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Plan for Today 
• Two	different	graph	algorithms	

–  Topological	Sort		
–  Bipartite	Graph	Matching	

• Modify	DFS	for	powerful	results	
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Recap: Depth-First Search 
• Path-finding	algorithm	
• Pseudocode:	

dfs	from	v1:	
				mark	v1	as	seen.	
				for	each	of	v1's	unvisited	neighbors	n:	
							dfs(n)	

• Can	also	run	depth-first	searching	looking	for	a	specific	endpoint	
–  Check	out	the	"find	all	solutions"	vs.	"find	one	solution"	pseudocode	
from	recursive	backtracking	
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A new problem 
•  In	what	order	can	you	take	the	CS	
classes	required	for	the	major?	
–  Some	classes	rely	on	other	classes	–	you	
shouldn't	take	106B	until	you've	taken	
106A	

• Another	example:	you	want	to	cook	
breakfast,	but	some	steps	must	be	done	
before	others	can	begin.	In	what	order	
should	you	perform	the	steps	to	cook	
breakfast?	

•  In	what	order	should	compilers	compile	
code	(with	import	statements)?	

• What	type	of	graphs	are	these?	
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Topological Sort 
• Want	to	order	tasks	such	that	every	task's	prerequisites	appear	
before	the	task	itself	

•  In	other	words,	if	106A	is	a	prerequisite	for	106B,	106A	should	be	
before	106B	in	the	ordering	

• Such	an	ordering	is	a	topological	ordering	and	is	created	using	
topological	sort	

• Only	works	on	directed,	acyclic	graphs	
–  Prerequisite	relationships	are	always	directed	
–  If	the	graph	has	cycles,	no	way	to	obey	all	the	prerequisites	
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Topological Ordering 
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veggies	
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butter	
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Topological Ordering 
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• Any	of	the	top	four	
tasks	can	be	done	in	
any	order	(no	
prerequisites)	
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Topological Ordering 
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• Butter	toast's	
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do	that	next	
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Topological Ordering 
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• Can	sauté	the	
vegetables	since	
we've	already	
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and	gotten	butter	
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Topological Ordering 
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Topological Ordering 
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• Finally,	we	can	eat!	
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Topological Ordering 
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• This	is	just	one	
topological	ordering	
–	what's	another?	
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A Note About DFS 
•  In	what	order	do	we	finish	visiting	nodes	(do	they	turn	grey	in	our	
example	from	Thursday)	in	DFS	on	a	DAG?	



14 

DFS on a DAG 
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Topological Sort with DFS 
• Key	observation:	finishing	visiting	node	a	means	we	must	have	
visited	all	nodes	that	have	a	as	a	prerequisite	

• How	could	we	modify	DFS	to	return	the	topological	ordering?	
– We'll	need	a	Vector	to	maintain	the	order	we	traverse	nodes	
–  In	what	order	should	we	add	the	nodes	to	the	Vector?	Where	should	
we	add	the	node	(beginning/random	place/end)?		
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Topological Sort Algorithm 
For	each	unvisited	node:	

	run	TopoDFS(node)	
	
TopoDFS(node):	

	if	we've	seen	this	node	before	while	running	DFS,	there's	a	cycle!	
	run	TopoDFS	on	each	of	the	node's	neighbors	
	add	node	to	the	front	of	the	ordering	
	node	is	now	visited	
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Announcements 
• You	should	be	working	on	Autocomplete	
• Please	give	us	feedback!	cs198.stanford.edu	
• Feel	free	to	use	seepluspl.us	to	help	you	understand	trees	or	
pointers.	It's	still	in	development,	so	be	patient	with	quirks		

• Course	feedback:	
–  You	all	like	that	I	write	code	in	class	–	we'll	get	back	to	doing	that	by	
the	end	of	this	week	

–  It's	a	hard	class,	but	you	all	are	doing	fantastically	
• Please	ask	questions	on	Piazza,	come	talk	to	me	after	class,	email	me	for	a	
meeting,	etc.	if	you	feel	like	you're	falling	behind	or	don't	understand	the	
material	

