

CS 106B, Lecture 24

Other Graph Applications

Plan for Today

- Real-world graph algorithms (with coding examples!)
 - **Dijkstra's Algorithm** for finding the **least-cost path** (like Google Maps)
 - **Kruskal's Algorithm** for finding the **minimum spanning tree**
 - Applications in civil engineering and biology

Shortest Paths

- Recall: BFS allows us to find the shortest path
 - This is great if we, say, want to find the route from A to B with the fewest number of road changes
- Sometimes, you want to find the **least-cost path**
 - Only applies to graphs with **weighted** edges
- Examples:
 - cheapest flight(s) from here to New York
 - fastest driving route (Google Maps)
 - the internet: fastest path to send information through the network of routers

Least-Cost Paths

- BFS uses a **queue** to keep track of which nodes to use next
- BFS pseudocode:

bfs from v_1 :

 add v_1 to the queue.

 while queue is not empty:

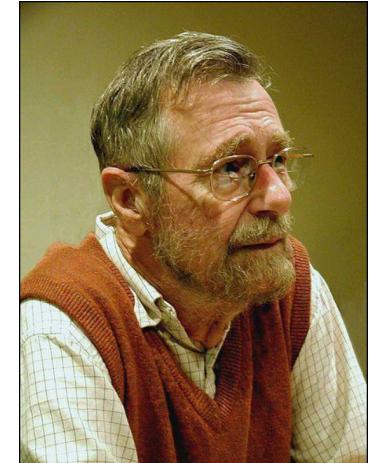
 dequeue a node n

 enqueue n 's unseen neighbors

- How could we modify this pseudocode to dequeue the **least-cost** nodes instead of the **closest nodes**?
 - Use a **priority queue** instead of a queue

Edsger Dijkstra (1930-2002)

- famous Dutch computer scientist and prof. at UT Austin
 - Turing Award winner (1972)
- Noteworthy algorithms and software:
 - THE multiprogramming system (OS)
 - layers of abstraction
 - Compiler for a language that can do recursion
 - Dijkstra's algorithm
 - Dining Philosophers Problem: resource contention, deadlock
- famous papers:
 - "Go To considered harmful"
 - "On the cruelty of really teaching computer science"



Dijkstra pseudocode

dijkstra(v_1, v_2):

consider every vertex to have a cost of infinity, except v_1 which has a cost of 0.
create a *priority queue* of vertexes, ordered by cost, storing only v_1 .

while the *pqueue* is not empty:

 dequeue a vertex v from the *pqueue*, and mark it as **visited**.

 for each unvisited neighbor, n , of v , we can reach n

 with a total **cost** of (v 's cost + the weight of the edge from v to n).

 if this cost is cheaper than n 's current cost,

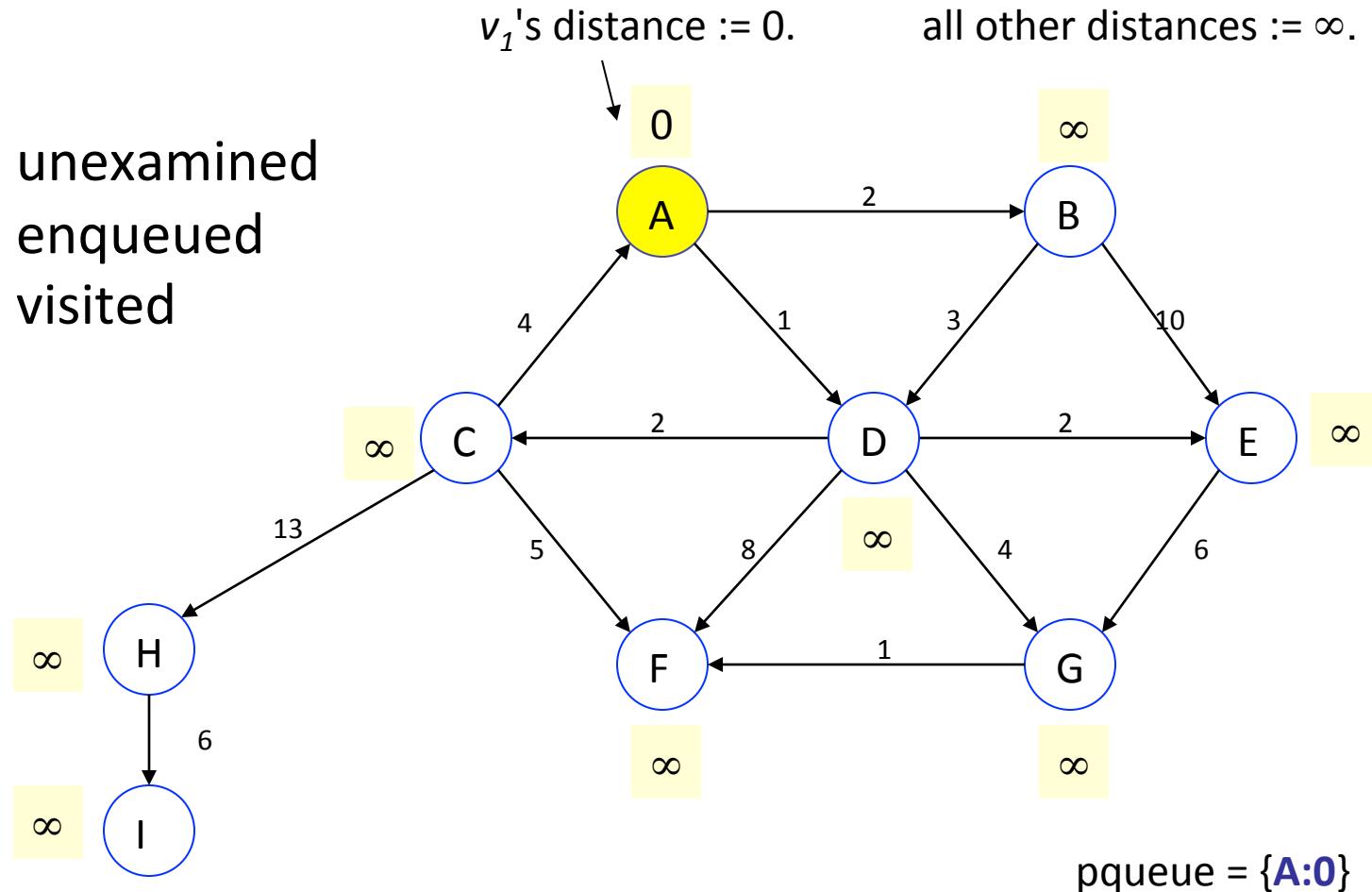
 we should **enqueue** the neighbor n to the *pqueue* with this new cost,
 and remember v was its previous vertex.

when we are done, we can **reconstruct the path** from v_2 back to v_1
by following the path of previous vertices.

Dijkstra example

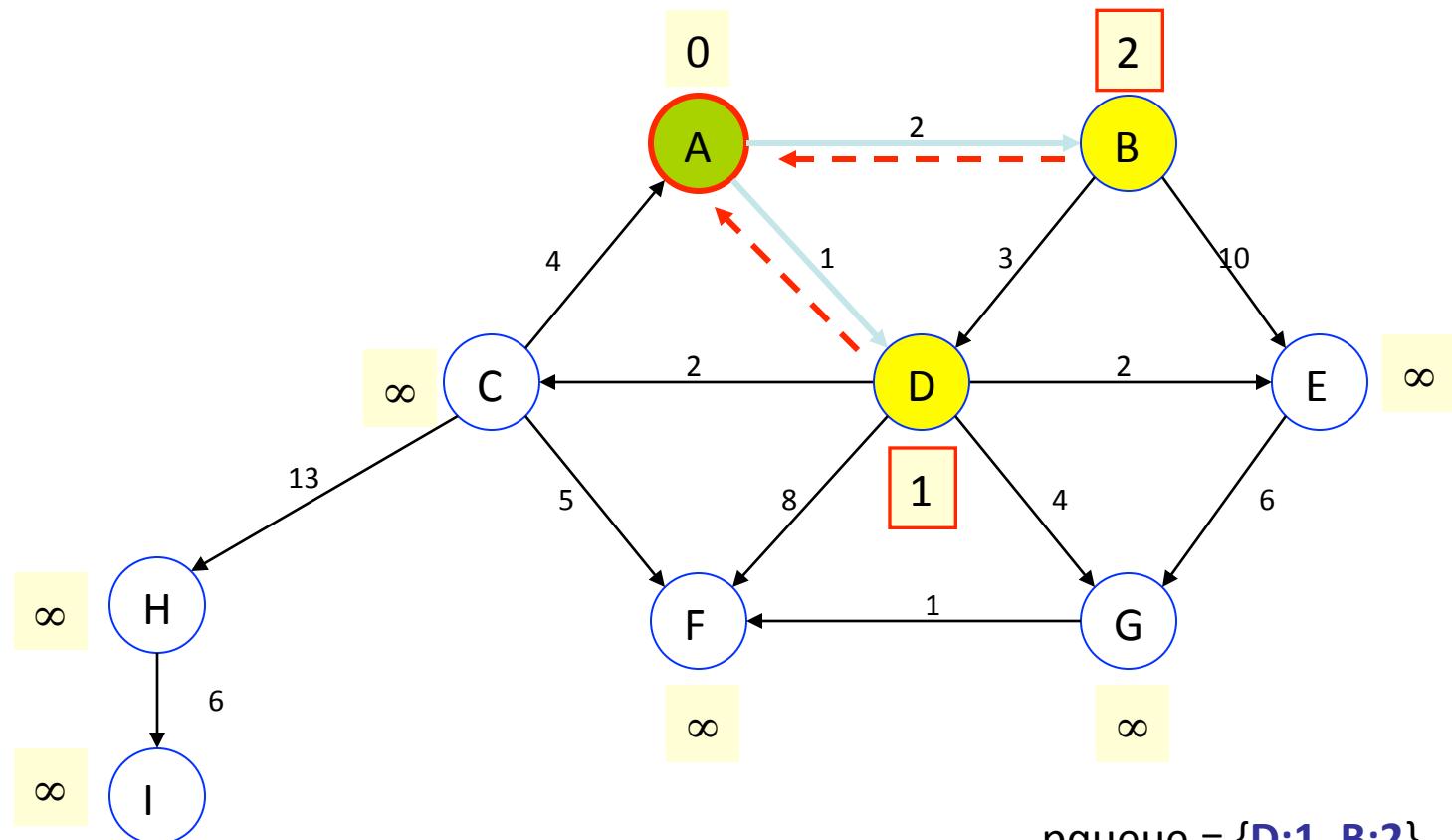
`dijkstra(A, F);`

- color key
 - **white**: unexamined
 - **yellow**: enqueueued
 - **green**: visited



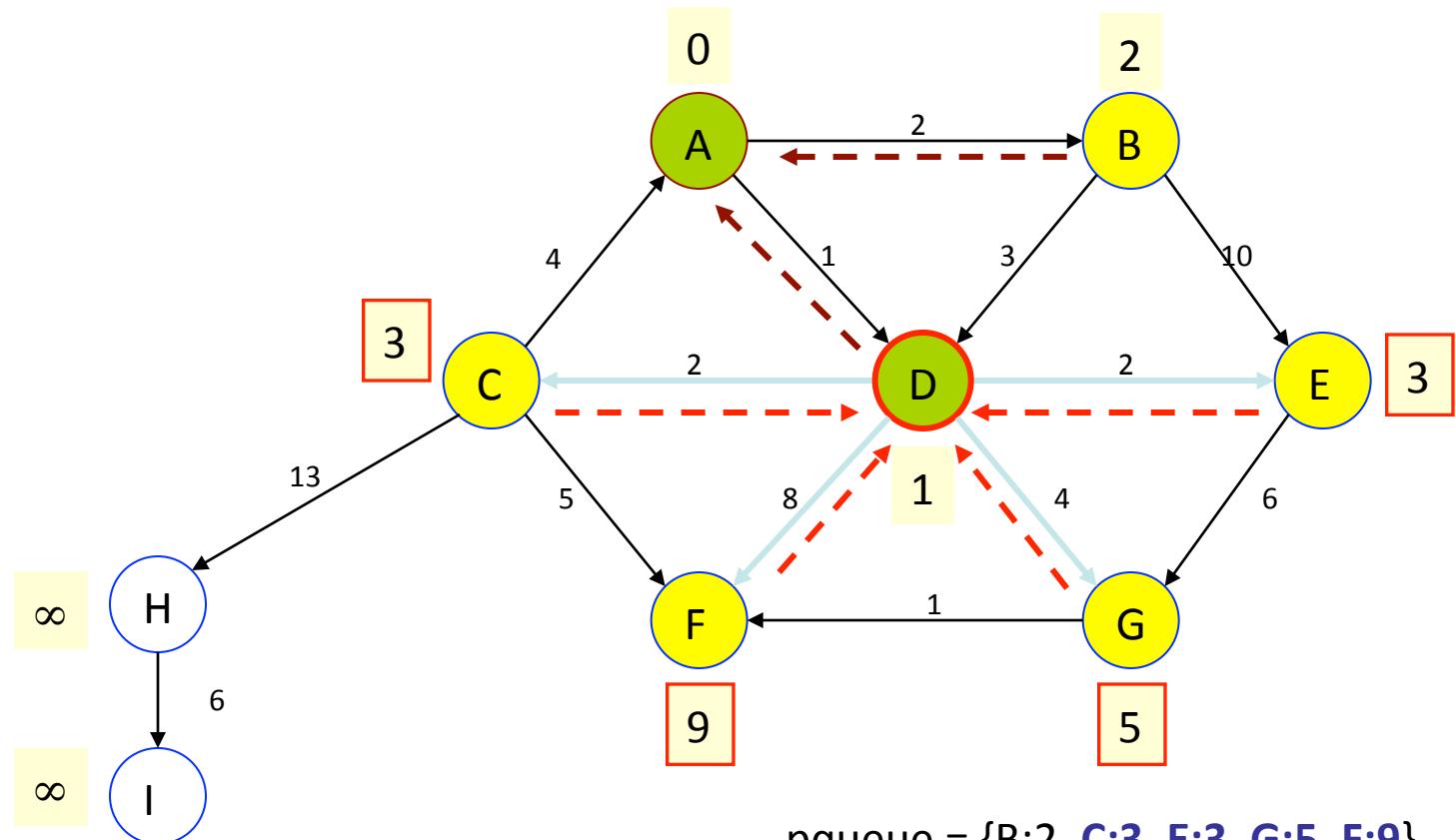
Dijkstra example

dijkstra(A, F);



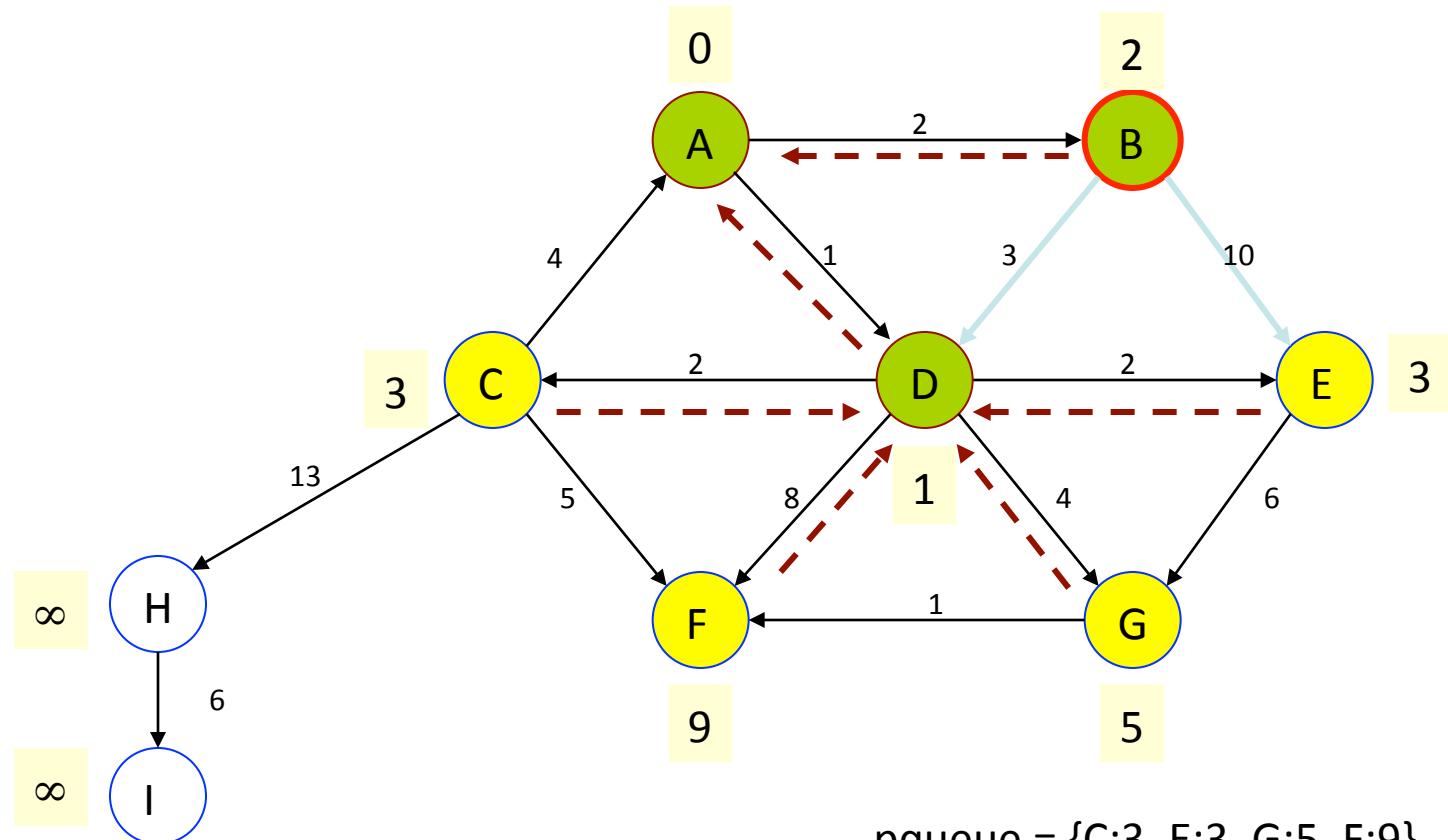
Dijkstra example

dijkstra(A, F);



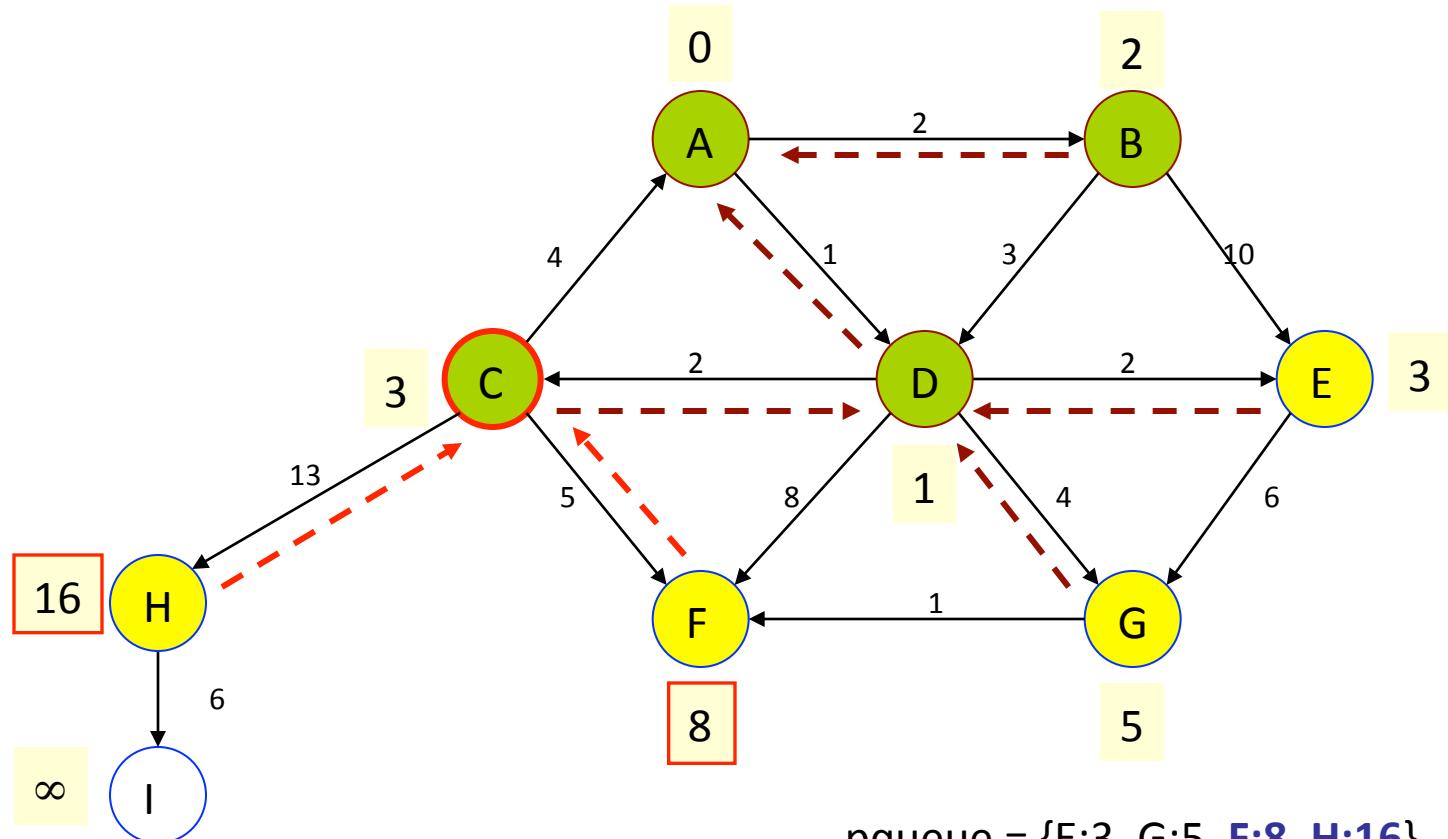
Dijkstra example

dijkstra(A, F);



