
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	23	
The	Power	of	DFS	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Two	different	graph	algorithms	

–  Topological	Sort		
–  Bipartite	Graph	Matching	

• Modify	DFS	for	powerful	results	

3

Recap: Depth-First Search
• Path-finding	algorithm	
• Pseudocode:	

dfs	from	v1:	
				mark	v1	as	seen.	
				for	each	of	v1's	unvisited	neighbors	n:	
							dfs(n)	

• Can	also	run	depth-first	searching	looking	for	a	specific	endpoint	
–  Check	out	the	"find	all	solutions"	vs.	"find	one	solution"	pseudocode	
from	recursive	backtracking	

	

4

A new problem
•  In	what	order	can	you	take	the	CS	
classes	required	for	the	major?	
–  Some	classes	rely	on	other	classes	–	you	
shouldn't	take	106B	until	you've	taken	
106A	

• Another	example:	you	want	to	cook	
breakfast,	but	some	steps	must	be	done	
before	others	can	begin.	In	what	order	
should	you	perform	the	steps	to	cook	
breakfast?	

•  In	what	order	should	compilers	compile	
code	(with	import	statements)?	

• What	type	of	graphs	are	these?	

5

Topological Sort
• Want	to	order	tasks	such	that	every	task's	prerequisites	appear	
before	the	task	itself	

•  In	other	words,	if	106A	is	a	prerequisite	for	106B,	106A	should	be	
before	106B	in	the	ordering	

• Such	an	ordering	is	a	topological	ordering	and	is	created	using	
topological	sort	

• Only	works	on	directed,	acyclic	graphs	
–  Prerequisite	relationships	are	always	directed	
–  If	the	graph	has	cycles,	no	way	to	obey	all	the	prerequisites	

6

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

7

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

• Any	of	the	top	four	
tasks	can	be	done	in	
any	order	(no	
prerequisites)	

wash	
veggies	

get		
utensils	

get		
butter	

toast	
bread	

8

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

• Butter	toast's	
prerequisites	have	
all	been	met,	so	can	
do	that	next	

wash	
veggies	

get		
utensils	

get		
butter	

toast	
bread	

butter	
toast	

9

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

• Can	sauté	the	
vegetables	since	
we've	already	
washed	the	veggies	
and	gotten	butter	

wash	
veggies	

get		
utensils	

get		
butter	

toast	
bread	

butter	
toast	

sauté		
veggies	

10

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

• Can	make	the	
omelet	

wash	
veggies	

get		
utensils	

get		
butter	

toast	
bread	

butter	
toast	

make	
omelet	

sauté		
veggies	

11

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

• Finally,	we	can	eat!	

wash	
veggies	

get		
utensils	

get		
butter	

toast	
bread	

butter	
toast	

make	
omelet	 eat!	

sauté		
veggies	

12

Topological Ordering

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

• This	is	just	one	
topological	ordering	
–	what's	another?	

wash	
veggies	

get		
utensils	

get		
butter	

toast	
bread	

butter	
toast	

make	
omelet	 eat!	

sauté		
veggies	

13

A Note About DFS
•  In	what	order	do	we	finish	visiting	nodes	(do	they	turn	grey	in	our	
example	from	Thursday)	in	DFS	on	a	DAG?	

14

DFS on a DAG

sauté	
veggies	

wash	
veggies	

eat!	

get		
utensils	

make	
omelet	

get		
butter	

butter	
toast	

toast	
bread	

15

Topological Sort with DFS
• Key	observation:	finishing	visiting	node	a	means	we	must	have	
visited	all	nodes	that	have	a	as	a	prerequisite	

• How	could	we	modify	DFS	to	return	the	topological	ordering?	
– We'll	need	a	Vector	to	maintain	the	order	we	traverse	nodes	
–  In	what	order	should	we	add	the	nodes	to	the	Vector?	Where	should	
we	add	the	node	(beginning/random	place/end)?		

16

Topological Sort Algorithm
For	each	unvisited	node:	

	run	TopoDFS(node)	
	
TopoDFS(node):	

	if	we've	seen	this	node	before	while	running	DFS,	there's	a	cycle!	
	run	TopoDFS	on	each	of	the	node's	neighbors	
	add	node	to	the	front	of	the	ordering	
	node	is	now	visited	

17

Announcements
• You	should	be	working	on	Autocomplete	
• Please	give	us	feedback!	cs198.stanford.edu	
• Feel	free	to	use	seepluspl.us	to	help	you	understand	trees	or	
pointers.	It's	still	in	development,	so	be	patient	with	quirks		

• Course	feedback:	
–  You	all	like	that	I	write	code	in	class	–	we'll	get	back	to	doing	that	by	
the	end	of	this	week	