– We've	set	grading	deadlines	before	each	assignment	is	due	–	if	you	
haven't	received	a	grade	from	your	SL	by	the	time	the	next	assignment	
is	due,	email	them	(we	also	tell	them)	
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Another Type of Graph 
• Sometimes,	we	want	to	model	problems	like	assigning:	

– Doctors	and	patients	
–  Students	and	classes	
–  Classes	and	rooms	

• Key	properties:	
– we	have	two	different	types	of	nodes	
–  all	the	relationships	(edges)	are	between	nodes	of	different	types	

• e.g.	a	student	is	assigned	to	a	class	–	no	relationships	between	students	or	
between	classes	

• A	bipartite	graph	is	a	graph	with	two	types	of	nodes	(left-hand	side	
and	right-hand	side),	where	all	the	(undirected)	edges	go	from	the	
LHS	to	the	RHS	
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Bipartite Graphs 

Math	51	
Gates	B02	

Hewlett	
200	

CS106B	

CS106A	
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Not a Bipartite Graph 

Dr.	A	
Patient	X	

Patient	Y	

Dr.	B	

Dr.	C	
Since	Dr.	A	is	both	a	patient	
and	a	doctor,	this	is	not	a	
bipartite	graph	
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Bipartite Graph Matching 
• A	matching	is	a	set	of	edges	such	that	each	node	is	connected	to	at	
most	one	edge	
– Maximum	matching:	largest	such	set	of	edges	

Math	51	 Gates	B02	

Hewlett	
200	

CS106B	

CS106A	
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Matching Algorithm 
• Start	with	an	empty	matching	
• For	each	LHS	node,	either:		

– Match	it	to	an	unmatched	RHS	neighbor	
– Match	it	to	a	matched	RHS	neighbor	and	break	the	RHS	neighbor's	
match,	then	try	to	match	the	newly	unmatched	LHS	node.	If	you	can't,	
keep	the	old	matching	

• How	is	this	algorithm	like	depth-first	search?	
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 

Better	match	found!	
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 

  

No	better	match	found!	
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 

  

No	better	match	found!	
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 
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Bipartite Graph Algorithm 

No	better	match	found!	



36 

Bipartite Graph Algorithm 

Maximum	matching	
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Bipartite Graph Algorithm 

Maximum	matching	
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Matching Algorithm 
• Start	with	an	empty	matching	
• For	each	LHS	node,	either:		

– Match	it	to	an	unmatched	RHS	neighbor	
– Match	it	to	a	matched	RHS	neighbor	and	break	the	RHS	neighbor's	
match,	then	try	to	match	the	newly	unmatched	LHS	node.	If	you	can't,	
keep	the	old	matching	
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An observation 
• Breaking	an	already	made	match	and	finding	a	better	match	means	
an	alternating	path	from	an	unmatched	LHS	node	to	an	unmatched	
RHS	node			
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An observation 
• Bigger	example:	
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An observation 
• Bigger	example:	
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An observation 
• Bigger	example:	



43 

An observation 
• Bigger	example:	
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An observation 
• Bigger	example:	
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An observation 
• Notice	how	we	we	augmented	the	alternating	path	by	adding	two	
new	nodes	(an	unmatched	LHS	node	and	an	unmatched	RHS	node)	
–  The	previous	matching	is	now	red,	excluded	from	current	matching	
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An observation 
• The	black	edges	are	in	the	matching,	and	the	red	edges	are	not	

–  black	is	LHS	to	RHS,	red	is	RHS	to	LHS	
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Alternate Approach 
• Start	with	an	empty	matching	
• While	possible:	

–  Find	an	alternating	path	from	an	unmatched	LHS	node	to	an	
unmatched	RHS,	potentially	by	augmenting	an	existing	alternating	
path		
• The	black	edges	in	such	a	path	(from	LHS	to	RHS)	are	included	in	the	
matching;	the	red	edges	(from	RHS	to	LHS)	are	not	

–  If	no	such	path	exists,	we've	found	the	maximum	matching	
• How	do	we	find	a	path?	