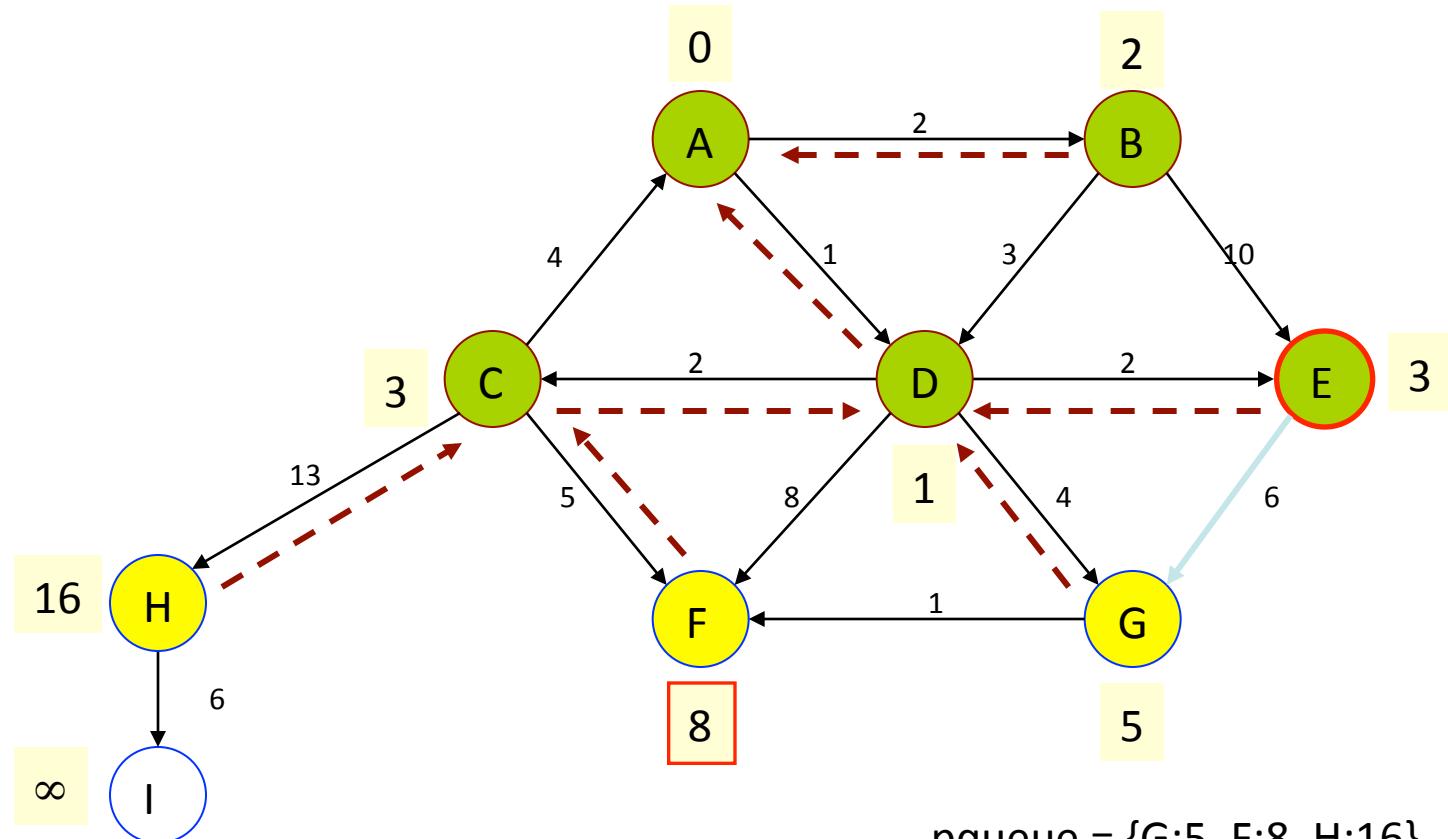
Dijkstra example

dijkstra(A, F);



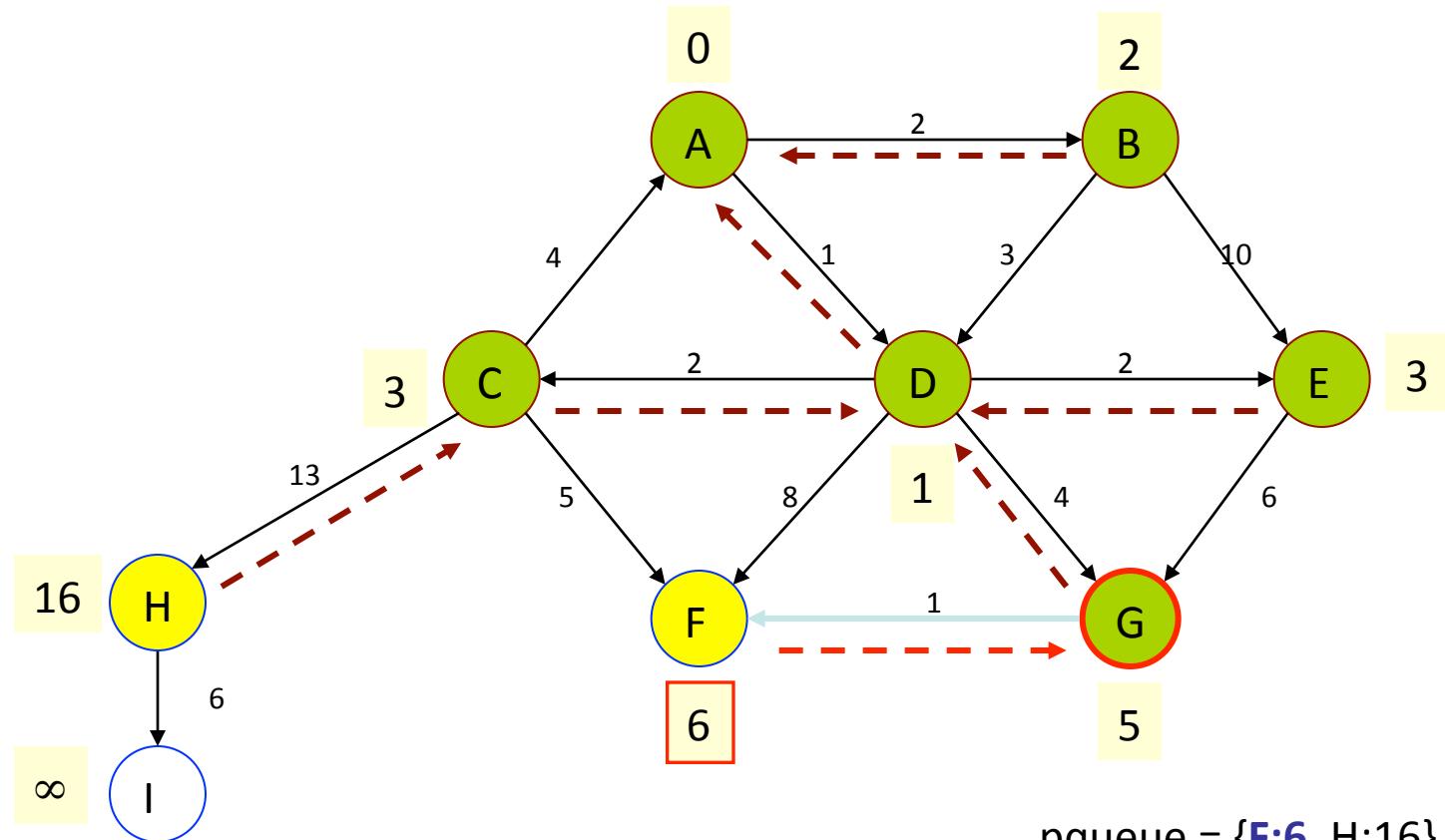
Dijkstra example

dijkstra(A, F);



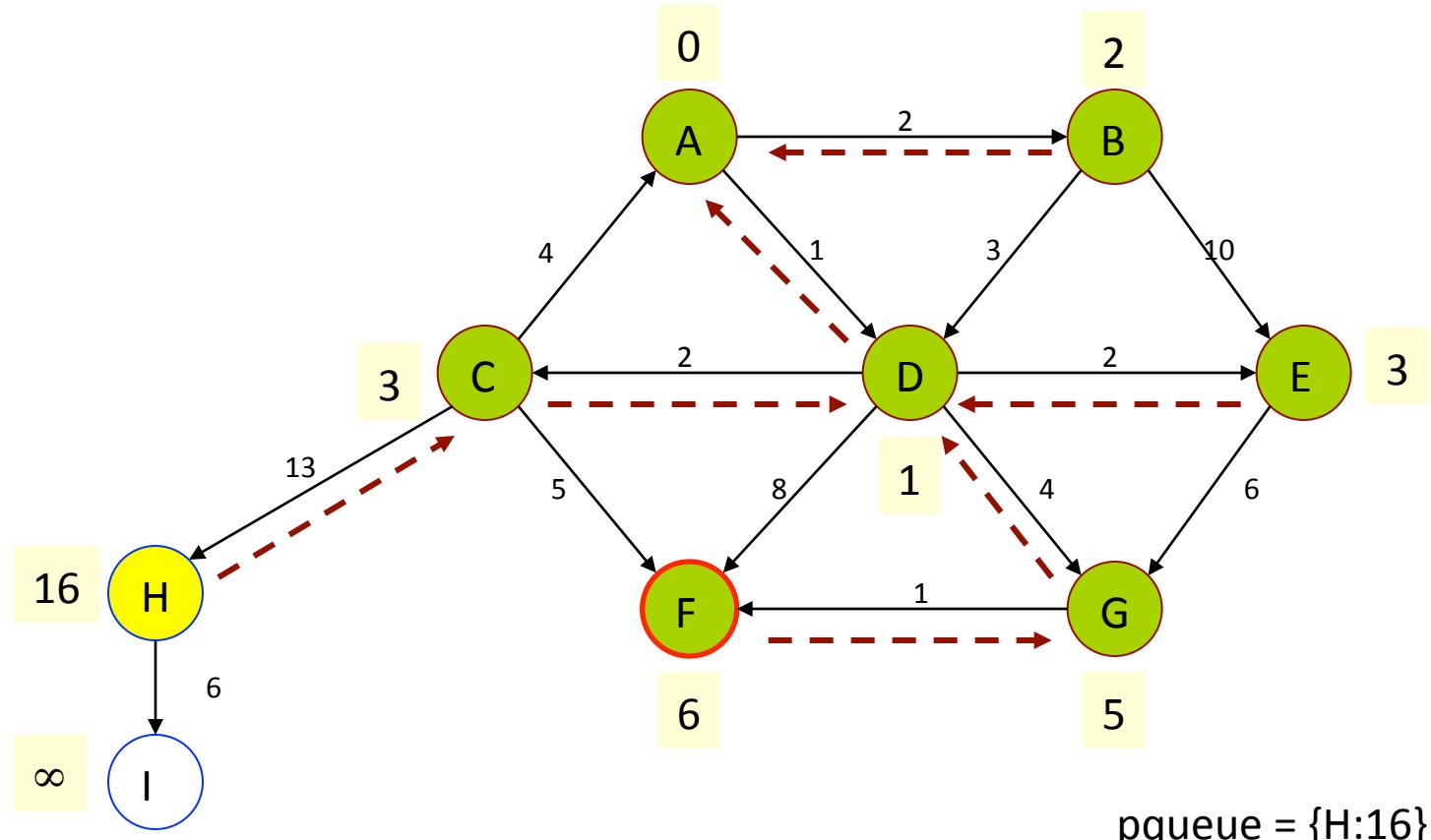
Dijkstra example

dijkstra(A, F);



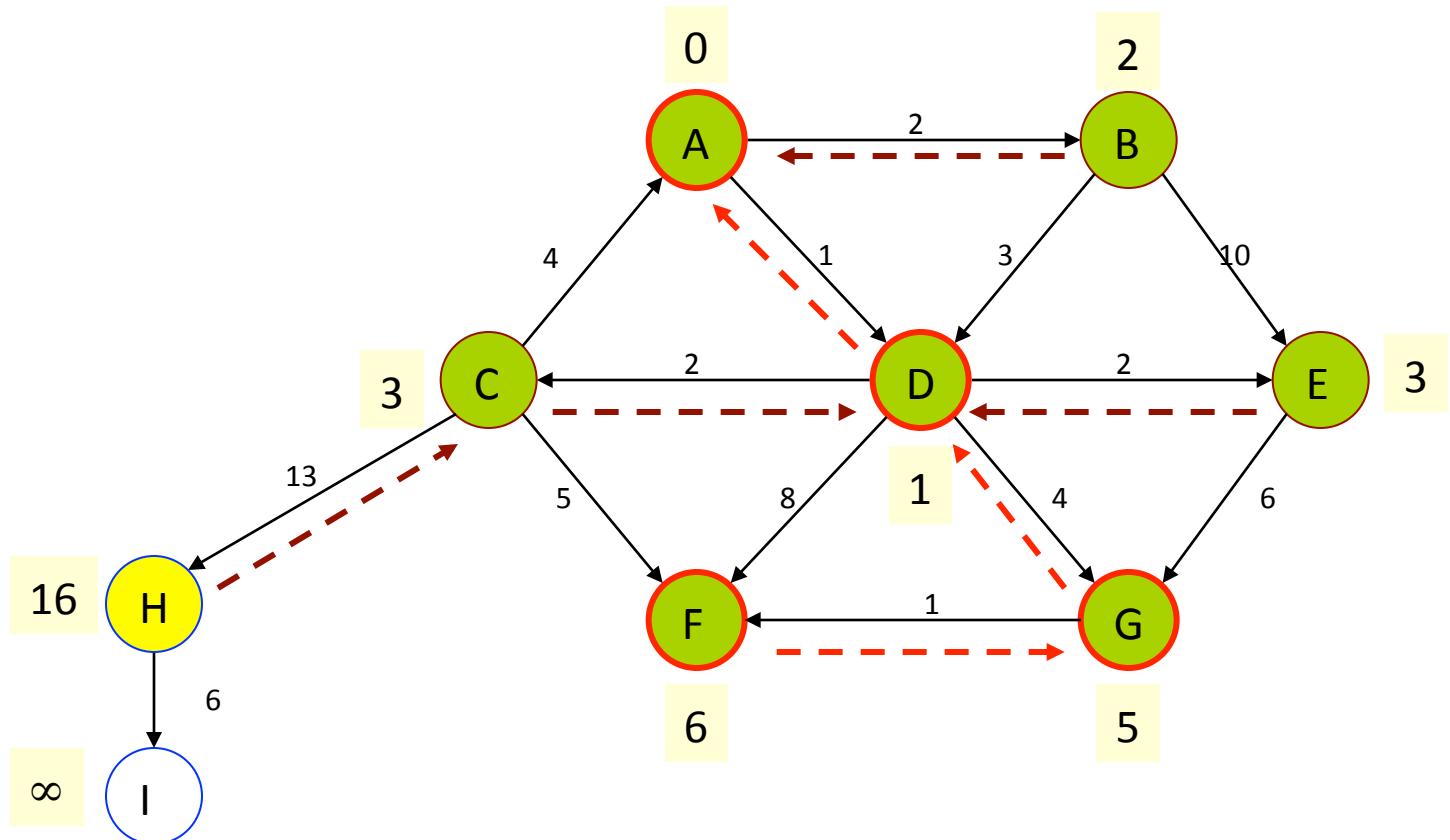
Dijkstra example

dijkstra(A, F);



Dijkstra example

dijkstra(A, F);



Algorithm properties

- Dijkstra's algorithm is a *greedy algorithm*:
 - Make choices that currently seem best
- It is correct because it maintains the following two properties:
 - 1) for every marked vertex, the current recorded cost is the lowest cost to that vertex from the source vertex.
 - 2) for every unmarked vertex v , its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v .

Dijkstra's runtime

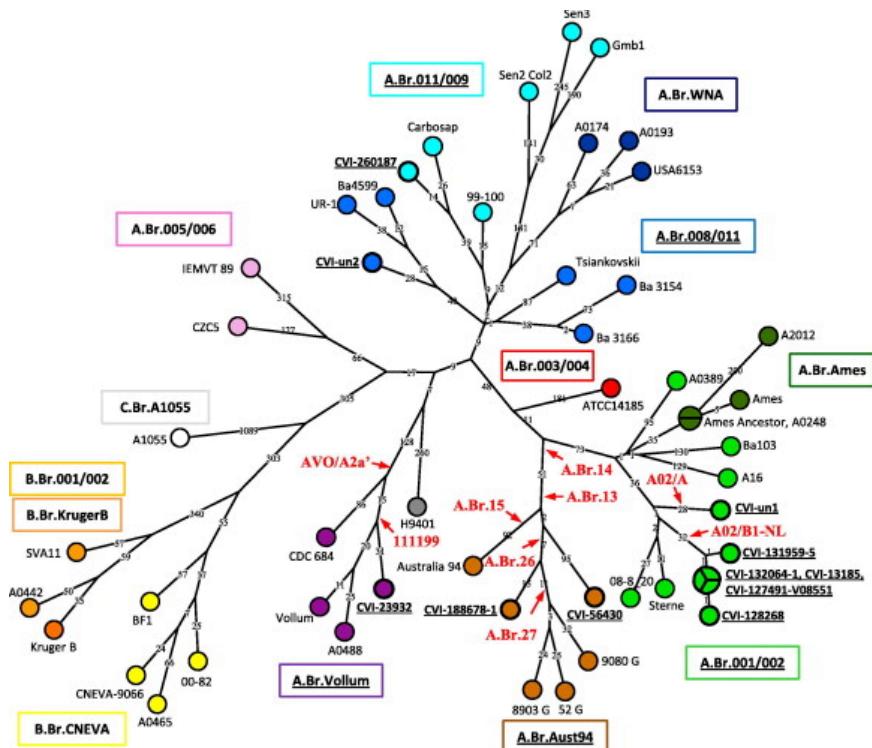
- For sparse graphs, (i.e. graphs with much less than V^2 edges)
Dijkstra's is implemented most efficiently with a priority queue.
 - initialization: $O(V)$
 - while loop: $O(V)$ times
 - remove min-cost vertex from pq : $O(\log V)$
 - potentially perform E updates on cost/previous
 - update costs in pq : $O(\log V)$
 - reconstruct path: $O(E)$
- Total runtime: $O(V \log V + E \log V)$
 - = **$O(E \log V)$** , because $V = O(E)$ if graph is connected
 - if a list/vector is used instead of a pq : $O(V^2 + E) = O(V^2)$

Announcements

- You should be working on Autocomplete
- Please give us feedback! cs198.stanford.edu
- Feel free to use seepluspl.us to help you understand trees or pointers. It's still in development, so be patient with quirks
- Course feedback:
 - You all like that I write code in class – we'll get back to doing that by the end of this week
 - It's a hard class, but you all are doing fantastically
 - Please ask questions on Piazza, come talk to me after class, email me for a meeting, etc. if you feel like you're falling behind or don't understand the material
 - We've set grading deadlines before each assignment is due – if you haven't received a grade from your SL by the time the next assignment is due, email them (we also tell them)

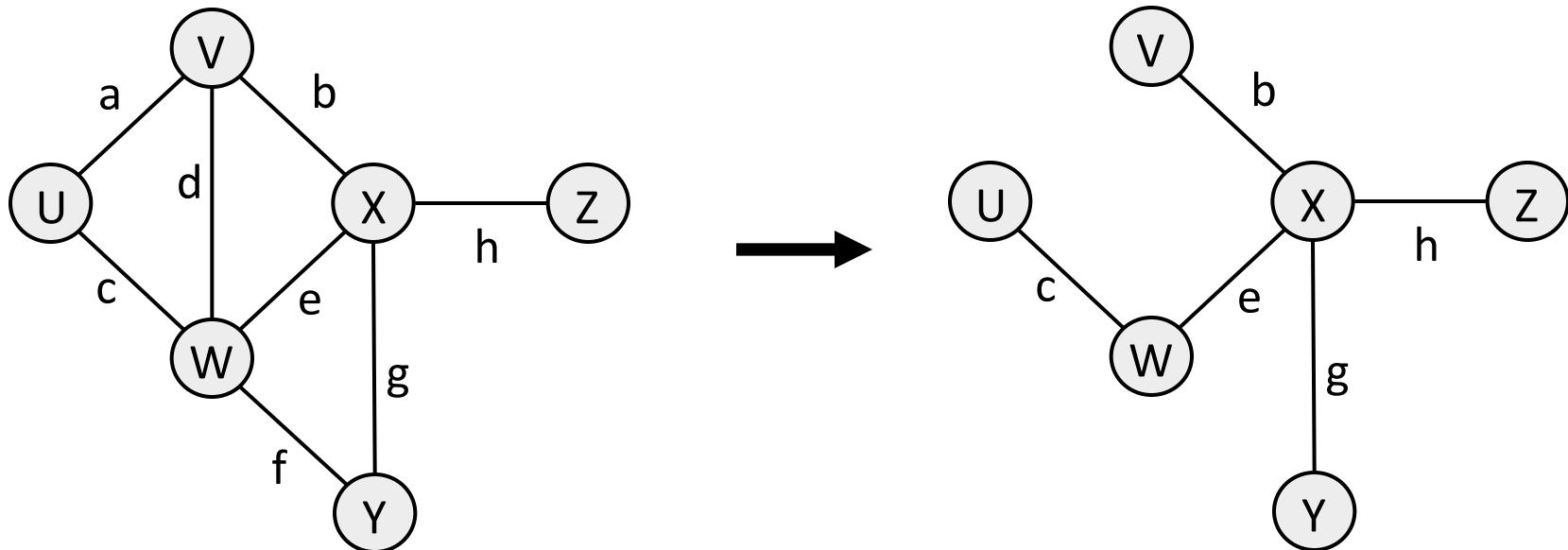
Minimum Spanning Trees

- Sometimes, you want to find a way to connect every node in a graph in the least-cost way possible
 - Utility (road, water, or power) connectivity
 - Tracing virus evolution



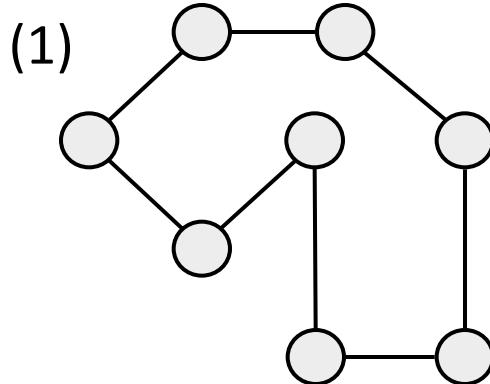
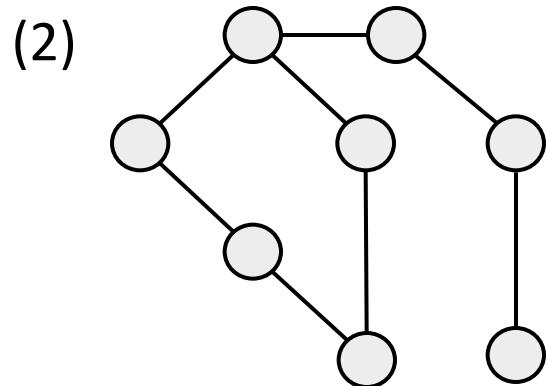
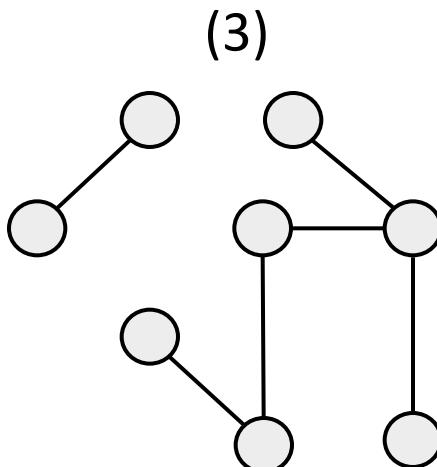
Spanning trees

- A **spanning tree** of a graph is a set of edges that connects all vertices in the graph with no cycles.
 - What is a spanning tree for the graph below?



