
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	25	
Sorting	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Analyze	several	algorithms	to	do	the	same	task:	sorting	

–  Big-Oh	in	the	real	world	

3

Sorting
• sorting:	Rearranging	the	values	in	a	collection	into	a	specific	order.	

–  can	be	solved	in	many	ways:	
	

Algorithm	 Description	
bogo	sort	 shuffle	and	pray	
bubble	sort	 swap	adjacent	pairs	that	are	out	of	order	
selection	sort	 look	for	the	smallest	element,	move	to	front	
insertion	sort	 build	an	increasingly	large	sorted	front	portion	
merge	sort	 recursively	divide	the	data	in	half	and	sort	it	
heap	sort	 place	the	values	into	a	binary	heap	then	dequeue	
quick	sort	 recursively	"partition"	data	based	on	a	pivot	value	
bucket	sort	 cluster	elements	into	smaller	groups,	sort	the	groups	
radix	sort	 sort	integers	by	last	digit,	then	2nd	to	last,	then	...	

4

Bogo sort
• bogo	sort:	Orders	a	list	of	values	by	repetitively	shuffling	them	and	
checking	if	they	are	sorted.	
–  name	comes	from	the	word	"bogus";		a.k.a.	"bogus	sort"	
	

The	algorithm:	
–  Scan	the	list,	seeing	if	it	is	sorted.		If	so,	stop.	
–  Else,	shuffle	the	values	in	the	list	and	repeat.	

• This	sorting	algorithm	(obviously)	has	terrible	performance!	
– What	is	its	runtime?	

5

Bogo sort code
//	Places	the	elements	of	v	into	sorted	order.	
void	bogoSort(Vector<int>&	v)	{	
				while	(!isSorted(v))	{	
								shuffle(v);									//	from	shuffle.h	
				}	
}	
	
//	Returns	true	if	v's	elements	are	in	sorted	order.	
bool	isSorted(Vector<int>&	v)	{	
				for	(int	i	=	0;	i	<	v.size()	-	1;	i++)	{	
								if	(v[i]	>	v[i	+	1])	{	
												return	false;	
								}	
				}	
				return	true;	
}	

6

Bogo sort runtime
• How	long	should	we	expect	bogo	sort	to	take?	

–  related	to	probability	of	shuffling	into	sorted	order	
–  assuming	shuffling	code	is	fair,	probability	equals	
1	/	(number	of	permutations	of	N	elements)	=	1/N!	

–  average	case	performance:	O(N	*	N!)	
– worst	case	performance:	O(∞)	
– What	is	the	best	case	performance?	

7

Selection sort example
• selection	sort:	Repeatedly	swap	smallest	unplaced	value	to	front.	

• After	1st,	2nd,	and	3rd	passes:	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	
value	 22	 18	 12	 -4	 27	 30	 36	 50	 7	 68	 91	 56	 2	 85	 42	 98	 25	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	
value	 -4	 18	 12	 22	 27	 30	 36	 50	 7	 68	 91	 56	 2	 85	 42	 98	 25	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	
value	 -4	 2	 12	 22	 27	 30	 36	 50	 7	 68	 91	 56	 18	 85	 42	 98	 25	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	
value	 -4	 2	 7	 22	 27	 30	 36	 50	 12	 68	 91	 56	 18	 85	 42	 98	 25	

8

Selection sort code
//	Rearranges	elements	of	v	into	sorted	order.	
void	selectionSort(Vector<int>&	v)	{	
				for	(int	i	=	0;	i	<	v.size()	-	1;	i++)	{	
								//	find	index	of	smallest	remaining	value	
								int	min	=	i;	
								for	(int	j	=	i	+	1;	j	<	v.size();	j++)	{	
												if	(v[j]	<	v[min])	{	
																min	=	j;	
												}	
								}	
								//	swap	smallest	value	to	proper	place,	v[i]	
								if	(i	!=	min)	{	
												int	temp	=	v[i];	
												v[i]	=	v[min];	
												v[min]	=	temp;	
								}	
				}	
}	

9

Insertion sort
•  insertion	sort:	orders	a	list	of	values	by	repetitively	inserting	a	
particular	value	into	a	sorted	subset	of	the	list	

• more	specifically:	
–  consider	the	first	item	to	be	a	sorted	sublist	of	length	1	
–  insert	second	item	into	sorted	sublist,	shifting	first	item	if	needed	
–  insert	third	item	into	sorted	sublist,	shifting	items	1-2	as	needed	
–  ...	
–  repeat	until	all	values	have	been	inserted	into	their	proper	positions	
– How	people	line	up	when	they	have	different	arrival	times!	

• Runtime:	O(N2).	
– Generally	somewhat	faster	than	selection	sort	for	most	inputs.	

