CS 106B, Lecture 23
The Power of DFS

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others



Plan for Today

e Two different graph algorithms
— Topological Sort
— Bipartite Graph Matching

e Modify DFS for powerful results



Recap: Depth-First Search

e Path-finding algorithm

e Pseudocode:
dfs from v,:
mark v, as seen.

for each of v,'s unvisited neighbors n:
dfs(n)

e Can also run depth-first searching looking for a specific endpoint

— Check out the "find all solutions" vs. "find one solution"” pseudocode
from recursive backtracking



A new problem

e In what order can you take the CS
classes required for the major?

— Some classes rely on other classes — you
shouldn't take 106B until you've taken

(4 minutes)
106A
e Another example: you want to cook @ s

breakfast, but some steps must be done
before others can begin. In what order

Chop Prepare egg
vegetables mixture
(3 minutes) (1 minute)

Add eggs &

cook —

should you perform the steps to cook (s mimes)

breakfast?

e In what order should compilers compile
code (with import statements)?

e \What type of graphs are these?



Topological Sort

e \Want to order tasks such that every task's prerequisites appear
before the task itself

e In other words, if 106A is a prerequisite for 106B, 106A should be
before 106B in the ordering

e Such an ordering is a topological ordering and is created using
topological sort
e Only works on directed, acyclic graphs
— Prerequisite relationships are always directed
— If the graph has cycles, no way to obey all the prerequisites



Topological Ordering

get
utensils

butter
toast




wash

veggies

Topological Ordering

get
butter

butter
toast

get e Any of the top four
@ tasks can be done in
any order (no
prerequisites)

toast
bread

get
utensils



wash

veggies

Topological Ordering

get
butter

butter
toast

get e Butter toast's
utensils P
prerequisites have

all been met, so can
do that next

toast
bread

get
utensils

butter
toast



Topological Ordering

Bet e Can sauté the
utensils i
vegetables since
we've already
butter washed the veggies
toast and gotten butter

wash

get sauté
get ORI butter

veggies LD bread utensils toast veggies



Topological Ordering

get e Can make the
utensils
omelet
butter
toast
wash get toast get S saute) " make
veggies LD bread utensils toast veggies/ \ omelet

10



Topological Ordering

get e Finally, we can eat!
utensils
butter
toast
wash get toast get S saute) " make
veggies LD bread utensils toast veggies/ \ omelet

11



Topological Ordering

butter
toast

get e This is just one
utensils . .
topological ordering

— what's another?

wash get toast get S Sautel / make
veggies LD bread utensils toast veggies/ \ omelet

12



A Note About DFS

e In what order do we finish visiting nodes (do they turn grey in our
example from Thursday) in DFS on a DAG?

13



DFS on a DAG

get
utensils

butter
toast

14



Topological Sort with DFS

e Key observation: finishing visiting node a means we must have
visited all nodes that have a as a prerequisite

* How could we modify DFS to return the topological ordering?

— We'll need a Vector to maintain the order we traverse nodes

— In what order should we add the nodes to the Vector? Where should
we add the node (beginning/random place/end)?

15



Topological Sort Algorithm

For each unvisited node:
run TopoDFS (node)

TopoDFS(node):
if we've seen this node before while running DFS, there's a cycle!
run TopoDFS on each of the node's neighbors
add node to the front of the ordering
node is now visited

16



Announcements

e You should be working on Autocomplete
e Please give us feedback! cs198.stanford.edu

e Feel free to use seepluspl.us to help you understand trees or
pointers. It's still in development, so be patient with quirks

e Course feedback:

— You all like that | write code in class — we'll get back to doing that by
the end of this week

— It's a hard class, but you all are doing fantastically

* Please ask questions on Piazza, come talk to me after class, email me for a
meeting, etc. if you feel like you're falling behind or don't understand the
material

— We've set grading deadlines before each assignment is due — if you

haven't received a grade from your SL by the time the next assignment

is due, email them (we also tell them)
17



Another Type of Graph

e Sometimes, we want to model problems like assigning:
— Doctors and patients
— Students and classes
— Classes and rooms
e Key properties:
— we have two different types of nodes

— all the relationships (edges) are between nodes of different types
e e.g. a student is assigned to a class — no relationships between students or
between classes
e A bipartite graph is a graph with two types of nodes (left-hand side
and right-hand side), where all the (undirected) edges go from the
LHS to the RHS

18



Bipartite Graphs

@V Gates B02
CS106B
Hewlett
200

19



Not a Bipartite Graph

°V®
2 =

Since Dr. A is both a patient
and a doctor, this is not a
bipartite graph




Bipartite Graph Matching

e A matching is a set of edges such that each node is connected to at

most one edge
Gates BO2
CS1068B
Hewlett
200

— Maximum matching: largest such set of edges

21



Matching Algorithm

e Start with an empty matching

e For each LHS node, either:
— Match it to an unmatched RHS neighbor

— Match it to a matched RHS neighbor and break the RHS neighbor's
match, then try to match the newly unmatched LHS node. If you can't,
keep the old matching

e How is this algorithm like depth-first search?

22



Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Bipartite Graph Algorithm




Matching Algorithm

e Start with an empty matching

e For each LHS node, either:
— Match it to an unmatched RHS neighbor

— Match it to a matched RHS neighbor and break the RHS neighbor's
match, then try to match the newly unmatched LHS node. If you can't,
keep the old matching

38



An observation

e Breaking an already made match and finding a better match means
an alternating path from an unmatched LHS node to an unmatched
RHS node



e Bigger example:

O »
e




e Bigger example:

® o
- ><_
o 41




e Bigger example:

o
5 o .




An observation




An observation




An observation

e Notice how we we augmented the alternating path by adding two
new nodes (an unmatched LHS node and an unmatched RHS node)

— The previous matching is now red, excluded from current matching



An observation

e The black edges are in the matching, and the red edges are not
— black is LHS to RHS, red is RHS to LHS



Alternate Approach

e Start with an empty matching

e While possible:

— Find an alternating path from an unmatched LHS node to an
unmatched RHS, potentially by augmenting an existing alternating
path

e The black edges in such a path (from LHS to RHS) are included in the
matching; the red edges (from RHS to LHS) are not

— If no such path exists, we've found the maximum matching

e How do we find a path?

47