Span tree examples

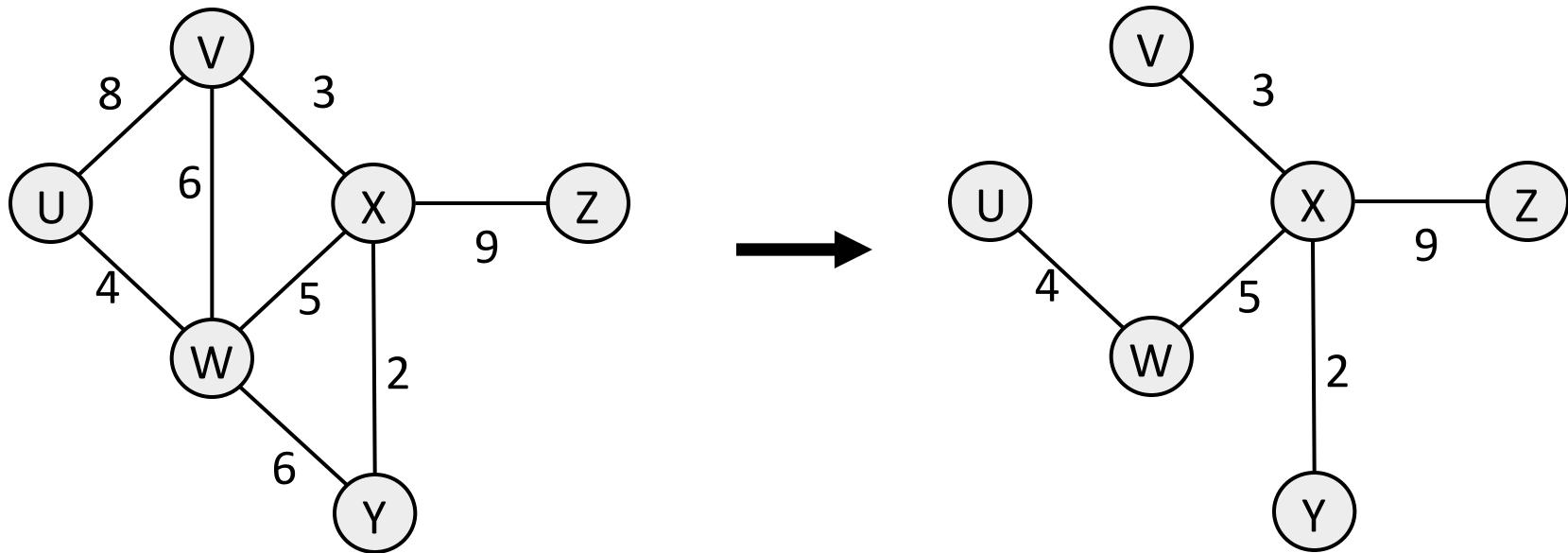
- Q: How many of the graphs shown are legal spanning trees?



- A. none
- B. one
- C. two
- D. all three

Minimum spanning tree

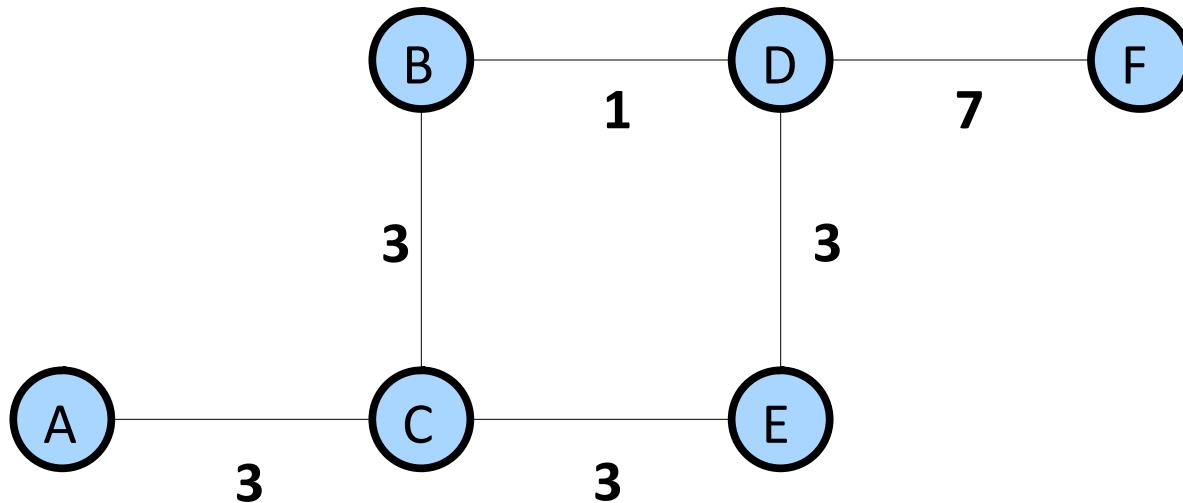
- **minimum spanning tree (MST):** A spanning tree that has the lowest combined edge weight (cost).



MST examples

- Q: How many minimum spanning trees does this graph have?

- A. 0-1
- B. 2-3
- C. 4-5
- D. 6-7
- E. > 7



(question courtesy Cynthia Lee)

Kruskal's algorithm

- **Kruskal's algorithm:** Finds a MST in a given graph.

function **kruskal**(graph):

Start with an empty structure for the MST

Place all edges into a **priority queue**
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

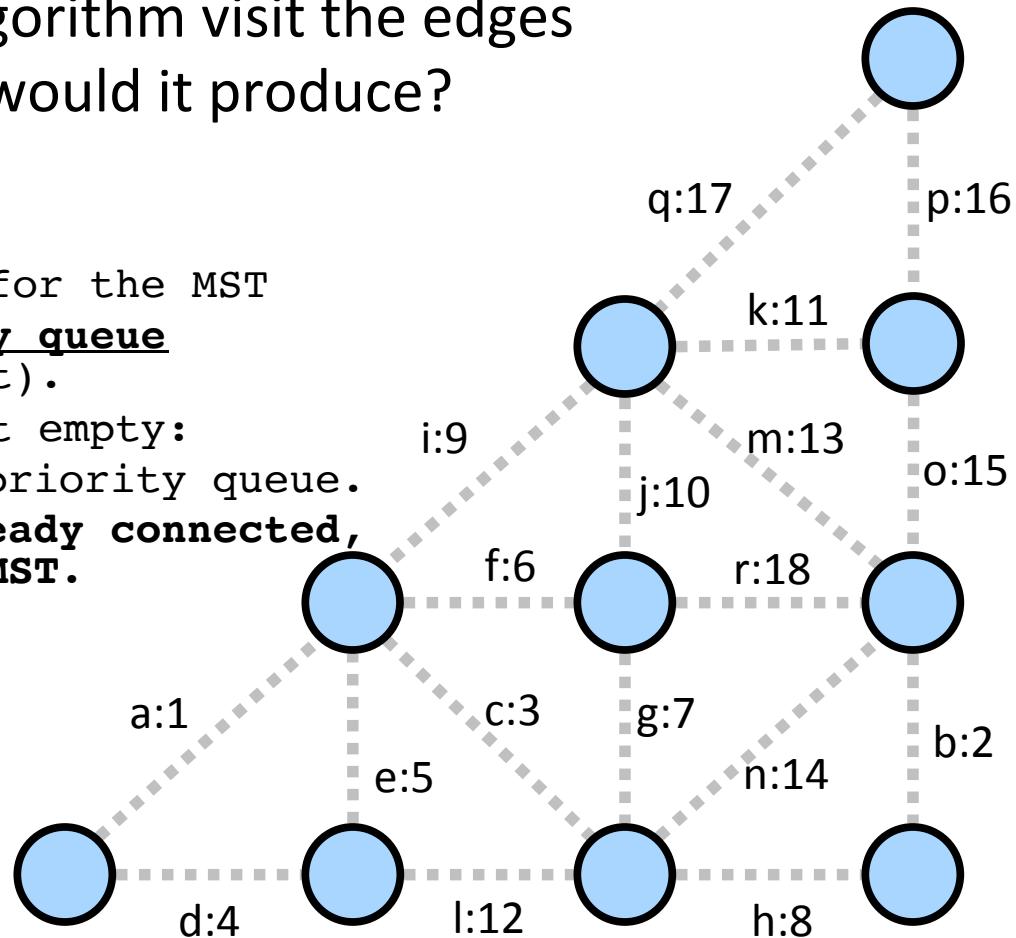
Otherwise, skip the edge.

- **Runtime:** $O(E \log E) = O(E \log V)$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

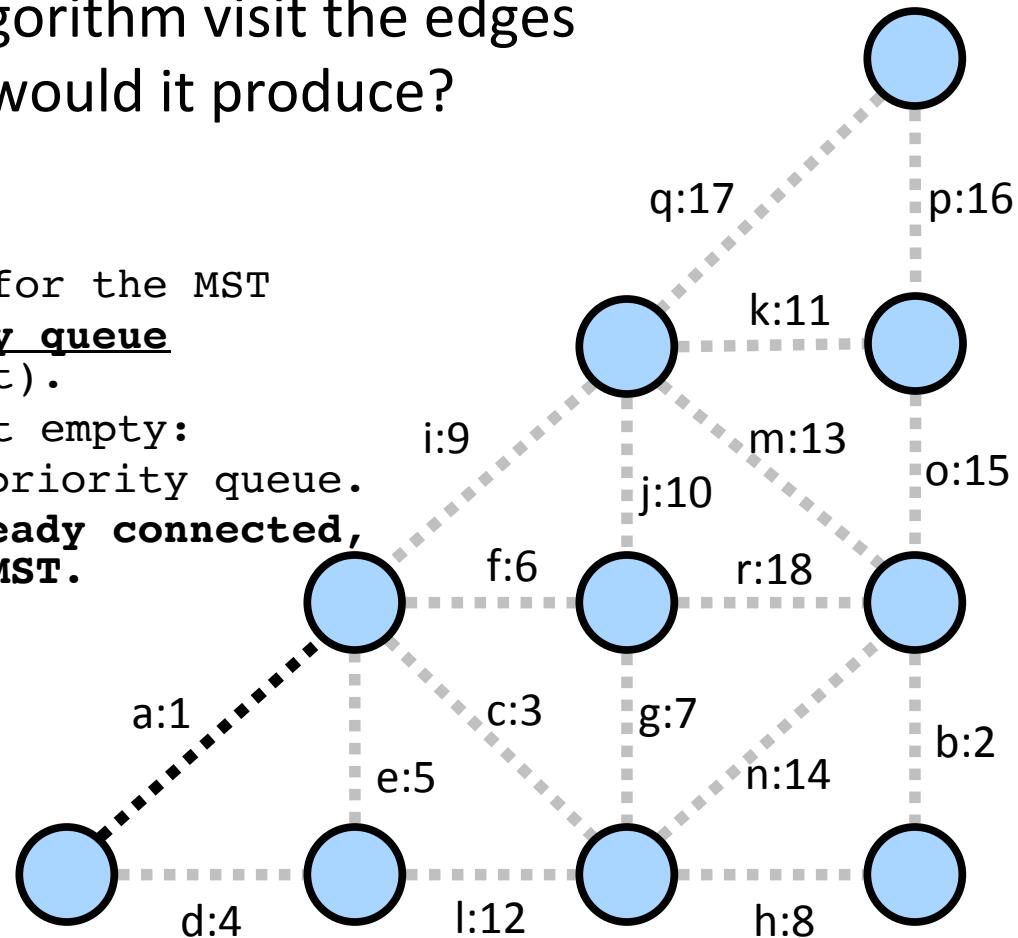


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

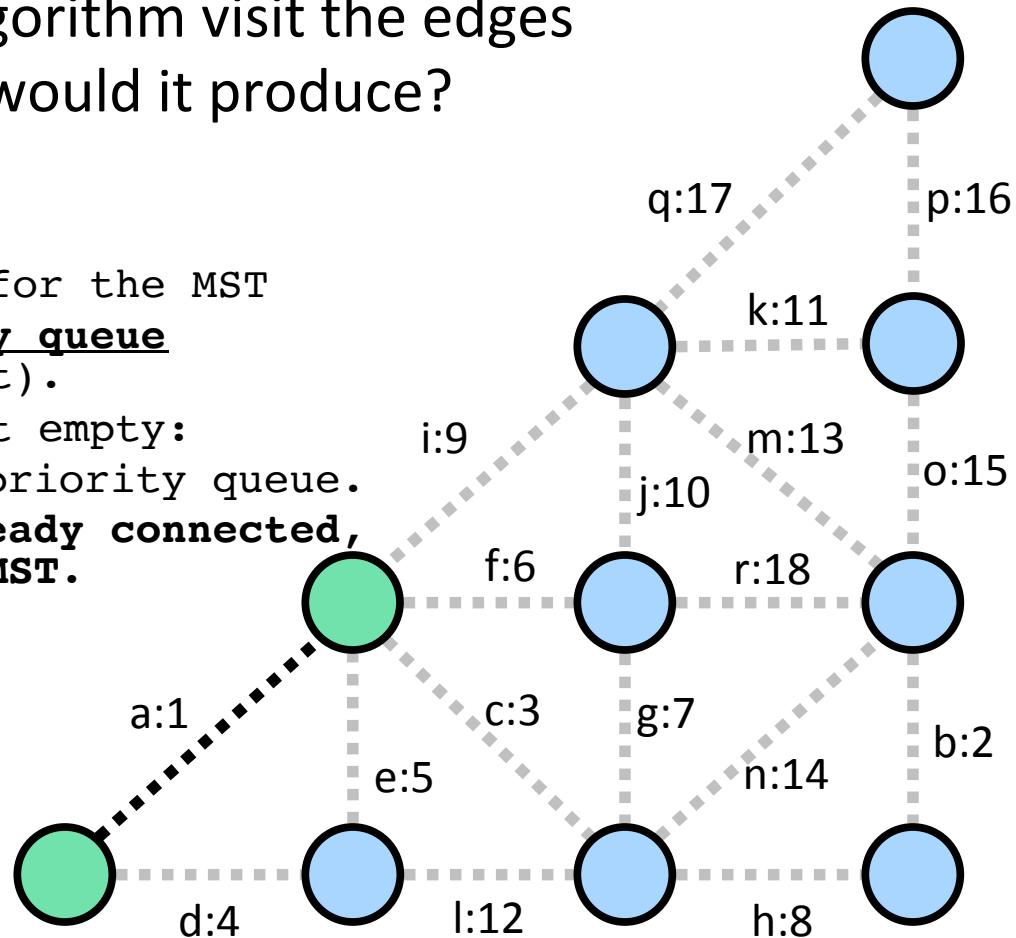


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

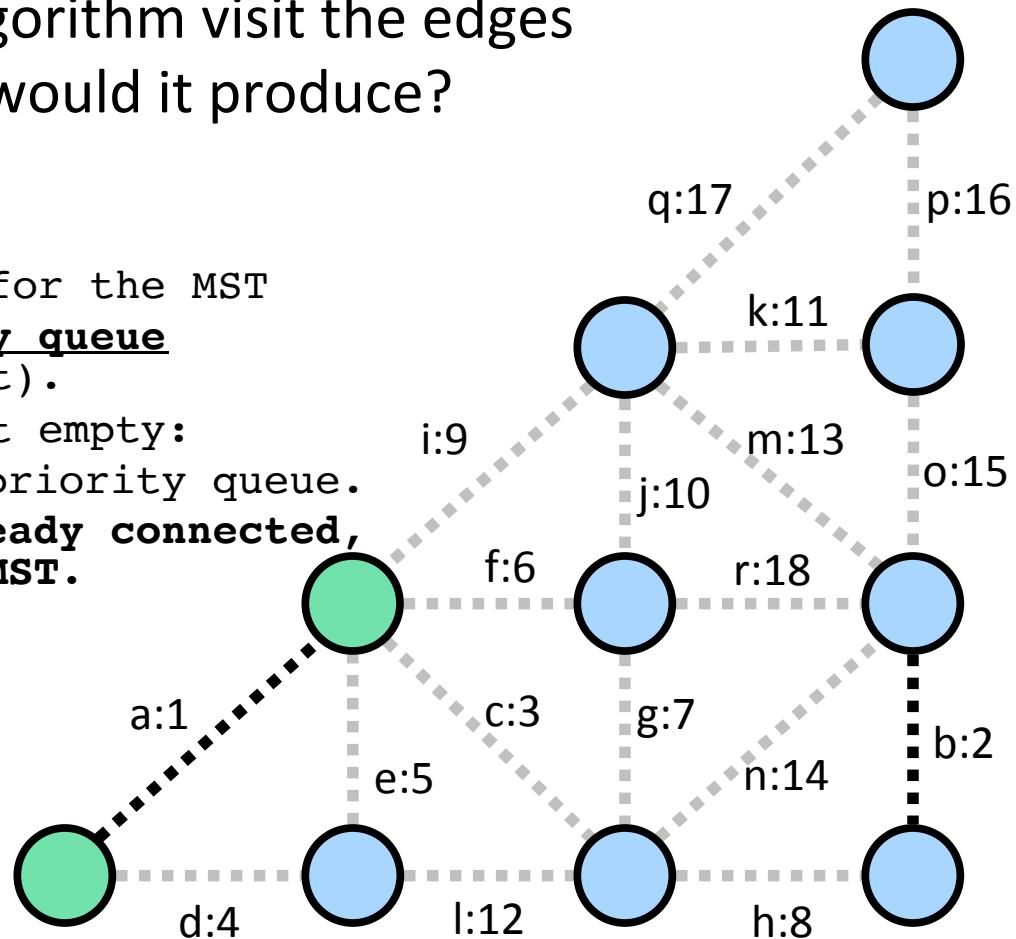


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge  $e$  from the priority queue.  
        If  $e$ 's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

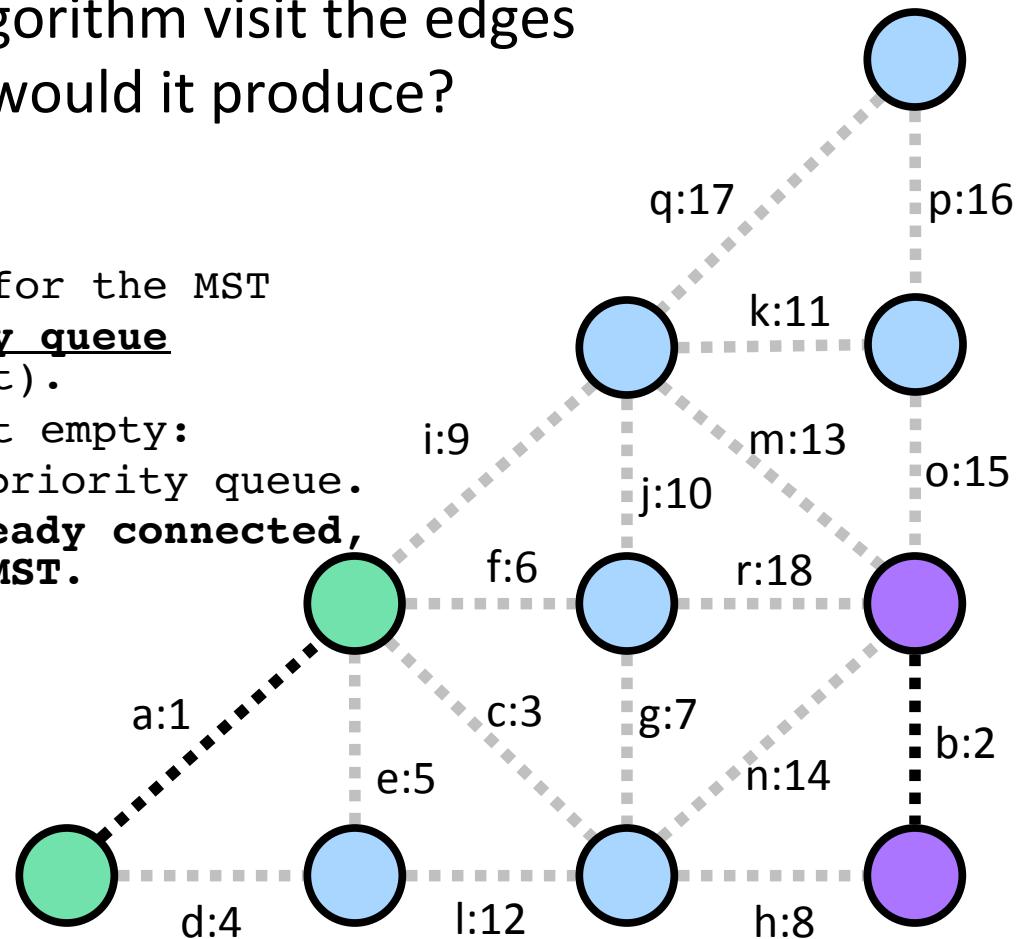


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal**(graph):
 Start with an empty structure for the MST
 Place all edges into a **priority queue**
 based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue
 If e 's endpoints aren't already connected
 add that edge into the MST.
 Otherwise, skip the edge.