10

Insertion sort example
– Makes	N-1	passes	over	the	array.	
–  At	the	end	of	pass	i,	the	elements	that	occupied	A[0]…A[i]	
originally	are	still	in	those	spots	and	in	sorted	order.	

index	 0	 1	 2	 3	 4	 5	 6	 7	
value	 15	 2	 8	 1	 17	 10	 12	 5	
pass	1	 2	 15	 8	 1	 17	 10	 12	 5	
pass	2	 2	 8	 15	 1	 17	 10	 12	 5	
pass	3	 1	 2	 8	 15	 17	 10	 12	 5	
pass	4	 1	 2	 8	 15	 17	 10	 12	 5	
pass	5	 1	 2	 8	 10	 15	 17	 12	 5	
pass	6	 1	 2	 8	 10	 12	 15	 17	 5	
pass	7	 1	 2	 5	 8	 10	 12	 15	 17	

11

Insertion sort code
//	Rearranges	the	elements	of	v	into	sorted	order.	
void	insertionSort(Vector<int>&	v)	{	
				for	(int	i	=	1;	i	<	v.size();	i++)	{	
								int	temp	=	v[i];	
	
								//	slide	elements	right	to	make	room	for	v[i]	
								int	j	=	i;	
								while	(j	>=	1	&&	v[j	-	1]	>	temp)	{	
												v[j]	=	v[j	-	1];	
												j--;	
								}	
								v[j]	=	temp;	
				}	
}	

12

Bucket/radix sort
• bucket	sort:	arrange	items	into	buckets	or	bins	repeatedly	
•  radix	sort:	sort	integers	by	1s,	then	10s,	then	100s,	...	

– O(N)	when	used	with	data	in	a	known	fixed	range	(!)	

13

Announcements
• MiniBrowser	is	due	today,	Calligraphy	will	be	released	later	today	

– Multiple	parts,	please	start	early	(2nd	and	3rd	parts	are	harder	than	the	
1st	part)	

• Final	is	a	week	from	Saturday,	at	8:30AM	
–  Practice	exam	will	be	released	in	the	next	few	days	

• Please	give	us	feedback!	cs198.stanford.edu	
• Course	feedback:	

–  A	note	on	LaIR/Piazza	

14

Merge sort
• merge	sort:	Repeatedly	divides	the	data	in	half,	sorts	each	half,	and	
combines	the	sorted	halves	into	a	sorted	whole.	

	

The	algorithm:	
– Divide	the	list	into	two	roughly	equal	halves.	
–  Sort	the	left	half.	
–  Sort	the	right	half.	
– Merge	the	two	sorted	halves	into	one	sorted	list.	

– Often	implemented	recursively.	
–  An	example	of	a	"divide	and	conquer"	algorithm.	

• Invented	by	John	von	Neumann	in	1945	

–  Runtime:	O(N	log	N).		Somewhat	faster	for	asc/descending	input.	

15

Merge sort example
index	 0	 1	 2	 3	 4	 5	 6	 7	
value	 22	 18	 12	 -4	 58	 7	 31	 42	

22	 18	 12	 -4	

22	 18	

22	 18	

18	 22	
merge	

split	
12	 -4	

12	 -4	

-4	 12	
merge	

split	

split	

-4	 12	 18	 22	

58	 7	 31	 42	

58	 7	

58	 7	

7	 58	
merge	

split	
31	 42	

31	 42	

31	 42	
merge	

split	

split	

7	 31	 42	 58	

-4	 7	 12	 18	 22	 31	 42	 58	

split	

merge	 merge	

merge	

16

Merging sorted halves

17

Merge sort code
//	Rearranges	the	elements	of	v	into	sorted	order	using	
//	the	merge	sort	algorithm.	
void	mergeSort(Vector<int>&	v)	{	
				if	(v.size()	>=	2)	{	
								//	split	vector	into	two	halves	
								Vector<int>	left	=	v.subList(0,	v.size()	/	2);	
								Vector<int>	right	=		
										v.subList(v.size()	/	2	+	1,	(v.size()	-	1)	/	2);	
	
								//	recursively	sort	the	two	halves	
								mergeSort(left);	
								mergeSort(right);	
	
								//	merge	the	sorted	halves	into	a	sorted	whole	
								v.clear();	
								merge(v,	left,	right);	
				}	
}	

