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Plan for Today

e Two different graph algorithms
— Topological Sort
— Bipartite Graph Matching

e Modify DFS for powerful results



Recap: Depth-First Search

e Path-finding algorithm

e Pseudocode:
dfs from v,:
mark v, as seen.

for each of v,'s unvisited neighbors n:
dfs(n)

e Can also run depth-first searching looking for a specific endpoint

— Check out the "find all solutions" vs. "find one solution"” pseudocode
from recursive backtracking



A new problem

e In what order can you take the CS
classes required for the major?

— Some classes rely on other classes — you
shouldn't take 106B until you've taken

(4 minutes)
106A
e Another example: you want to cook @ s

breakfast, but some steps must be done
before others can begin. In what order

Chop Prepare egg
vegetables mixture
(3 minutes) (1 minute)

Add eggs &

cook —

should you perform the steps to cook (s mimes)

breakfast?

e In what order should compilers compile
code (with import statements)?

e \What type of graphs are these?



Topological Sort

e \Want to order tasks such that every task's prerequisites appear
before the task itself

e In other words, if 106A is a prerequisite for 106B, 106A should be
before 106B in the ordering

e Such an ordering is a topological ordering and is created using
topological sort
e Only works on directed, acyclic graphs
— Prerequisite relationships are always directed
— If the graph has cycles, no way to obey all the prerequisites



Topological Ordering
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get e Any of the top four
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any order (no
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Topological Ordering

Bet e Can sauté the
utensils i
vegetables since
we've already
butter washed the veggies
toast and gotten butter

wash

get sauté
get ORI butter

veggies LD bread utensils toast veggies



Topological Ordering

get e Can make the
utensils
omelet
butter
toast
wash get toast get S saute) " make
veggies LD bread utensils toast veggies/ \ omelet
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Topological Ordering

get e Finally, we can eat!
utensils
butter
toast
wash get toast get S saute) " make
veggies LD bread utensils toast veggies/ \ omelet
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Topological Ordering

butter
toast

get e This is just one
utensils . .
topological ordering

— what's another?

wash get toast get S Sautel / make
veggies LD bread utensils toast veggies/ \ omelet

12



A Note About DFS

e In what order do we finish visiting nodes (do they turn grey in our
example from Thursday) in DFS on a DAG?
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DFS on a DAG

get
utensils

butter
toast
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Topological Sort with DFS

e Key observation: finishing visiting node a means we must have
visited all nodes that have a as a prerequisite

* How could we modify DFS to return the topological ordering?

— We'll need a Vector to maintain the order we traverse nodes

— In what order should we add the nodes to the Vector? Where should
we add the node (beginning/random place/end)?
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Topological Sort Algorithm

For each unvisited node:
run TopoDFS (node)

TopoDFS(node):
if we've seen this node before while running DFS, there's a cycle!
run TopoDFS on each of the node's neighbors
add node to the front of the ordering
node is now visited
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Announcements

e You should be working on Autocomplete
e Please give us feedback! cs198.stanford.edu

e Feel free to use seepluspl.us to help you understand trees or
pointers. It's still in development, so be patient with quirks

e Course feedback:

— You all like that | write code in class — we'll get back to doing that by
the end of this week

— It's a hard class, but you all are doing fantastically

* Please ask questions on Piazza, come talk to me after class, email me for a
meeting, etc. if you feel like you're falling behind or don't understand the
material

— We've set grading deadlines before each assignment is due — if you

haven't received a grade from your SL by the time the next assignment

is due, email them (we also tell them)
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Another Type of Graph

e Sometimes, we want to model problems like assigning:
— Doctors and patients
— Students and classes
— Classes and rooms
e Key properties:
— we have two different types of nodes

— all the relationships (edges) are between nodes of different types
e e.g. a student is assigned to a class — no relationships between students or
between classes
e A bipartite graph is a graph with two types of nodes (left-hand side
and right-hand side), where all the (undirected) edges go from the
LHS to the RHS
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Bipartite Graphs

@V Gates B02
CS106B
Hewlett
200
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Not a Bipartite Graph

°V®
2 =

Since Dr. A is both a patient
and a doctor, this is not a
bipartite graph




Bipartite Graph Matching

e A matching is a set of edges such that each node is connected to at

most one edge
Gates BO2
CS1068B
Hewlett
200

— Maximum matching: largest such set of edges
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Matching Algorithm

e Start with an empty matching

e For each LHS node, either:
— Match it to an unmatched RHS neighbor

— Match it to a matched RHS neighbor and break the RHS neighbor's
match, then try to match the newly unmatched LHS node. If you can't,
keep the old matching

e How is this algorithm like depth-first search?

22



Bipartite Graph Algorithm
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Matching Algorithm

e Start with an empty matching

e For each LHS node, either:
— Match it to an unmatched RHS neighbor

— Match it to a matched RHS neighbor and break the RHS neighbor's
match, then try to match the newly unmatched LHS node. If you can't,
keep the old matching
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An observation

e Breaking an already made match and finding a better match means
an alternating path from an unmatched LHS node to an unmatched
RHS node



e Bigger example:
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An observation

e Notice how we we augmented the alternating path by adding two
new nodes (an unmatched LHS node and an unmatched RHS node)

— The previous matching is now red, excluded from current matching



An observation

e The black edges are in the matching, and the red edges are not
— black is LHS to RHS, red is RHS to LHS



Alternate Approach

e Start with an empty matching

e While possible:

— Find an alternating path from an unmatched LHS node to an
unmatched RHS, potentially by augmenting an existing alternating
path

e The black edges in such a path (from LHS to RHS) are included in the
matching; the red edges (from RHS to LHS) are not

— If no such path exists, we've found the maximum matching

e How do we find a path?
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