- pq = {a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

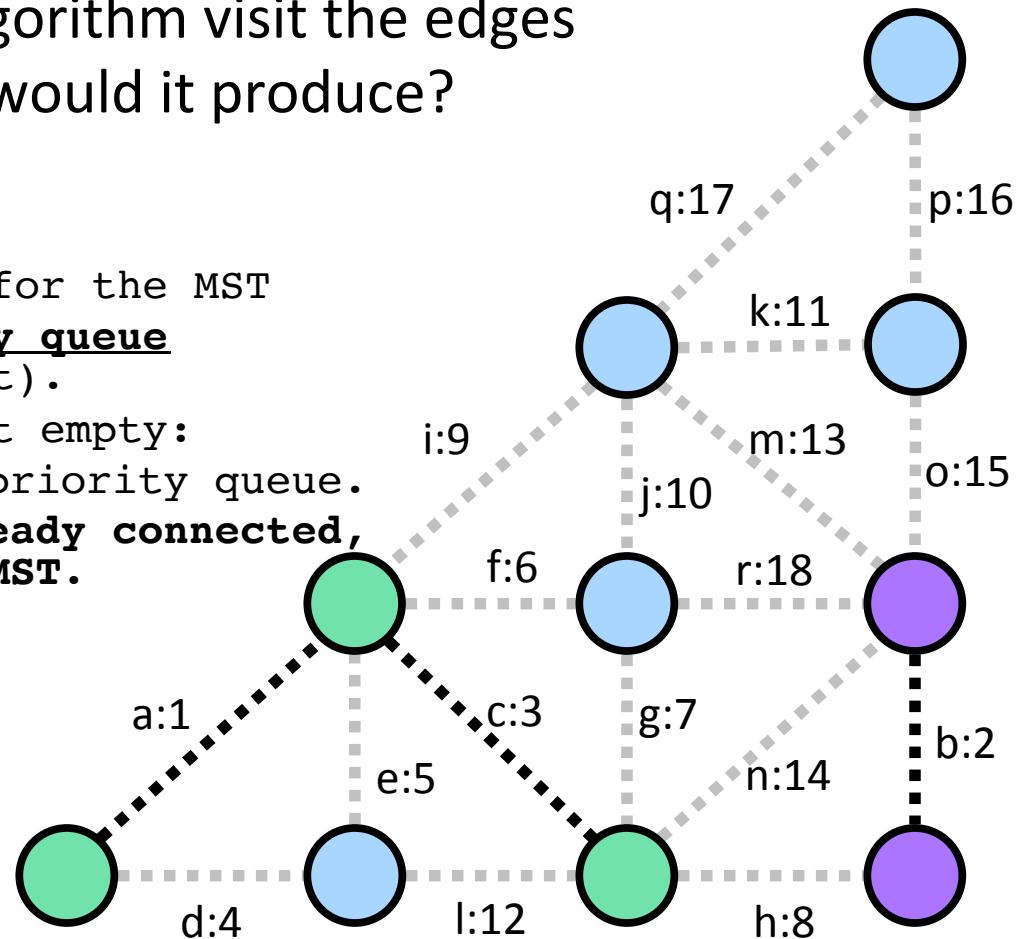
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

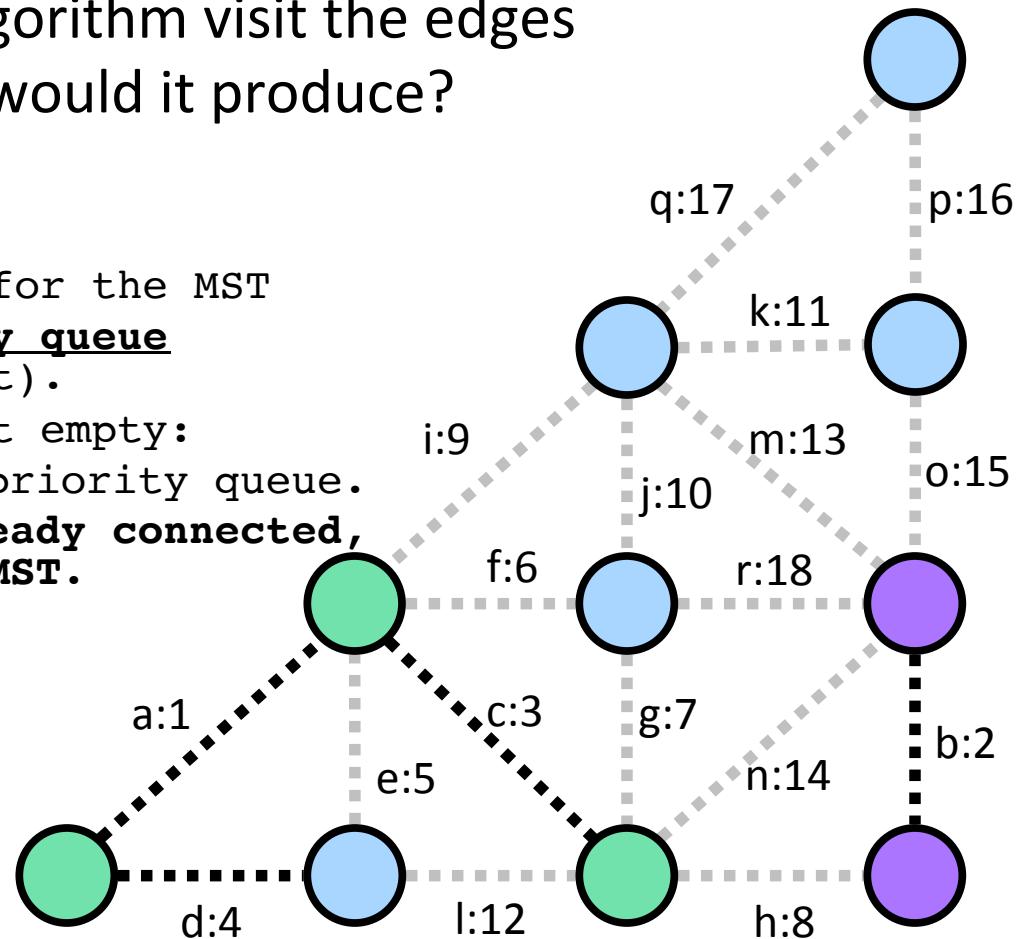
Place all edges into a **priority queue**
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.

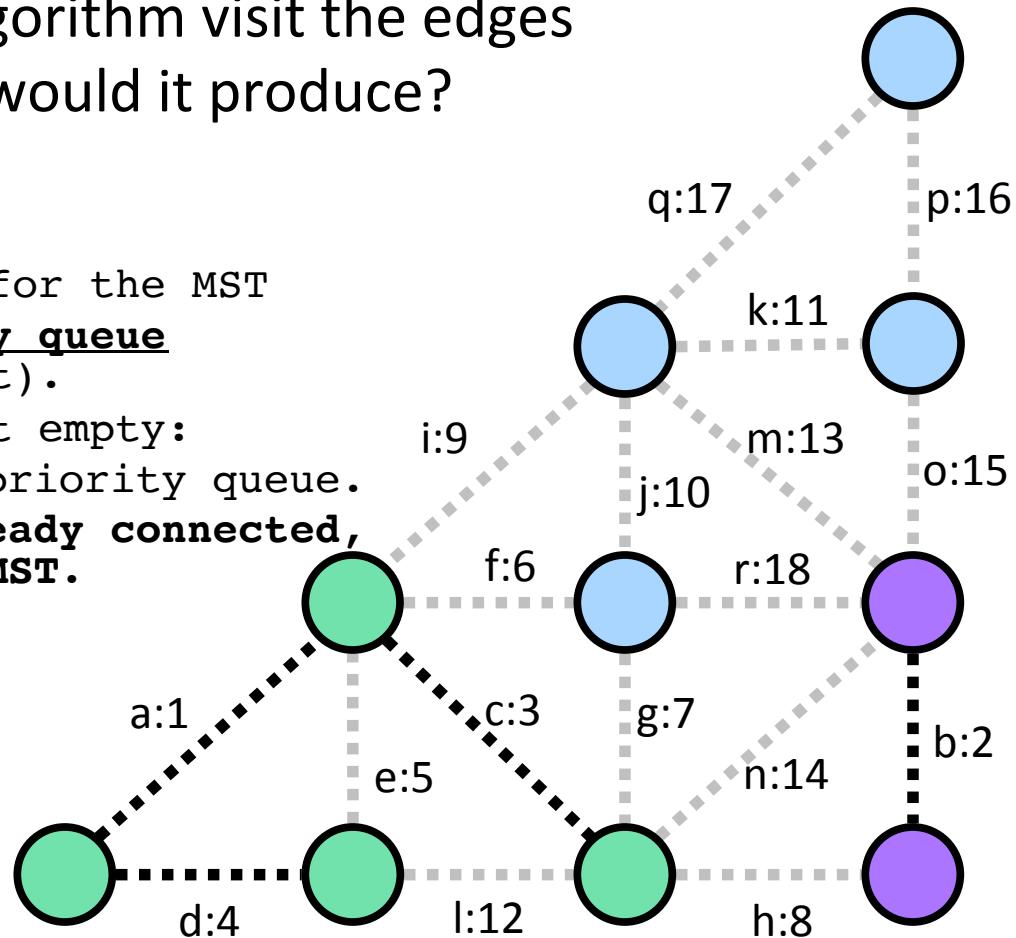


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge  $e$  from the priority queue.  
        If  $e$ 's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

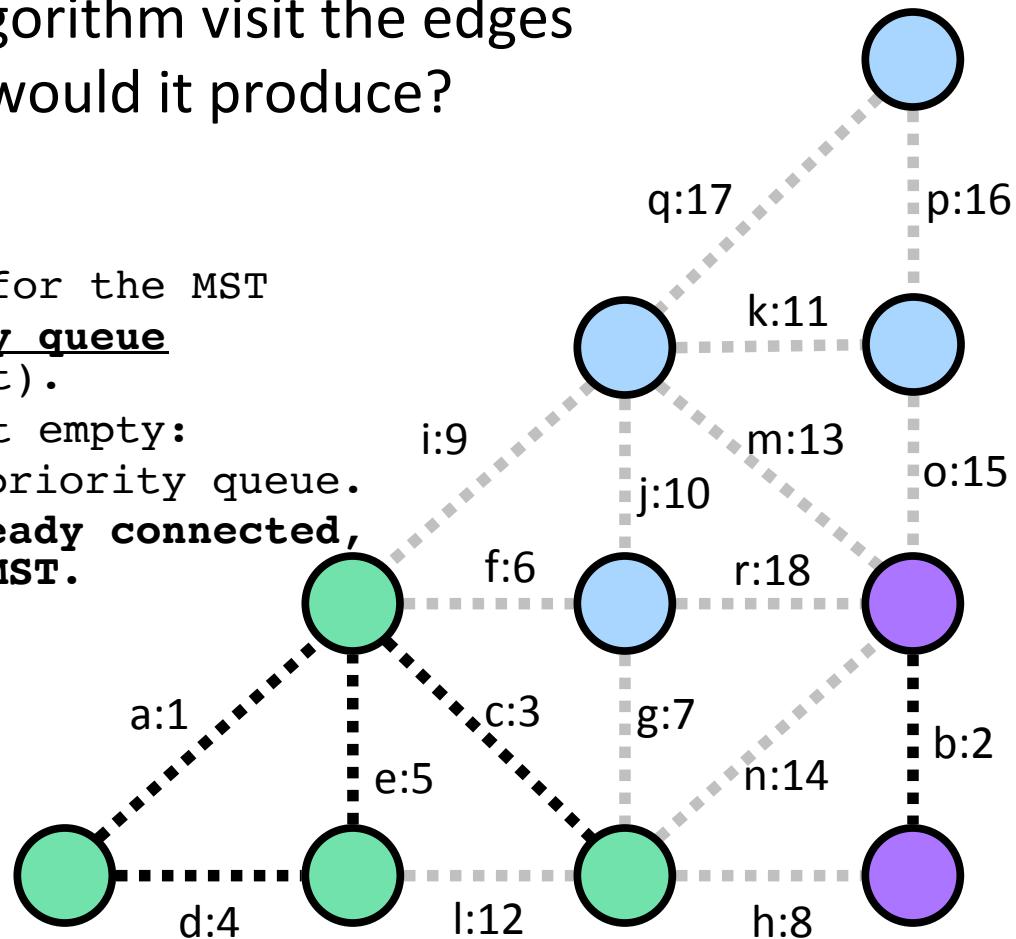


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge  $e$  from the priority queue.  
        If  $e$ 's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

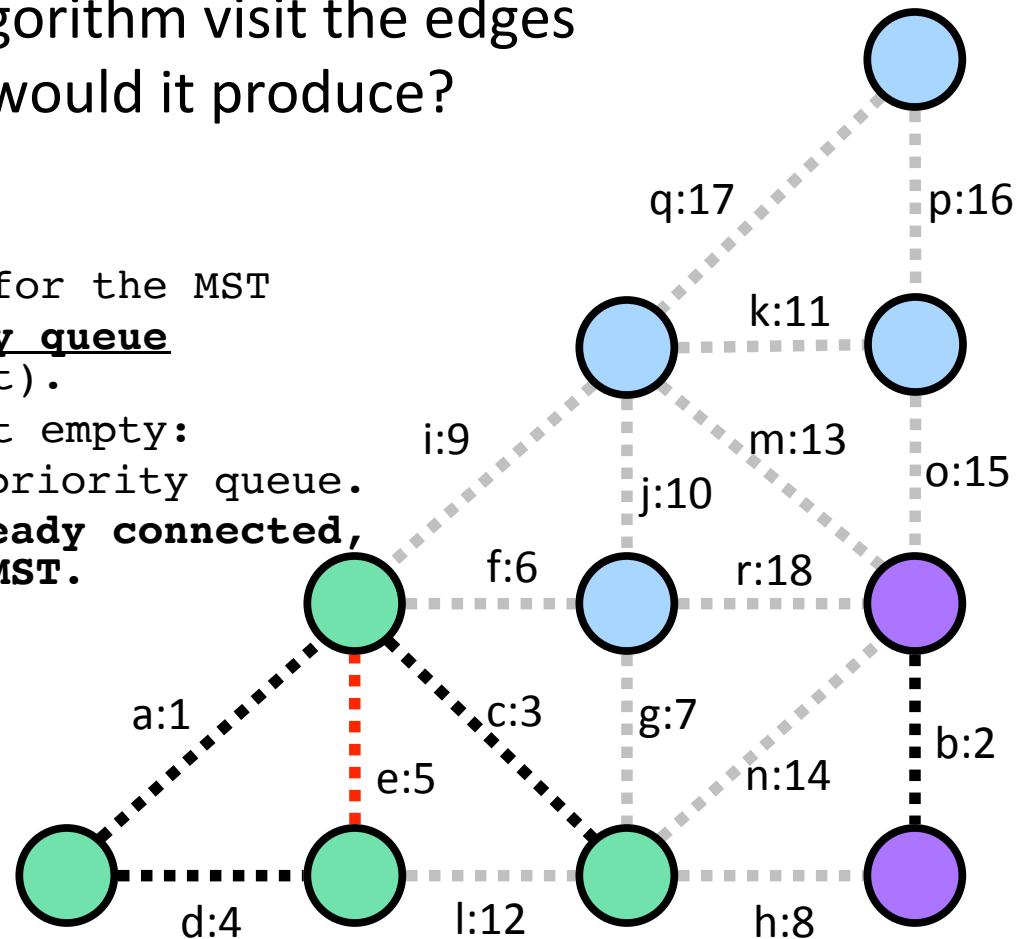
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.

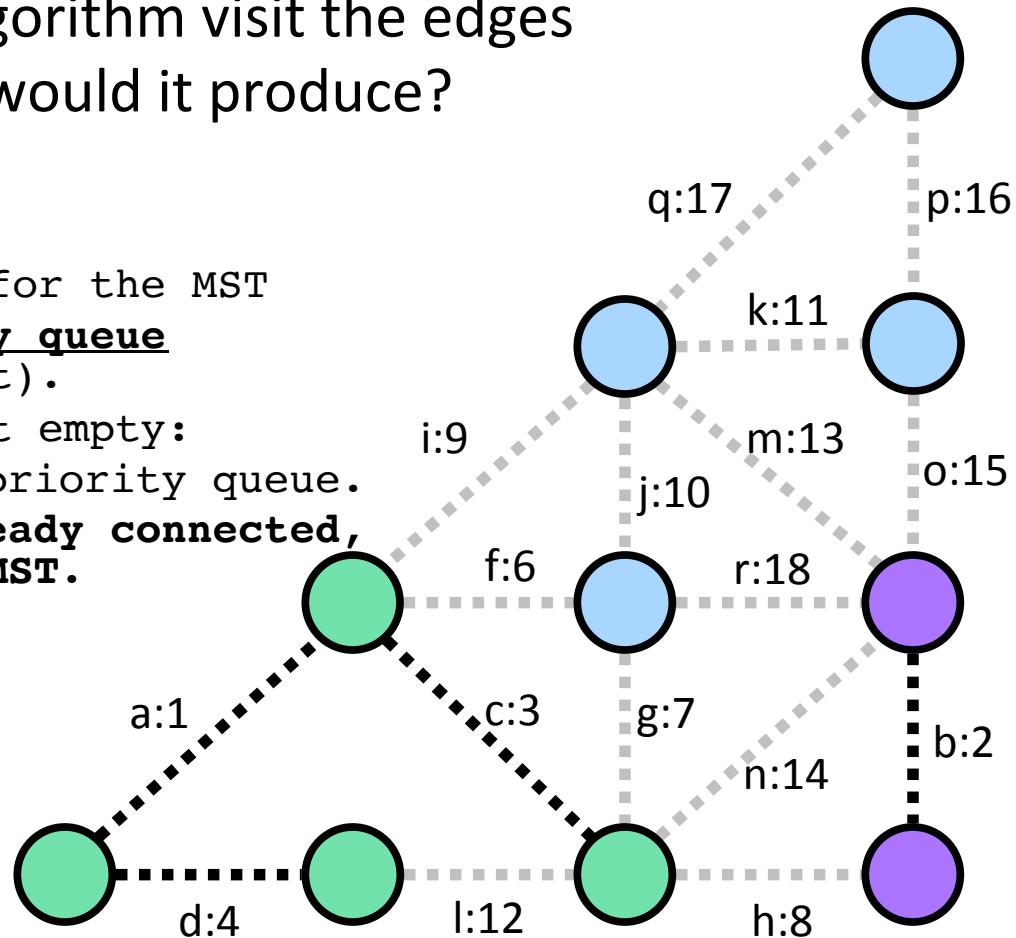


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

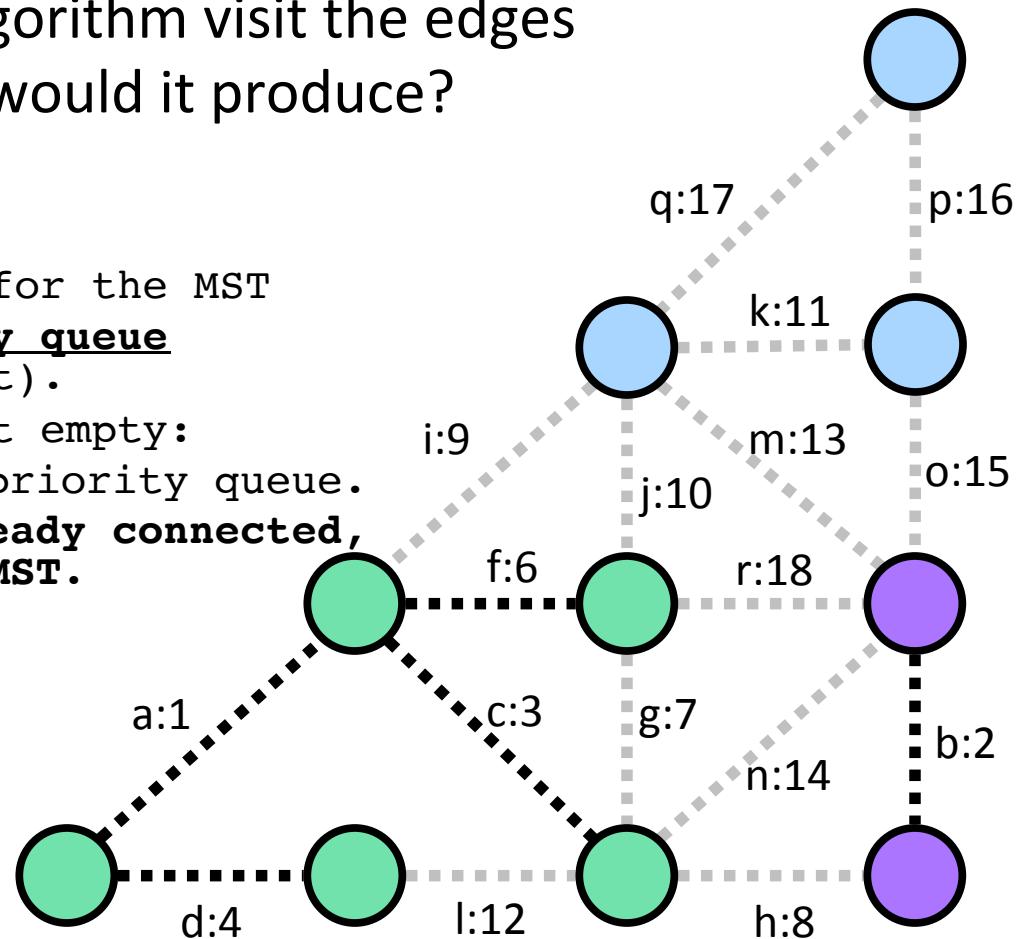
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.

