	cyclic,	connected	
• Boggle?	

–  undirected,	unweighted,	cyclic,	connected	
• A	molecule?	

–  undirected,	weighted,	potentially	cyclic,	connected	
• A	map	of	flights?	

–  directed,	weighted,	cyclic,	perhaps	not	connected	
• A	tree?	

–  directed,	acyclic	graph	(not	connected)	
– DAGs	are	especially	important	because	of	topological	sort.	More	on	
that	later!	
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Announcements 
• You	should	be	starting	LineManager	–	it's	hard.		
• Please	give	us	feedback!	cs198.stanford.edu	
• Feel	free	to	use	seepluspl.us	to	help	you	understand	trees	or	
pointers.	It's	still	in	development,	so	be	patient	with	quirks	

• Notes	on	course	feedback:	
–  If	you	have	a	question	outside	the	scope	of	the	class,	please	post	on	
Piazza	or	come	talk	to	me	during	OH!	I	don't	want	to	stop	your	
questions,	but	I	sometimes	have	to	make	choices	to	ensure	that	I	don't	
confuse	other	students	or	run	out	of	time	for	material	we	need	to	
cover.	
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Working with Graphs 
• We've	seen	how	to	model	data	with	a	graph	
• There	are	lots	of	cool	graph	algorithms	that	make	it	easy	to	solve	
certain	problems	
– Goal:	know	how	to	apply	a	model	a	problem	as	a	graph	and	apply	the	
relevant	graph	algorithm	to	it	

• We'll	spend	most	of	the	rest	of	this	unit	learning	about	graph	
algorithms	
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Finding Paths 
• Easiest	way:	Depth-First	Search	(DFS)	

–  Recursive	backtracking!	
• Finds	a	path	between	two	nodes	if	it	exists	

– Or	can	find	all	the	nodes	reachable	from	a	node	
• Where	can	I	travel	to	starting	in	San	Francisco?	
• If	all	my	friends	(and	their	friends,	and	so	on)	share	my	post,	how	many	will	
eventually	see	it?	
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DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	
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DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	
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DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	
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DFS 

If	we've	seen	the	node	
before,	stop	
Otherwise,	visit	all	the	
unvisited	nodes	from	this	
node	
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DFS Details 
•  In	an	n-node,	m-edge	graph,	takes	O(m	+	n)	time	with	an	adjacency	
list	
–  Visit	each	edge	once,	visit	each	node	at	most	once	

• Pseudocode:	
dfs	from	v1:	
				mark	v1	as	seen.	
				for	each	of	v1's	unvisited	neighbors	n:	
				dfs(n)	

• How	could	we	modify	the	pseudocode	to	look	for	a	specific	path?	
–  Recursive	Backtracking	
–  Look	at	maze	example	from	week	4	
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Finding Shortest Paths 
• We	can	find	paths	between	two	nodes,	but	how	can	we	find	the	
shortest	path?	
–  Fewest	number	of	steps	to	complete	a	task?	
–  Least	amount	of	edits	between	two	words?	

• When	have	we	solved	this	problem	before?	
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Breadth-First Search (BFS) 
•  Idea:	processing	a	node	involves	knowing	we	need	to	visit	all	its	
neighbors	(just	like	DFS)	

• Need	to	keep	a	TODO	list	of	nodes	to	process	
• Which	node	from	our	TODO	list	should	we	process	first	if	we	want	
the	shortest	path?	
–  The	first	one	we	saw?	
–  The	last	one	we	saw?	
–  A	random	node?	
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Breadth-First Search (BFS) 
• Keep	a	Queue	of	nodes	as	our	TODO	list	
•  Idea:	dequeue	a	node,	enqueue	all	its	neighbors	
• Still	will	return	the	same	nodes	as	reachable,	just	might	have	
shorter	paths	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		a	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		e,	g	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		e,	g	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		g,	f	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		g,	f	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		f,	h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		f,	h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		h	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		i	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		i	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		c	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		c	

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	
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BFS 

Dequeue	a	node	
Otherwise,	add	all	its	
unseen	neighbors	to	the	
queue	

a	 b	 c	 d	

f	e	

g	 h	 i	

queue:		c	
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BFS Details 
•  In	an	n-node,	m-edge	graph,	takes	O(m	+	n)	time	with	an	adjacency	
list	
–  Visit	each	edge	once,	visit	each	node	at	most	once	

• Pseudocode:	
bfs	from	v1:	
				add	v1	to	the	queue.	
				while	queue	is	not	empty:	
	 			dequeue	a	node	n	
	 			enqueue	n's	unseen	neighbors	

• How	could	we	modify	the	pseudocode	to	look	for	a	specific	path?	