–  It's	a	hard	class,	but	you	all	are	doing	fantastically	
• Please	ask	questions	on	Piazza,	come	talk	to	me	after	class,	email	me	for	a	
meeting,	etc.	if	you	feel	like	you're	falling	behind	or	don't	understand	the	
material	

– We've	set	grading	deadlines	before	each	assignment	is	due	–	if	you	
haven't	received	a	grade	from	your	SL	by	the	time	the	next	assignment	
is	due,	email	them	(we	also	tell	them)	

18

Another Type of Graph
• Sometimes,	we	want	to	model	problems	like	assigning:	

– Doctors	and	patients	
–  Students	and	classes	
–  Classes	and	rooms	

• Key	properties:	
– we	have	two	different	types	of	nodes	
–  all	the	relationships	(edges)	are	between	nodes	of	different	types	

• e.g.	a	student	is	assigned	to	a	class	–	no	relationships	between	students	or	
between	classes	

• A	bipartite	graph	is	a	graph	with	two	types	of	nodes	(left-hand	side	
and	right-hand	side),	where	all	the	(undirected)	edges	go	from	the	
LHS	to	the	RHS	

19

Bipartite Graphs

Math	51	
Gates	B02	

Hewlett	
200	

CS106B	

CS106A	

20

Not a Bipartite Graph

Dr.	A	
Patient	X	

Patient	Y	

Dr.	B	

Dr.	C	
Since	Dr.	A	is	both	a	patient	
and	a	doctor,	this	is	not	a	
bipartite	graph	

21

Bipartite Graph Matching
• A	matching	is	a	set	of	edges	such	that	each	node	is	connected	to	at	
most	one	edge	
– Maximum	matching:	largest	such	set	of	edges	

Math	51	 Gates	B02	

Hewlett	
200	

CS106B	

CS106A	

22

Matching Algorithm
• Start	with	an	empty	matching	
• For	each	LHS	node,	either:		

– Match	it	to	an	unmatched	RHS	neighbor	
– Match	it	to	a	matched	RHS	neighbor	and	break	the	RHS	neighbor's	
match,	then	try	to	match	the	newly	unmatched	LHS	node.	If	you	can't,	
keep	the	old	matching	

• How	is	this	algorithm	like	depth-first	search?	

23

Bipartite Graph Algorithm

24

Bipartite Graph Algorithm

25

Bipartite Graph Algorithm

26

Bipartite Graph Algorithm

27

Bipartite Graph Algorithm

28

Bipartite Graph Algorithm

Better	match	found!	

29

Bipartite Graph Algorithm

30

Bipartite Graph Algorithm

No	better	match	found!	

31

Bipartite Graph Algorithm

32

Bipartite Graph Algorithm

No	better	match	found!	

33

Bipartite Graph Algorithm

34

Bipartite Graph Algorithm

35

Bipartite Graph Algorithm

No	better	match	found!	

36

Bipartite Graph Algorithm

Maximum	matching	

37

Bipartite Graph Algorithm

Maximum	matching	

38

Matching Algorithm
• Start	with	an	empty	matching	
• For	each	LHS	node,	either:		

– Match	it	to	an	unmatched	RHS	neighbor	
– Match	it	to	a	matched	RHS	neighbor	and	break	the	RHS	neighbor's	
match,	then	try	to	match	the	newly	unmatched	LHS	node.	If	you	can't,	
keep	the	old	matching	

39

An observation
• Breaking	an	already	made	match	and	finding	a	better	match	means	
an	alternating	path	from	an	unmatched	LHS	node	to	an	unmatched	
RHS	node			

40

An observation
• Bigger	example:	

41

An observation
• Bigger	example:	

42

An observation
• Bigger	example:	

43

An observation
• Bigger	example:	

44

An observation
• Bigger	example:	

45

An observation
• Notice	how	we	we	augmented	the	alternating	path	by	adding	two	
new	nodes	(an	unmatched	LHS	node	and	an	unmatched	RHS	node)	
–  The	previous	matching	is	now	red,	excluded	from	current	matching	

46

An observation
• The	black	edges	are	in	the	matching,	and	the	red	edges	are	not	

–  black	is	LHS	to	RHS,	red	is	RHS	to	LHS	

47

Alternate Approach
• Start	with	an	empty	matching	
• While	possible:	

–  Find	an	alternating	path	from	an	unmatched	LHS	node	to	an	
unmatched	RHS,	potentially	by	augmenting	an	existing	alternating	
path		
• The	black	edges	in	such	a	path	(from	LHS	to	RHS)	are	included	in	the	
matching;	the	red	edges	(from	RHS	to	LHS)	are	not	

–  If	no	such	path	exists,	we've	found	the	maximum	matching	
• How	do	we	find	a	path?	