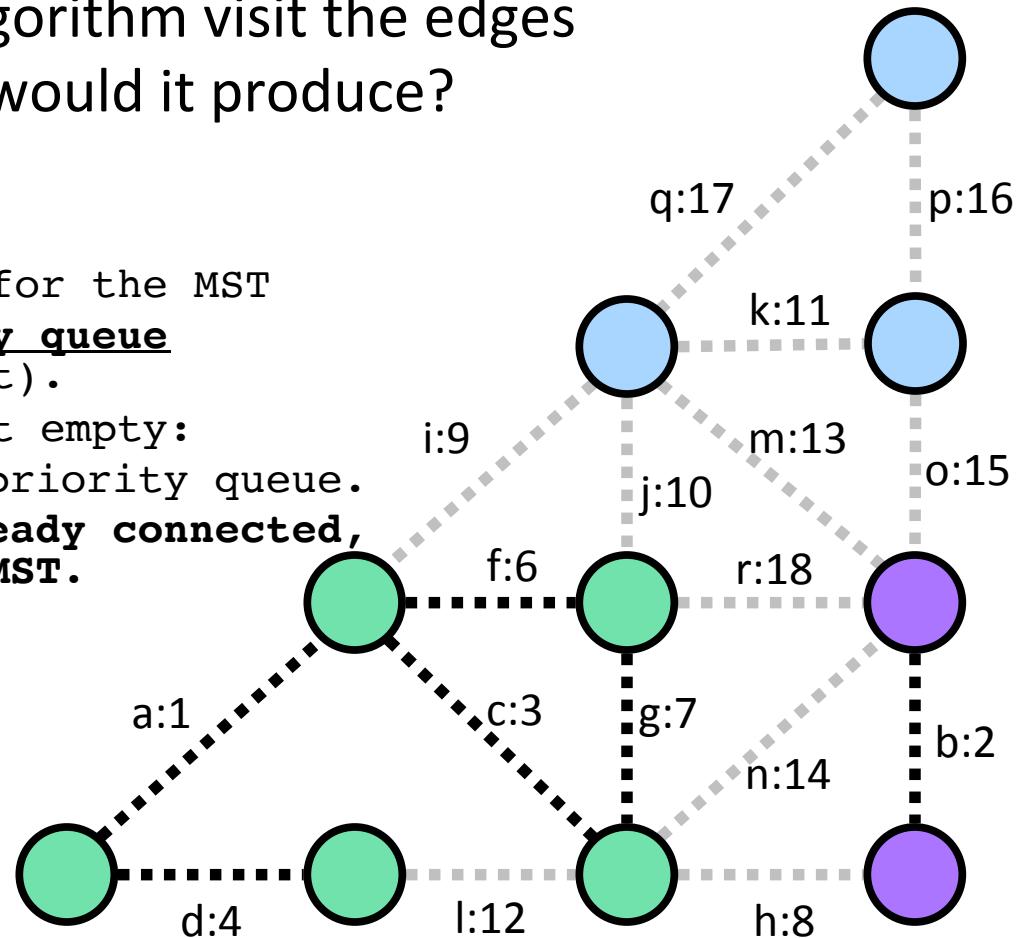


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

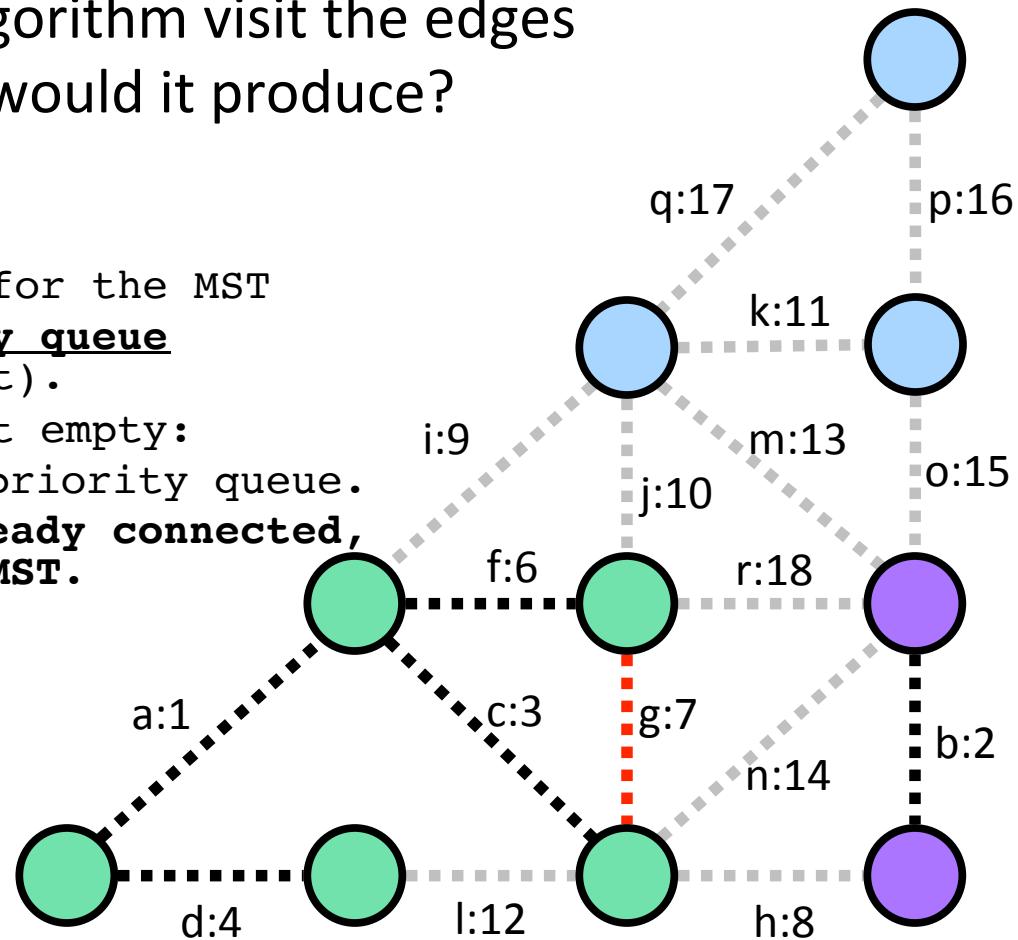


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
        Otherwise, skip the edge.
```

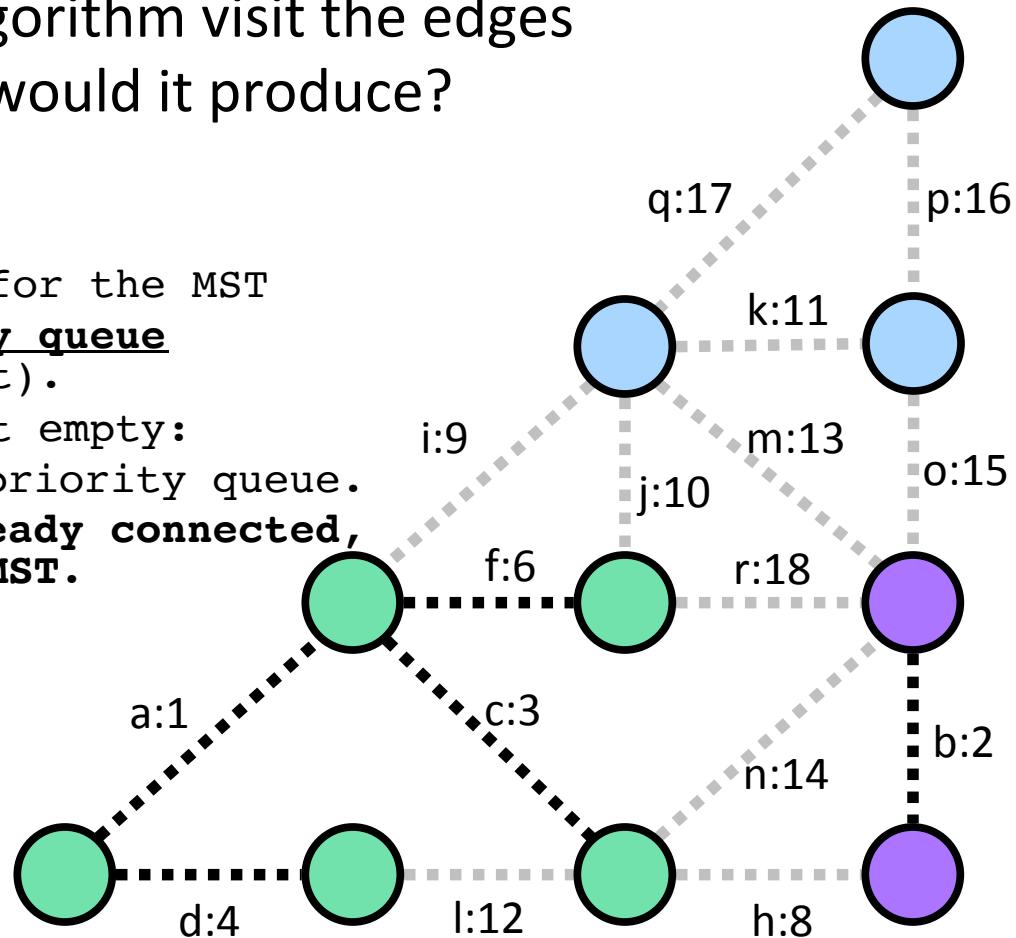


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

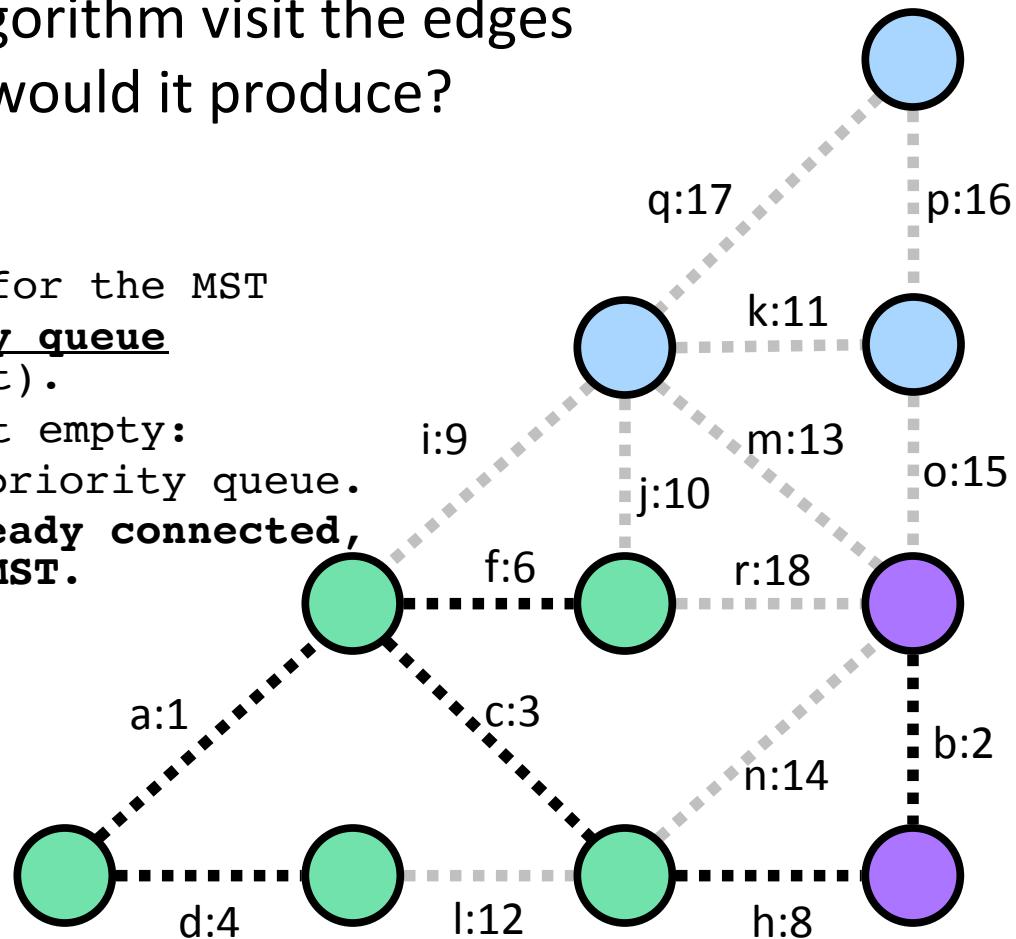


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

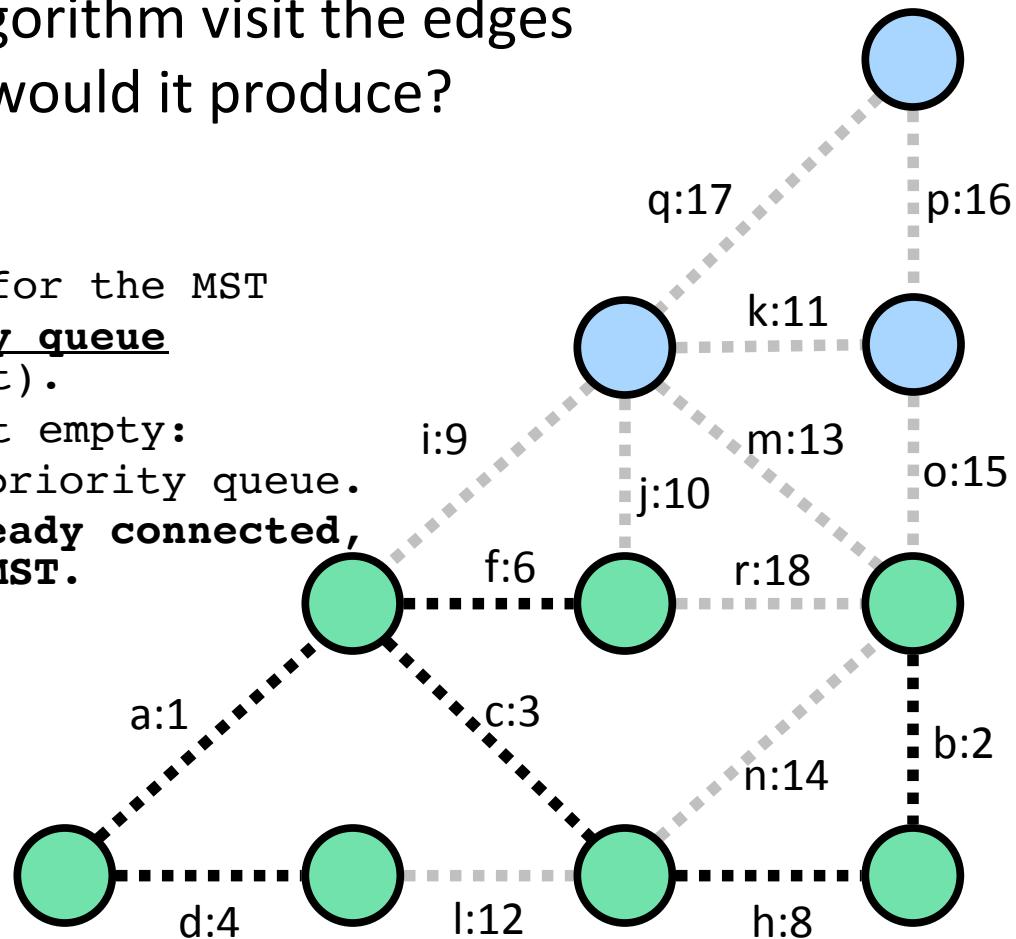


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

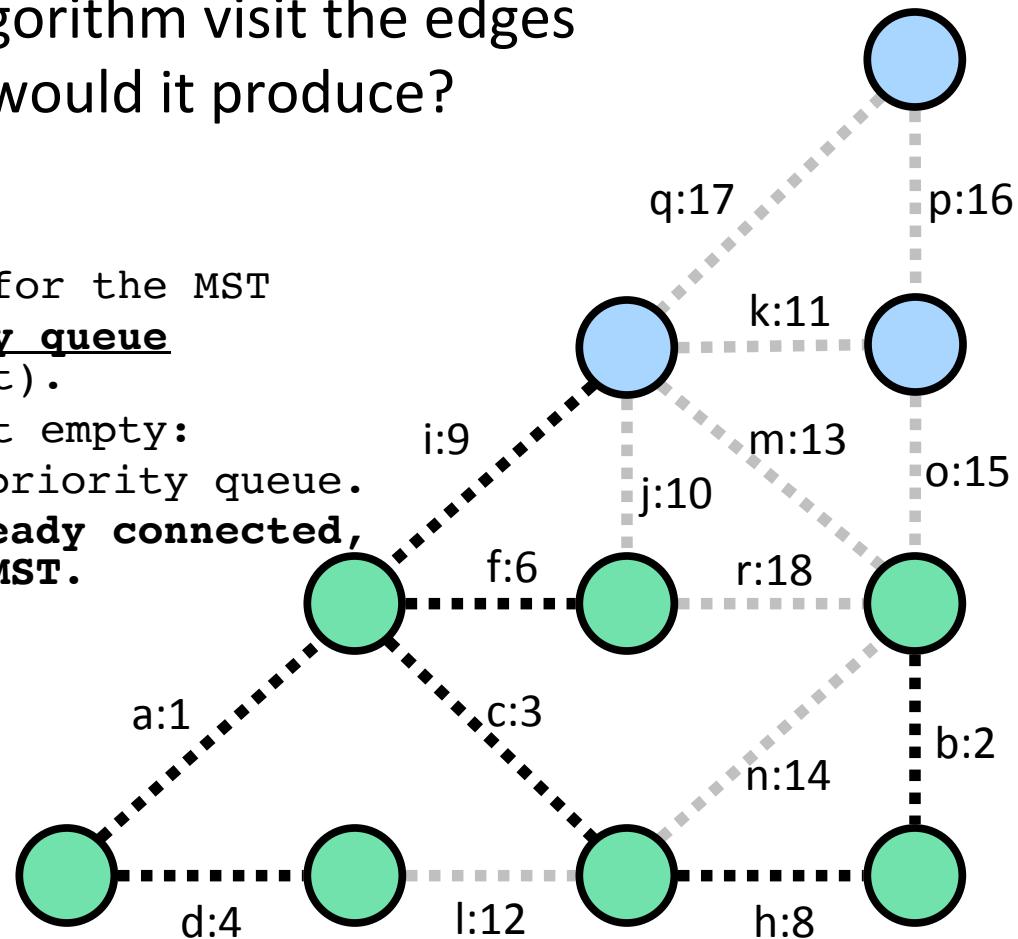
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.



- $\text{pq} = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

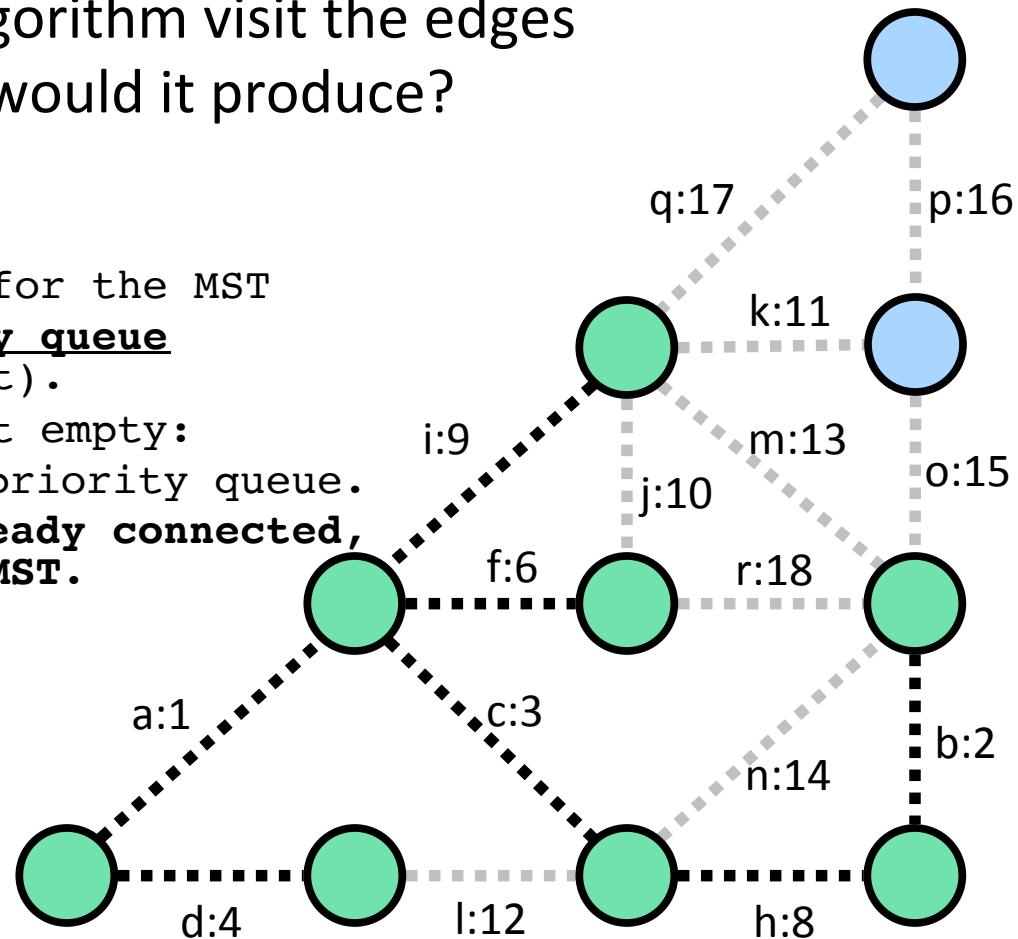
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.

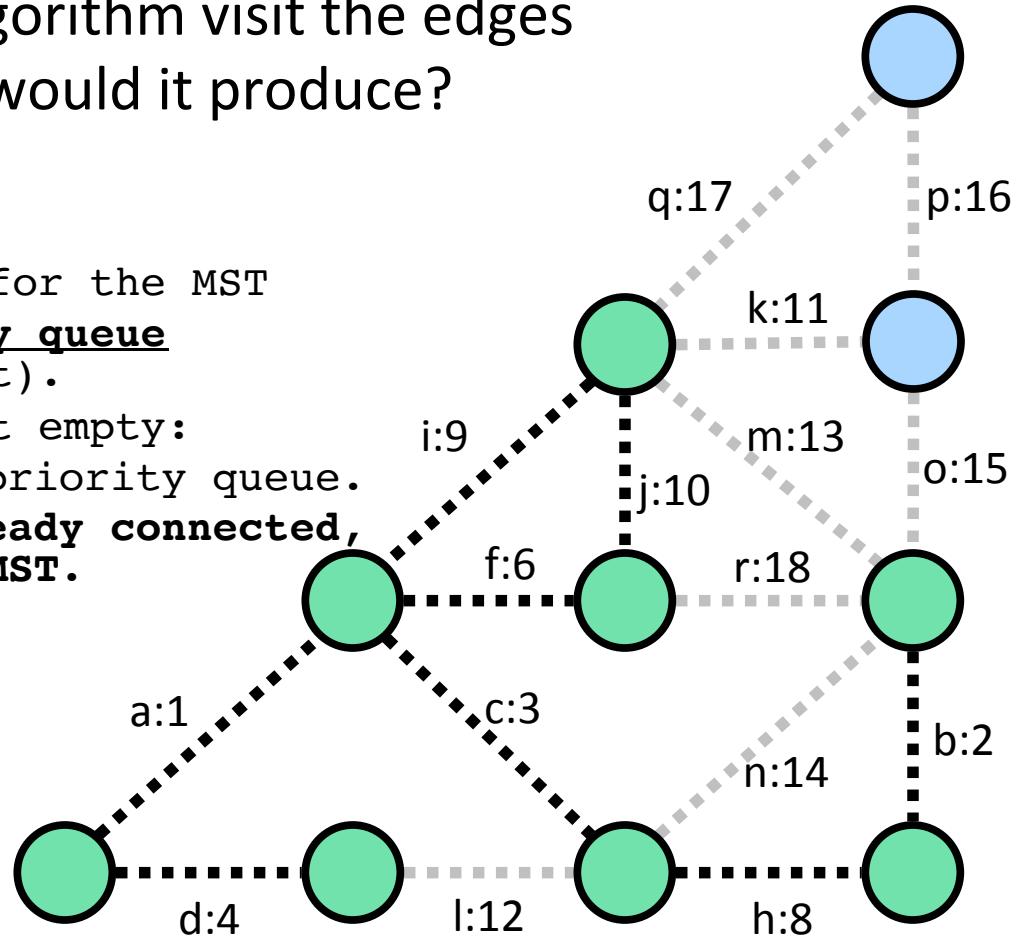


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

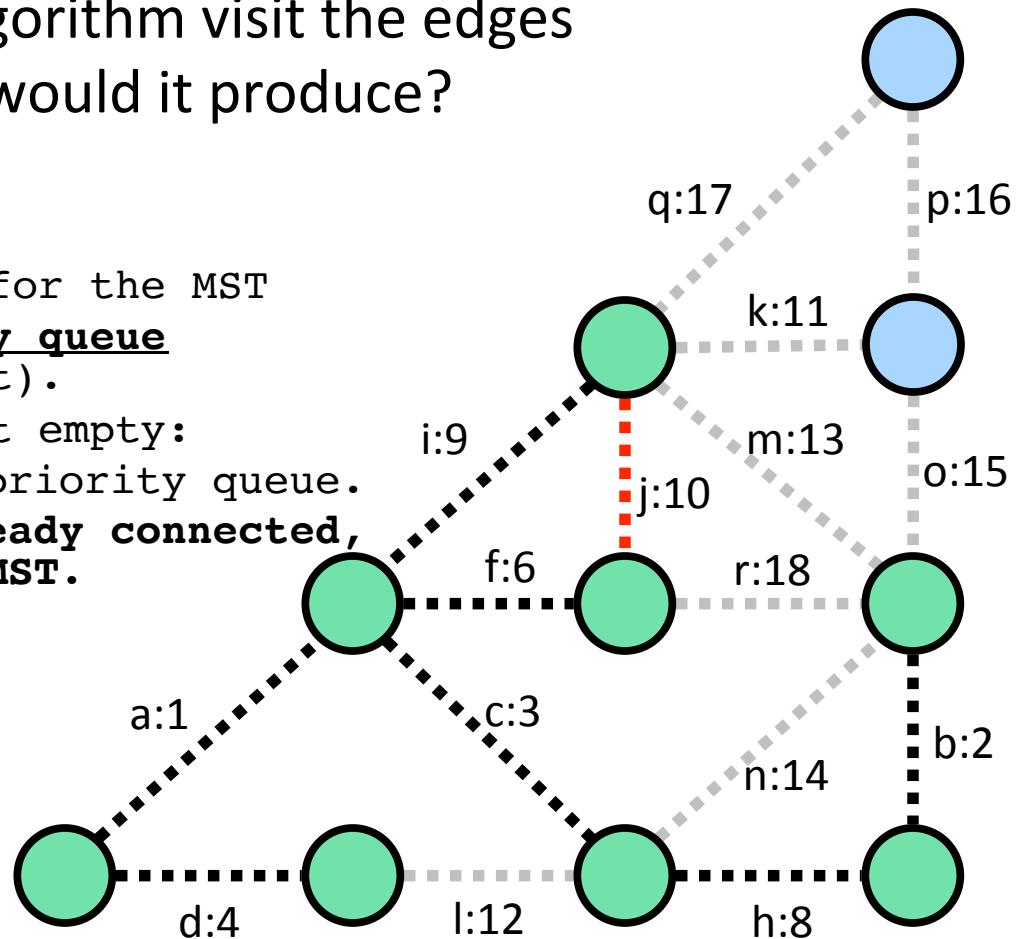


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

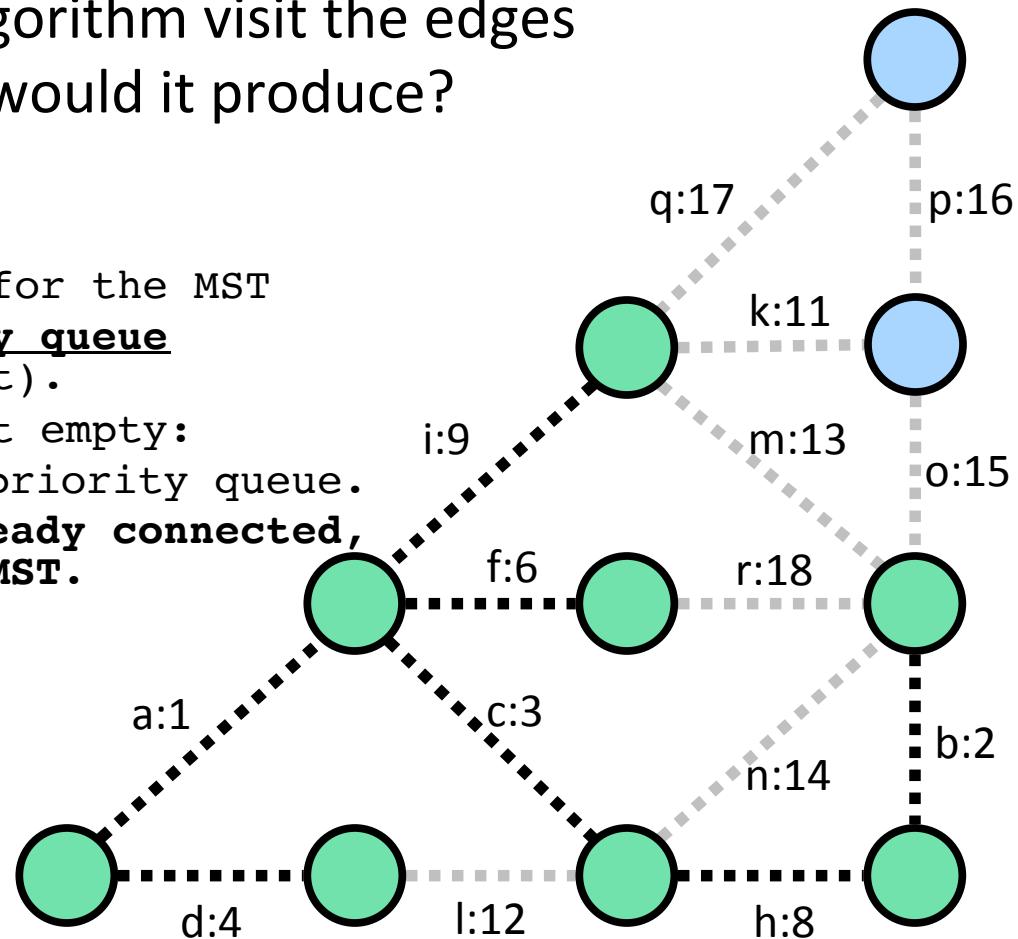


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue  
        If e's endpoints aren't already connected  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- pq = {a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

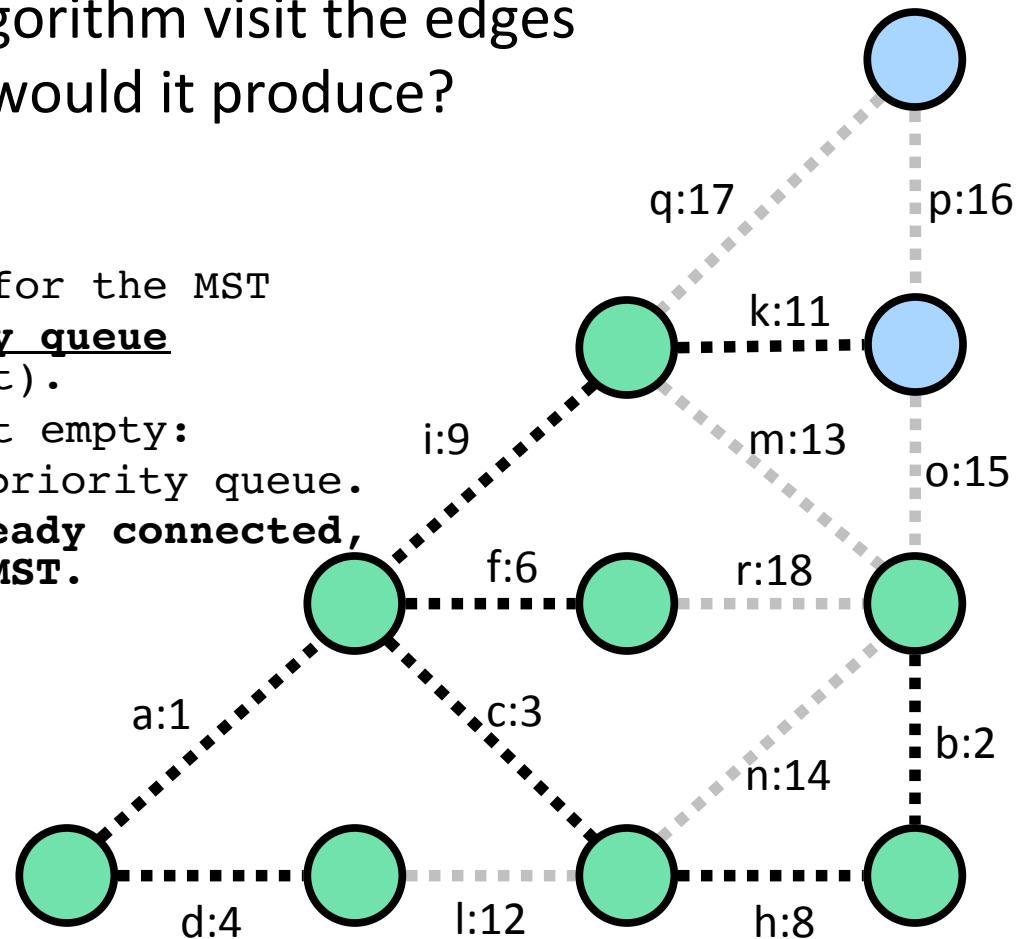
Place all edges into a **priority queue**
based on their weight (cost).

While the priority queue is not empty:

 Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
 add that edge into the MST.**

 Otherwise, skip the edge.

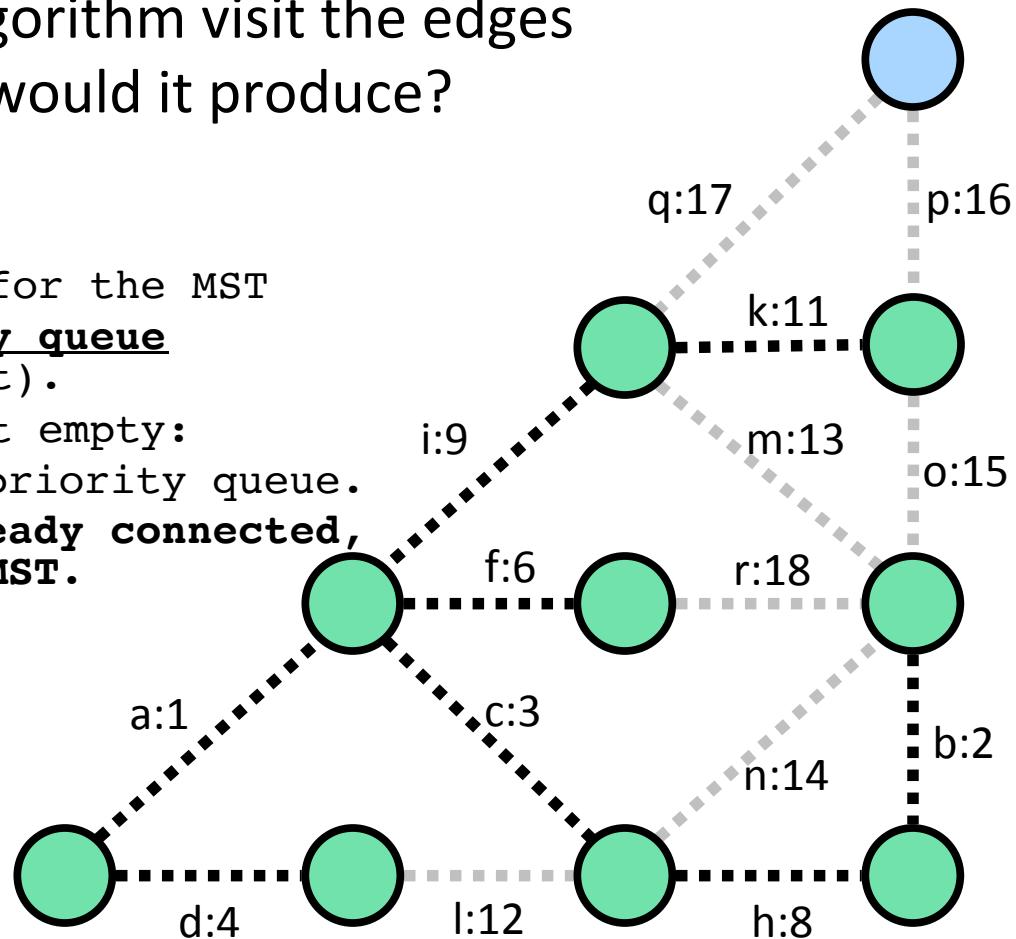


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

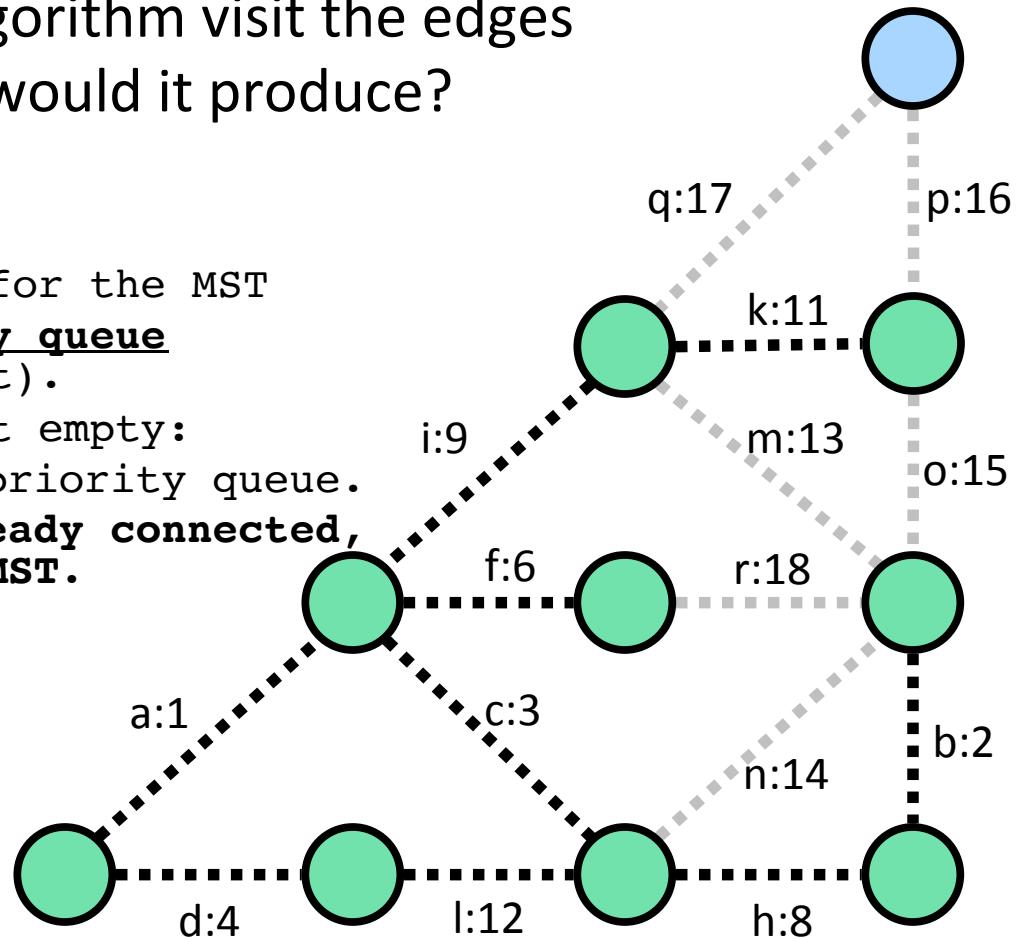


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

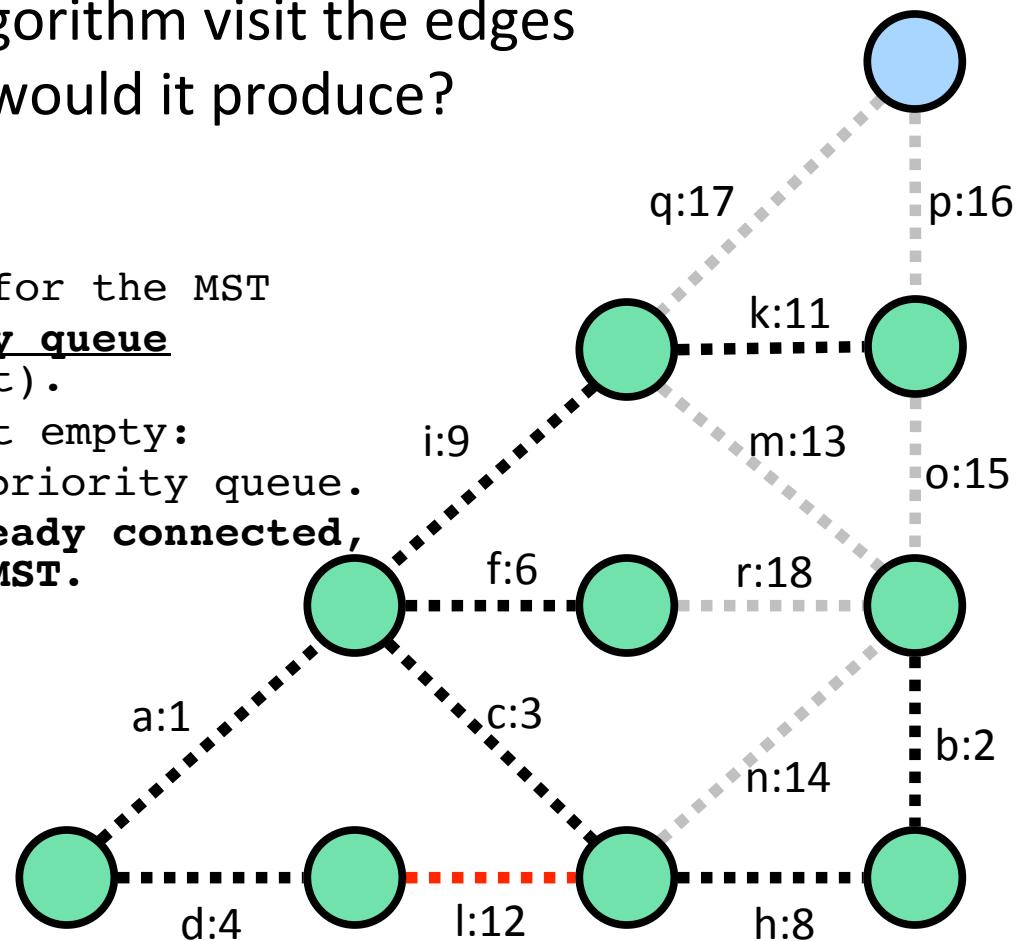
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

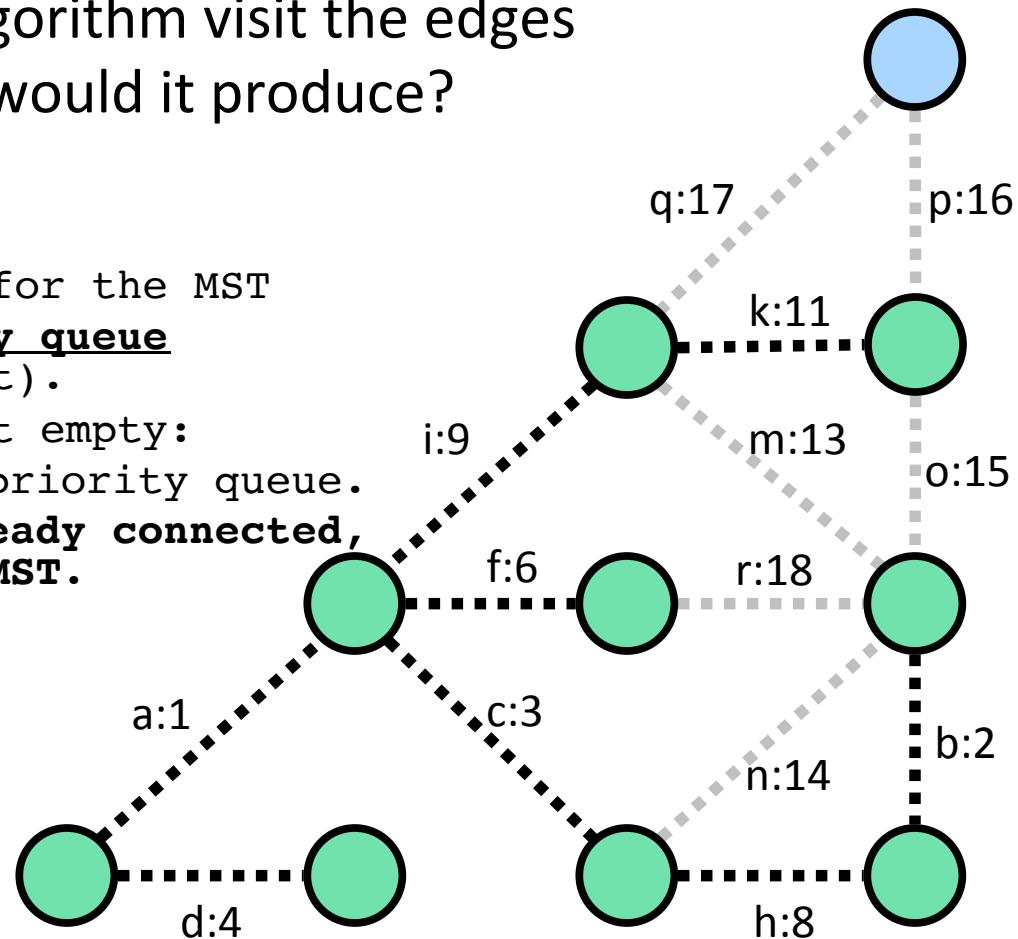
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

 Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
 add that edge into the MST.**

 Otherwise, skip the edge.



- $\text{pq} = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

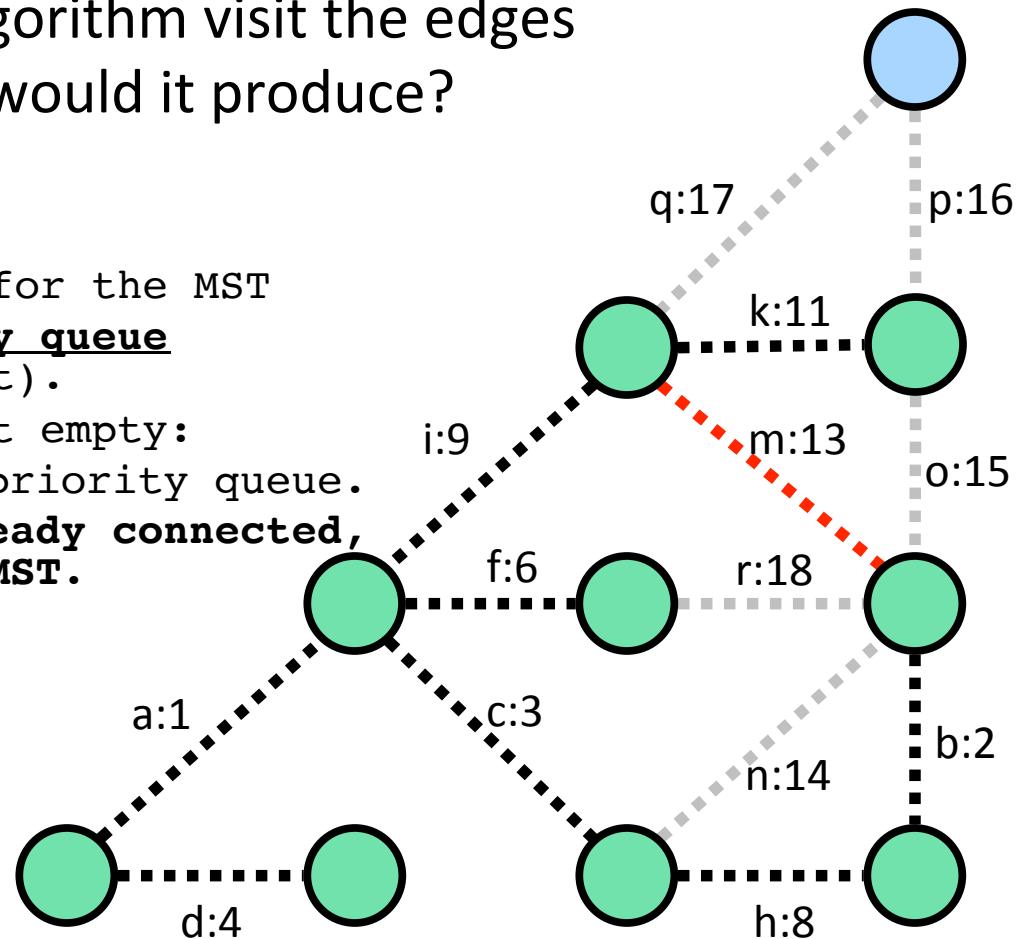
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.

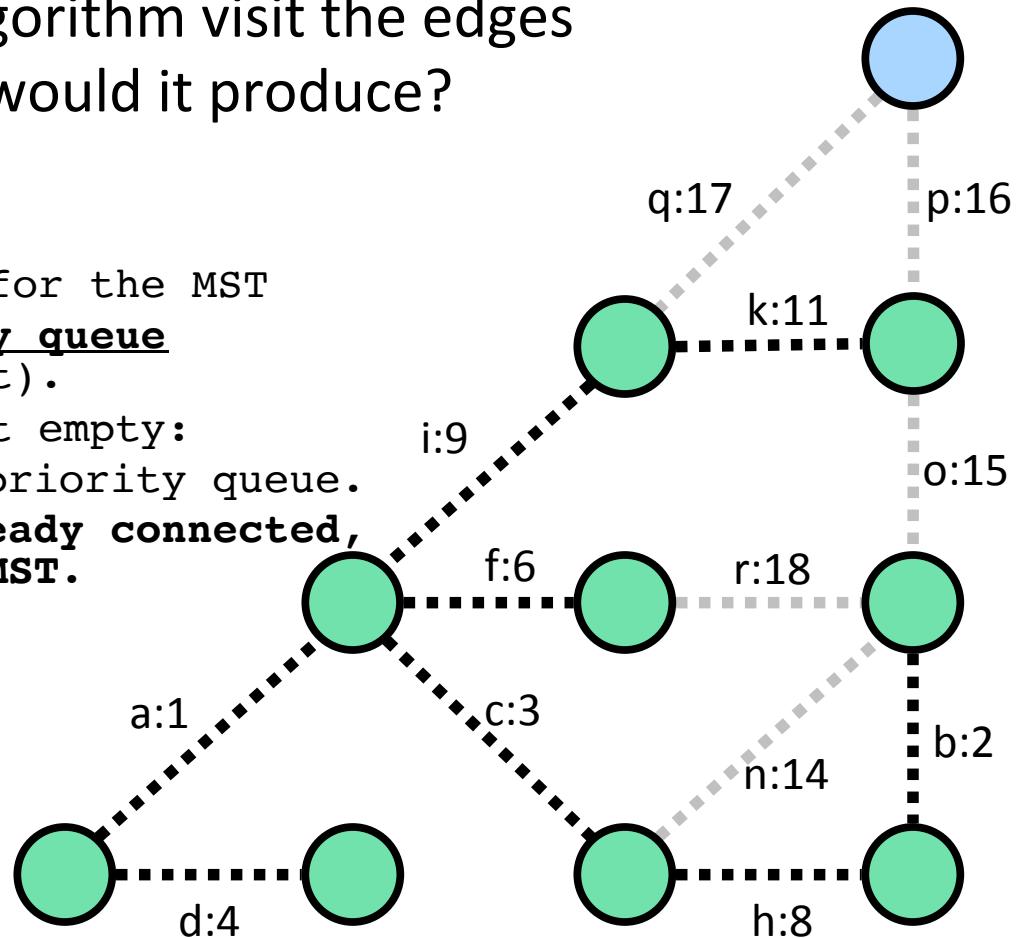


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
        Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

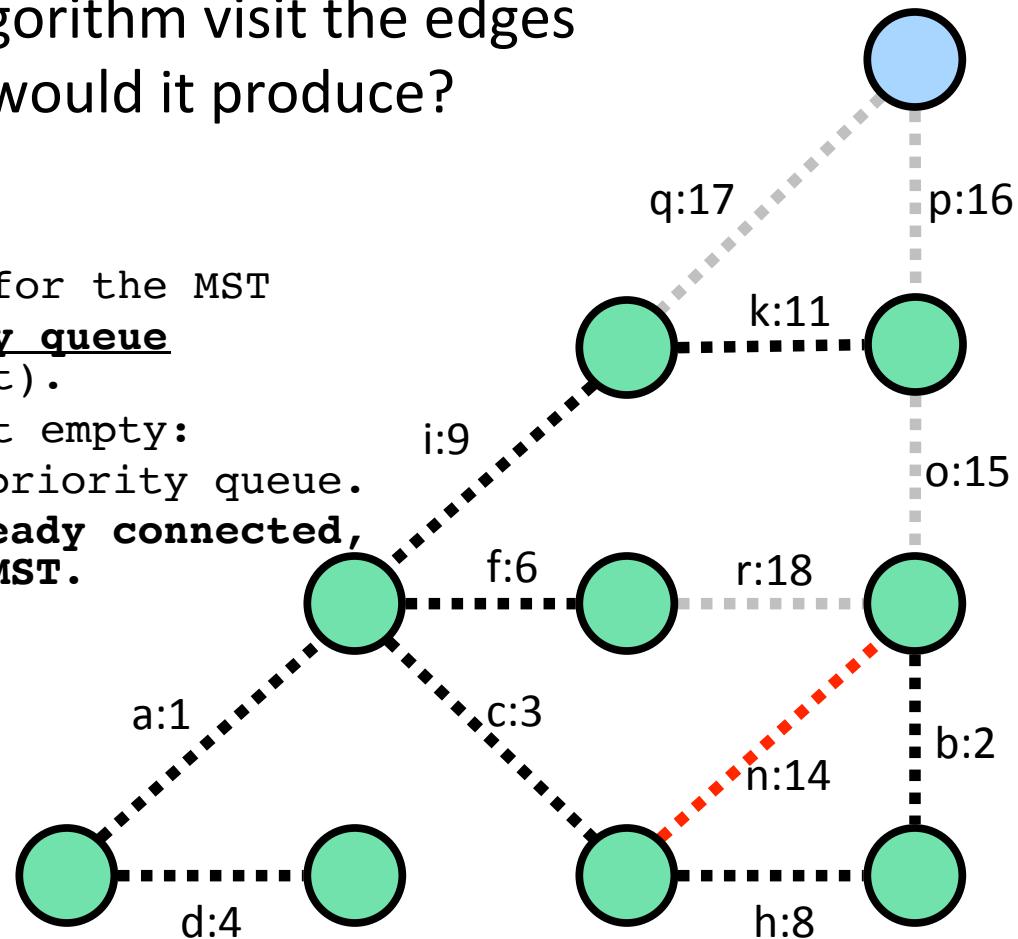
Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
add that edge into the MST.**

Otherwise, skip the edge.

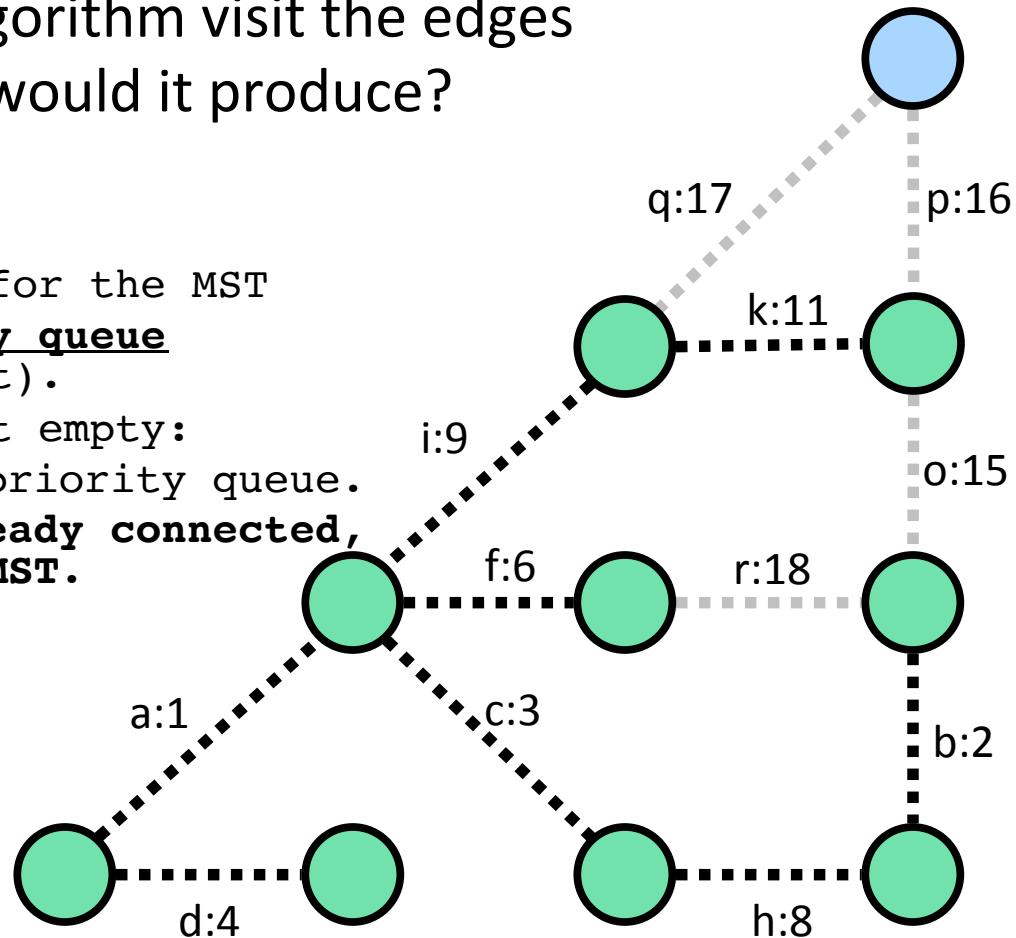


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

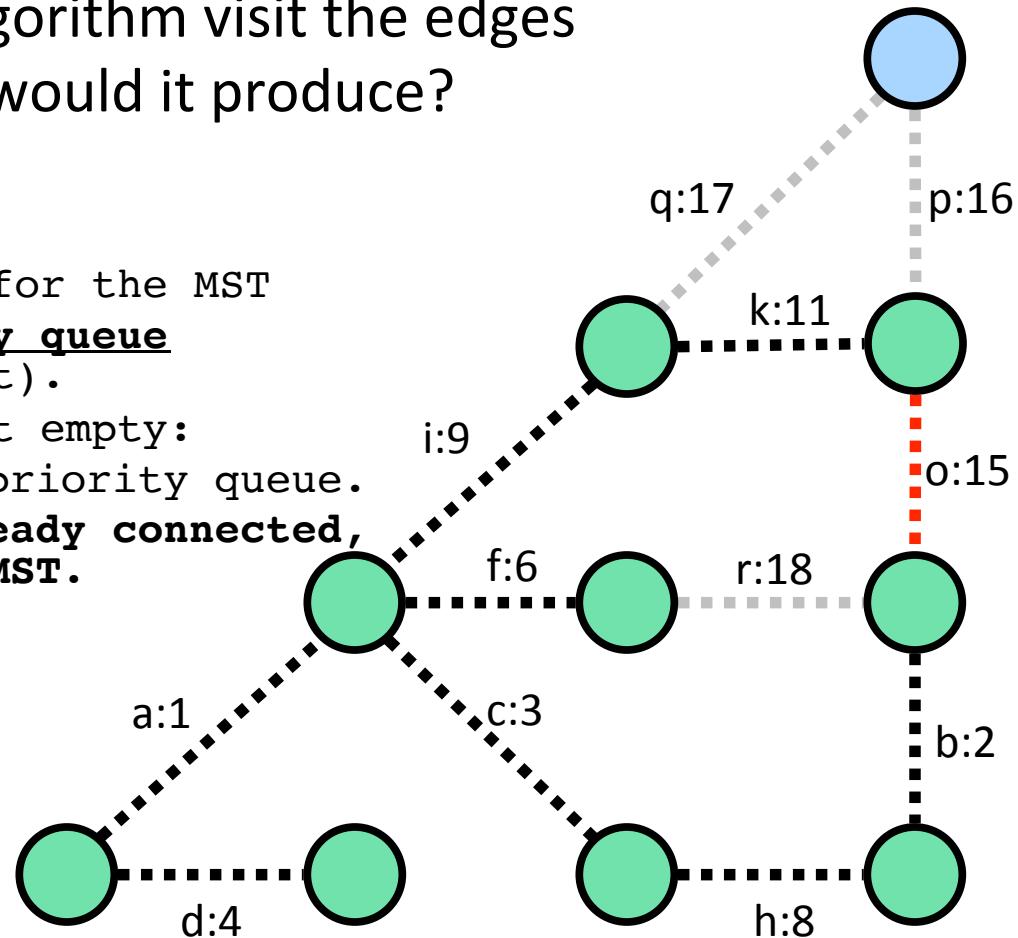


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

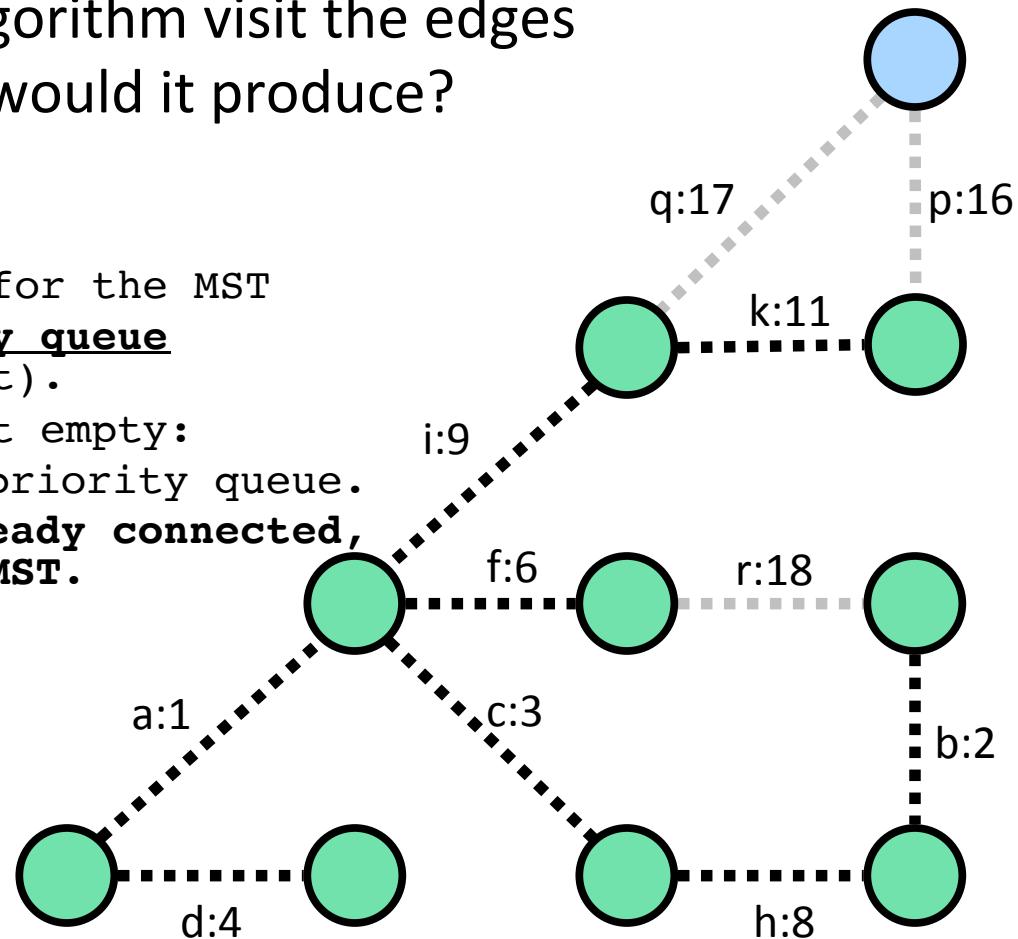


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue  
        If e's endpoints aren't already connected  
            add that edge into the MST.  
    Otherwise, skip the edge.
```



- pq = {a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

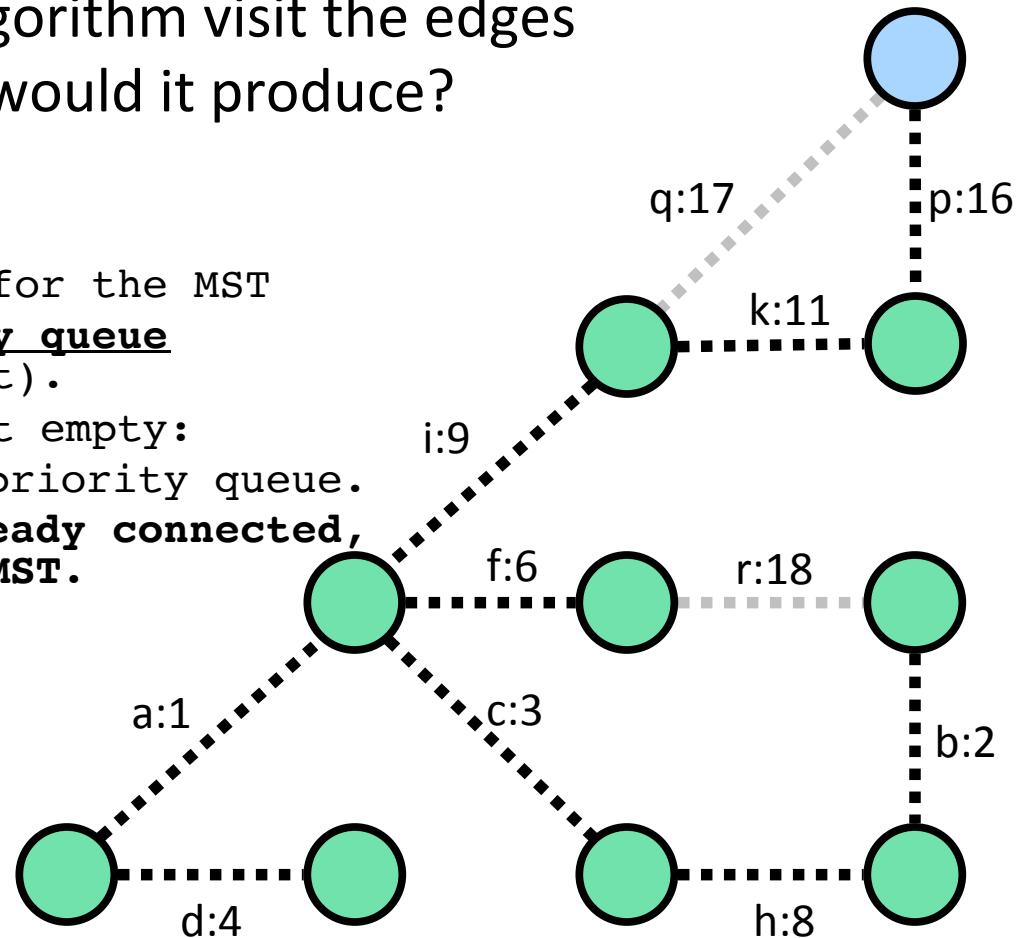
Place all edges into a **priority queue**
based on their weight (cost).

While the priority queue is not empty:

 Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
 add that edge into the MST.**

 Otherwise, skip the edge.



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

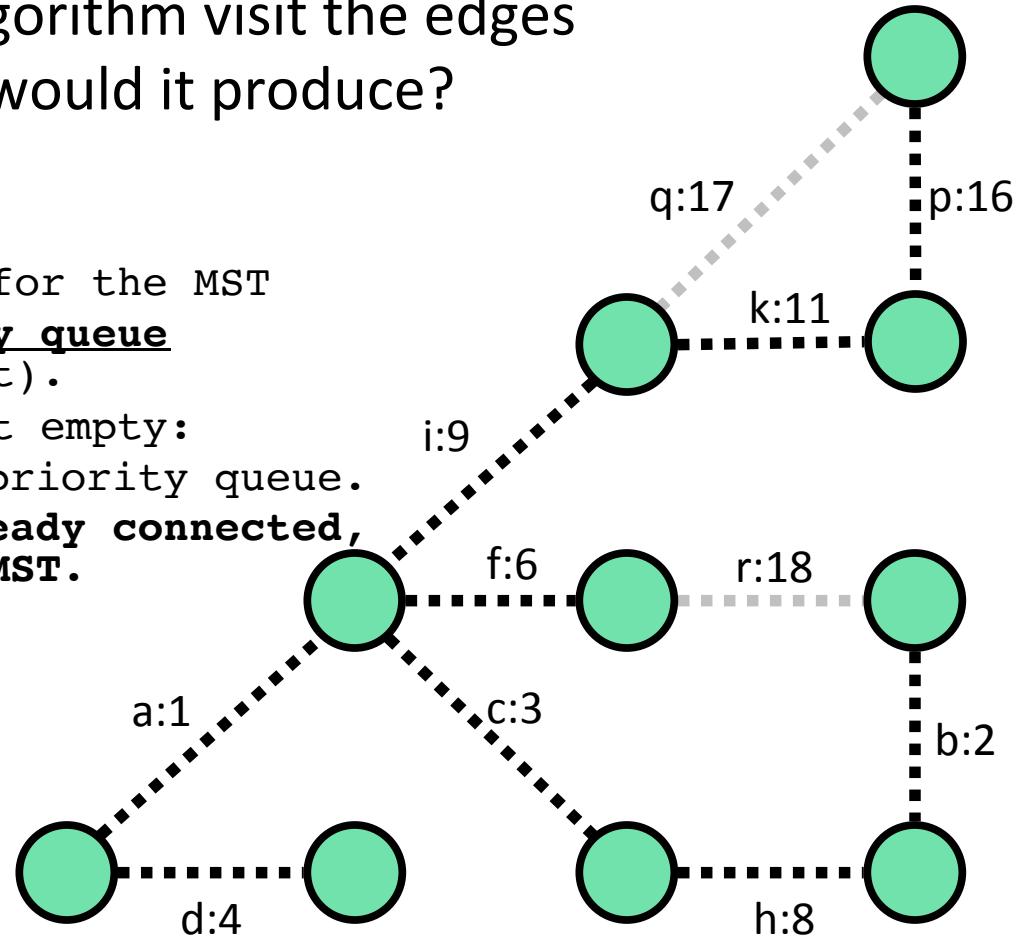
Place all edges into a **priority queue**
based on their weight (cost).

While the priority queue is not empty:

 Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
 add that edge into the MST.**

 Otherwise, skip the edge.



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
```

Start with an empty structure for the MST

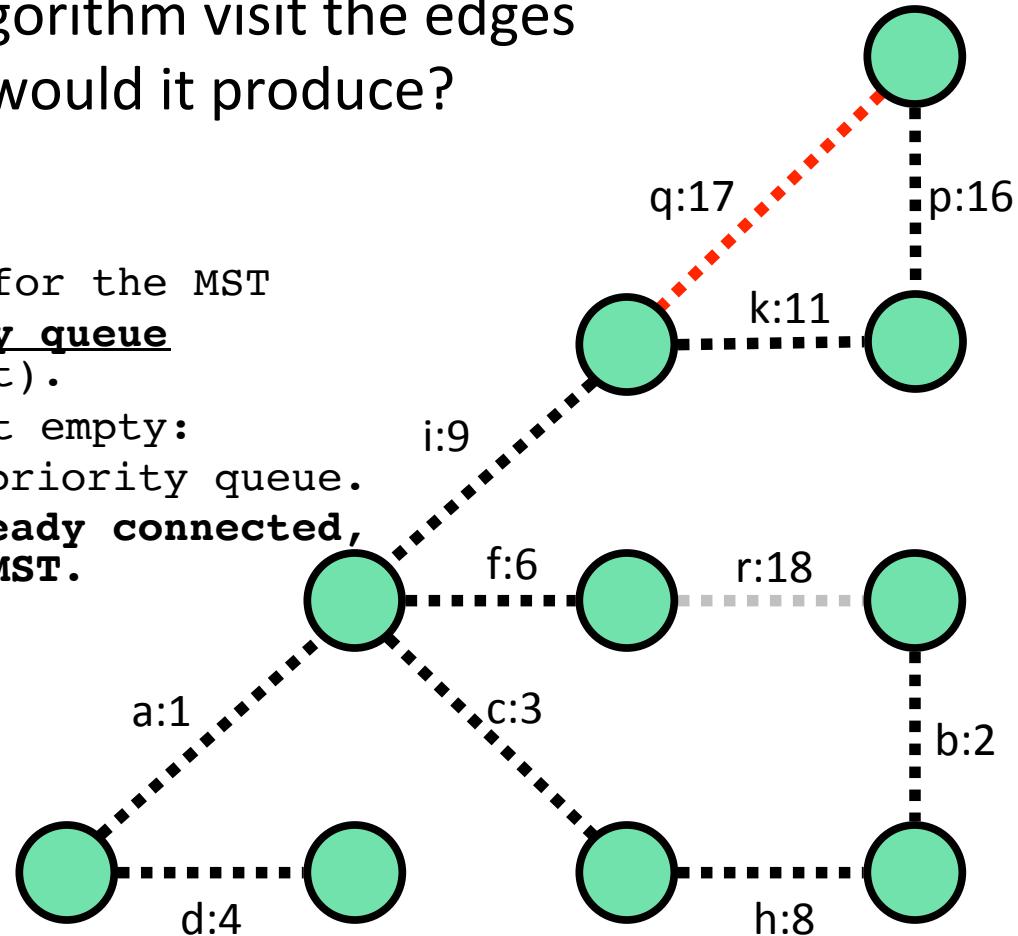
Place all edges into a **priority queue**
based on their weight (cost).

While the priority queue is not empty:

 Dequeue an edge e from the priority queue.

**If e 's endpoints aren't already connected,
 add that edge into the MST.**

 Otherwise, skip the edge.

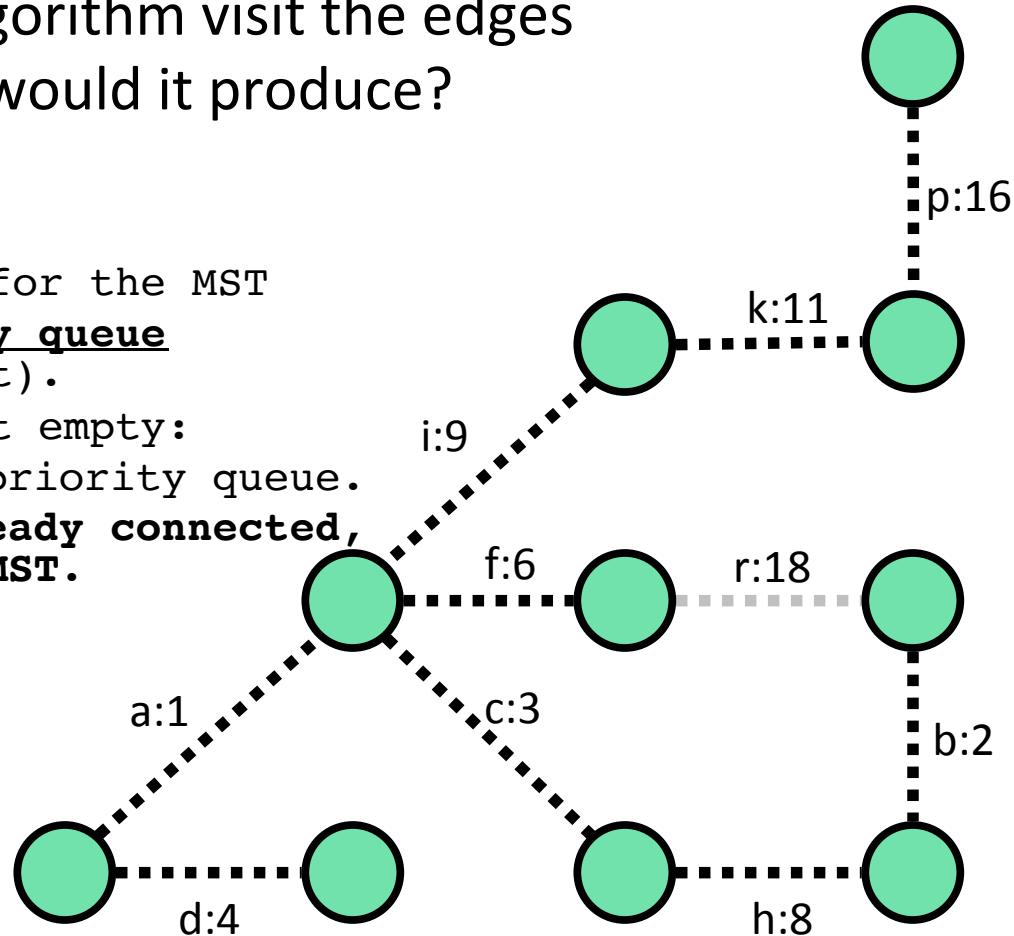


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

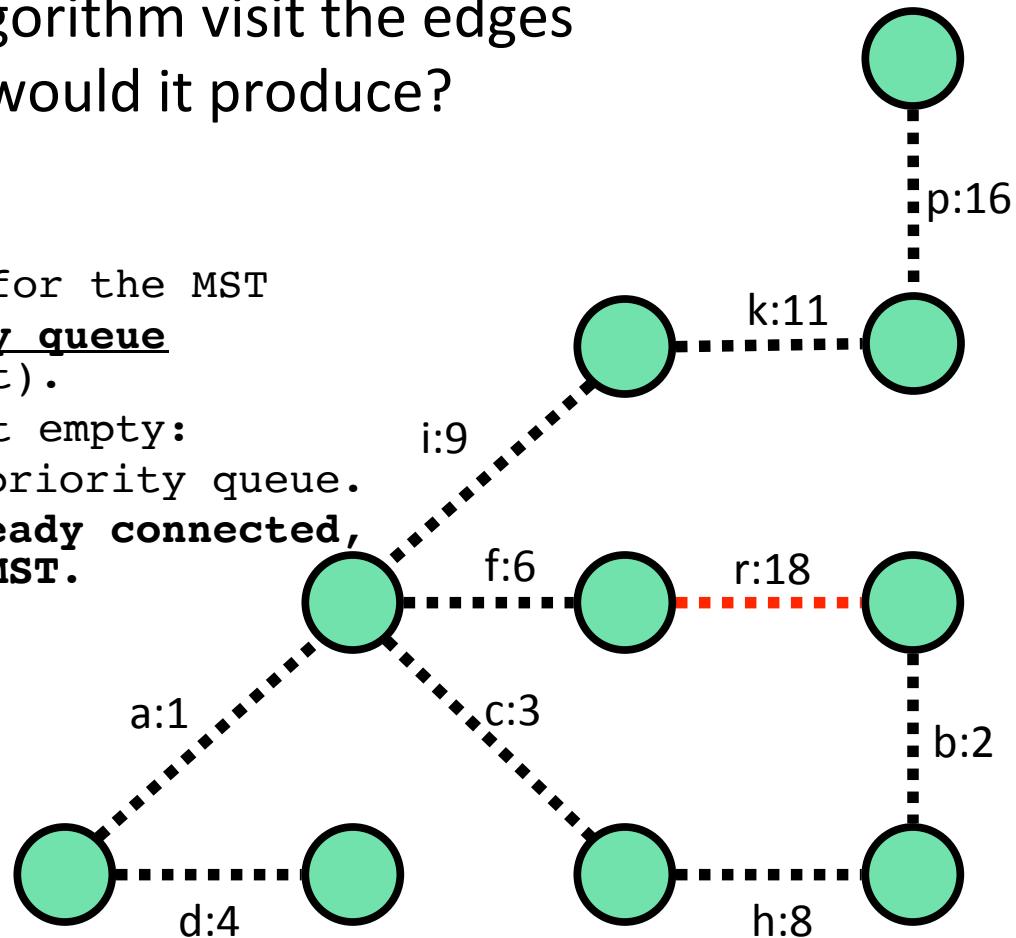


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
    Start with an empty structure for the MST  
    Place all edges into a priority queue  
        based on their weight (cost).  
    While the priority queue is not empty:  
        Dequeue an edge e from the priority queue.  
        If e's endpoints aren't already connected,  
            add that edge into the MST.  
    Otherwise, skip the edge.
```

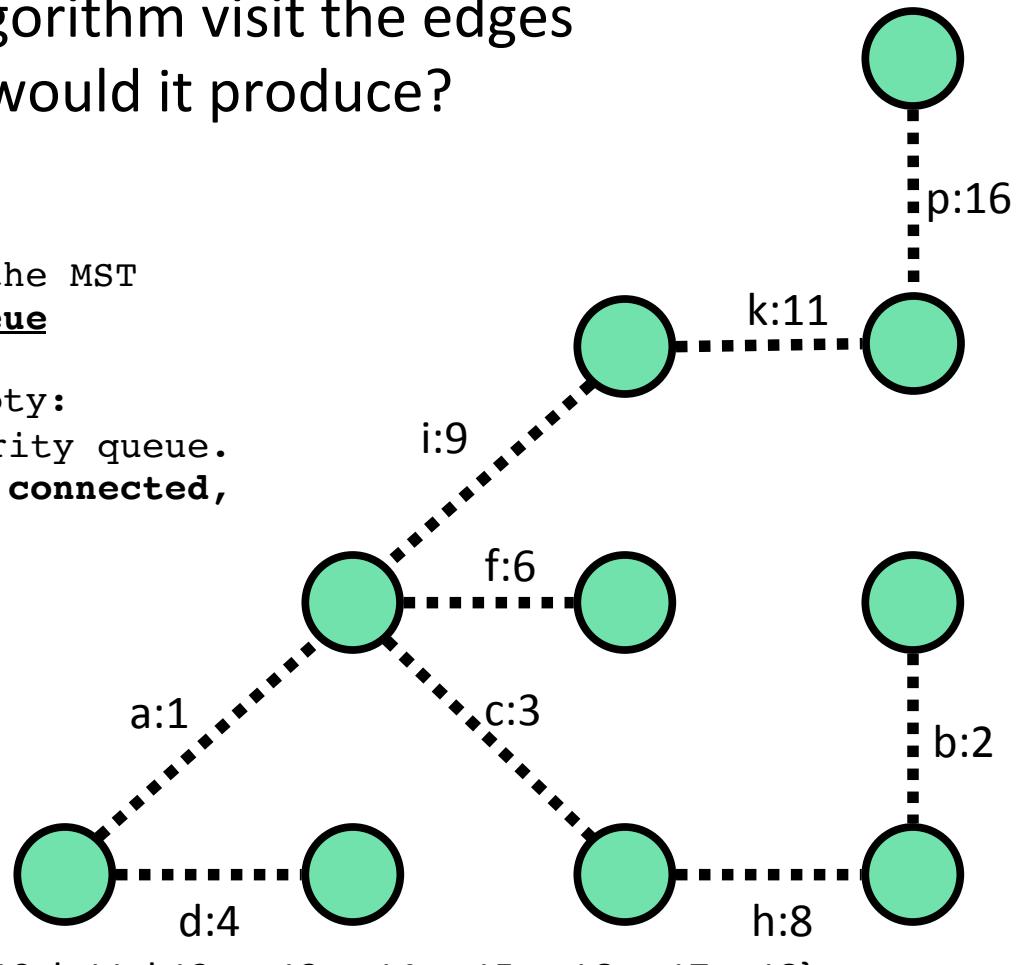


- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):  
  Start with an empty structure for the MST  
  Place all edges into a priority queue  
    based on their weight (cost).  
  While the priority queue is not empty:  
    Dequeue an edge e from the priority queue.  
    If e's endpoints aren't already connected,  
      add that edge into the MST.  
  Otherwise, skip the edge.
```



- $pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$

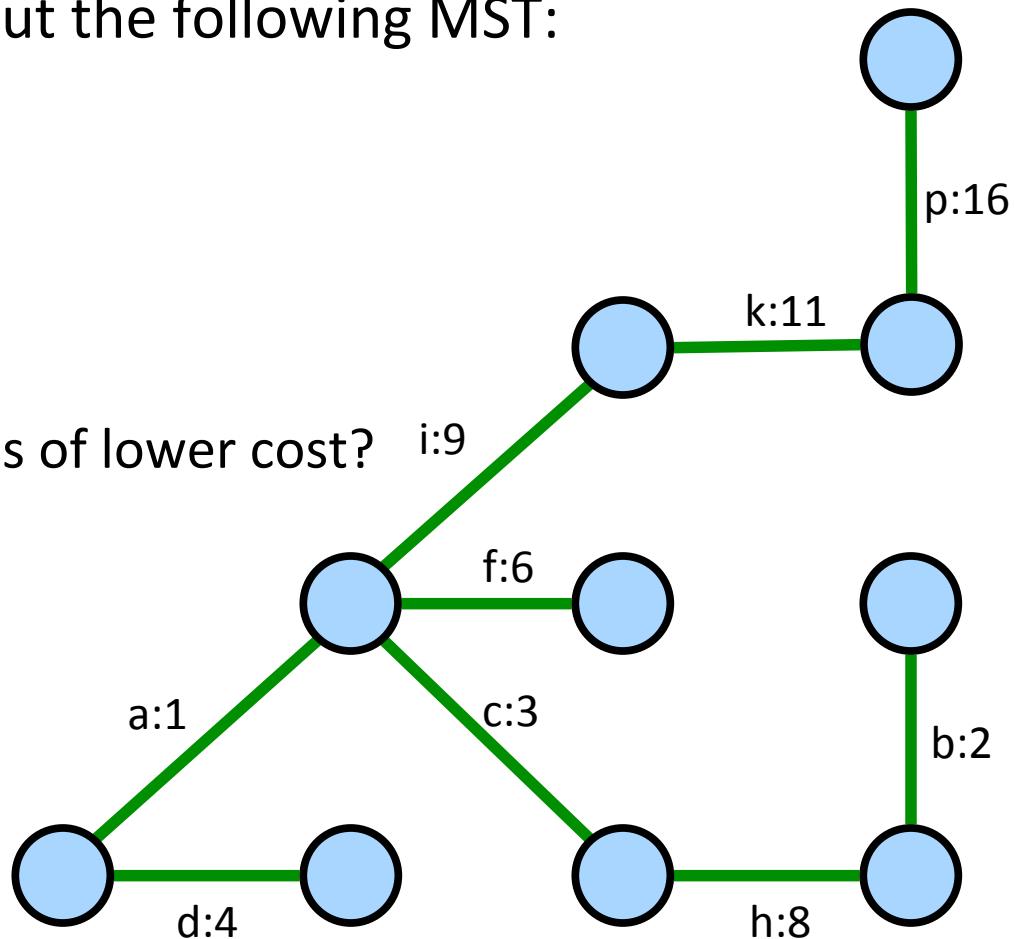
Kruskal example

- Kruskal's algorithm would output the following MST:
 - {a, b, c, d, f, h, i, k, p}

- The MST's total cost is:

$$1+2+3+4+6+8+9+11+16 = 60$$

- Can you find any spanning trees of lower cost?
Of equal cost?



Implementing Kruskal

- What data structures should we use to implement this algorithm?

```
function kruskal(graph):
```

Start with an empty structure for the MST

Place all edges into a priority queue
based on their weight (cost).

While the priority queue is not empty:

 Dequeue an edge e from the priority queue.

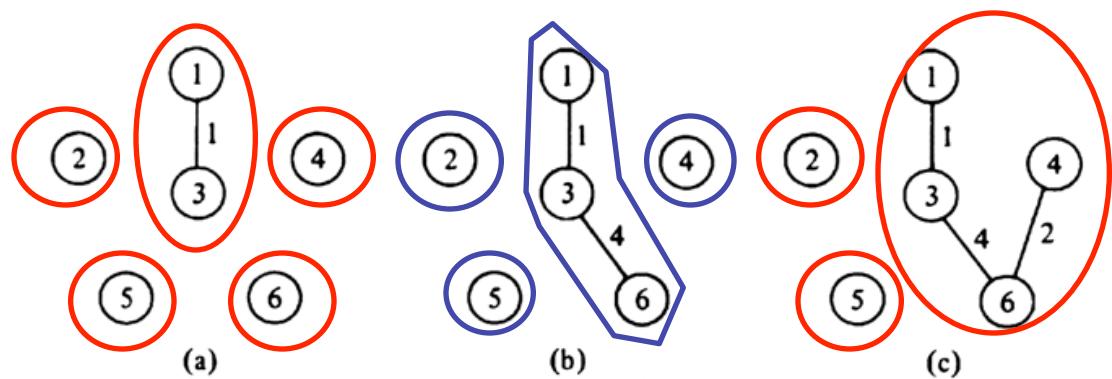
 If e 's endpoints aren't already connected,
 add that edge into the MST.

Otherwise, skip the edge.

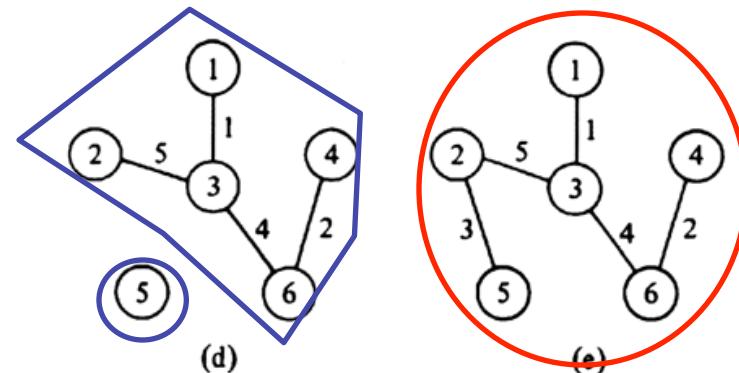
Vertex clusters

- Need some way to identify which vertexes are "connected" to which other ones
 - we call these "**clusters**" of vertices

- Also need an efficient way to figure out which cluster a given vertex is in.



- Also need to **merge clusters** when adding an edge.



Kruskal's Code

- How would we code Kruskal's algorithm to find a minimum spanning tree?
- What type of graph (adjacency list, adjacency matrix, or edge list) should we use?