18

Merge halves code
//	Merges	the	left/right	elements	into	a	sorted	result.	
//	Precondition:	left/right	are	sorted	
void	merge(Vector<int>&	result,	
											Vector<int>&	left,	Vector<int>&	right)	{	
				int	leftIndex	=	0;	
				int	rightIndex	=	0;	
	
				for	(int	i	=	0;	i	<	left.size()	+	right.size();	i++)	{	
								if	(rightIndex	>=	right.size()	||	
											(leftIndex	<	left.size()	&&		
												left[leftIndex]	<=	right[rightIndex]))	{	
												result	+=	left[leftIndex];				//	take	from	left	
												leftIndex++;	
								}	else	{	
												result	+=	right[rightIndex];			//	take	from	right	
												rightIndex++;	
								}	
				}	
}	

19

Runtime intuition
• Merge	sort	performs	O(N)	operations	on	each	level. 	(width)	

–  Each	level	splits	the	data	in	2,	so	there	are	log2	N	levels. 	(height)	
–  Product	of	these	=	N	*	log2	N	=	O(N	log	N). 	(area)	
–  Example:	N	=	32.		Performs	~	log2	32	=	5	levels	of	N	operations	each:	

32	

16	

8

4

2

1	

width	=	N	

he
ig
ht
	=
	lo
g 2
	N
	

20

Quick sort
• quick	sort:	Orders	a	list	of	values	by	partitioning	the	list	around	one	
element	called	a	pivot,	then	sorting	each	partition.	
–  invented	by	British	computer	scientist	C.A.R.	Hoare	in	1960	

• Quick	sort	is	another	divide	and	conquer	algorithm:	
–  Choose	one	element	in	the	list	to	be	the	pivot.	
– Divide	the	elements	so	that	all	elements	less	than	the	pivot	are	to	its	
left	and	all	greater	(or	equal)	are	to	its	right.	

–  Conquer	by	applying	quick	sort	(recursively)	to	both	partitions.	

• Runtime:	O(N	log	N)	average,		but	O(N2)	worst	case.	
– Generally	somewhat	faster	than	merge	sort.	

21

Choosing a "pivot"
• The	algorithm	will	work	correctly	no	matter	which	element	you	
choose	as	the	pivot.	
–  A	simple	implementation	can	just	use	the	first	element.	

• But	for	efficiency,	it	is	better	if	the	pivot	divides	up	the	array	into	
roughly	equal	partitions.	
– What	kind	of	value	would	be	a	good	pivot?		A	bad	one?	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	
value	 8	 18	 12	 -4	 27	 30	 36	 50	 7	 68	 91	 56	 2	 85	 42	 98	 25	

22

Partitioning an array
• Swap	the	pivot	to	the	last	array	slot,	temporarily.	
• Repeat	until	done	partitioning		(until	i,j	meet):	

–  Starting	from	i	=	0,					find	an	element	a[i]	≥	pivot.	
–  Starting	from	j	=	N-1,	find	an	element	a[j]	≤	pivot.	
–  These	elements	are	out	of	order,	so	swap	a[i]	and	a[j].	

• Swap	the	pivot	back	to	index	i	to	place	it	between	the	partitions.	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 6	 1	 4	 9	 0	 3	 5	 2	 7	 8	

8	i	 ←	 j	 6	
2	 i	 →	 →	 j	 8	

5	 i	 →	 9	
6	 9	

2	 1	 4	 5	 0	 3	 6	 8	 7	 9	

23

Quick sort example
index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 65	 23	 81	 43	 92	 39	 57	 16	 75	 32	 choose	pivot=65	

32	 23	 81	 43	 92	 39	 57	 16	 75	 65	 swap	pivot	(65)	to	end	
32	 23	 16	 43	 92	 39	 57	 81	 75	 65	 swap	81,	16	
32	 23	 16	 43	 57	 39	 92	 81	 75	 65	 swap	57,	92	
32	 23	 16	 43	 57	 39	 92	 81	 75	 65	
32	 23	 16	 43	 57	 39	 65	 81	 75	 92	 swap	pivot	back	in	

recursively	quicksort	each	half	

32	 23	 16	 43	 57	 39	 pivot=32	
39	 23	 16	 43	 57	 32	 swap	to	end	
16	 23	 39	 43	 57	 32	 swap	39,	16	
16	 23	 32	 43	 57	 39	 swap	32	back	in	

81	 75	 92	 pivot=81	
92	 75	 81	 swap	to	end	
75	 92	 81	 swap	92,	75	
75	 81	 92	 swap	81	back	in	

...	 ...	

24

Quick sort code
void	quickSort(Vector<int>&	v)	{	
				quickSortHelper(v,	0,	v.size()	-	1);	
}	
	

void	quickSortHelper(Vector<int>&	v,	int	min,	int	max)	{	
				if	(min	>=	max)	{		//	base	case;	no	need	to	sort	
								return;	
				}	
	
				//	choose	pivot;	we'll	use	the	first	element	(might	be	bad!)	
				int	pivot	=	v[min];	
				swap(v,	min,	max);						//	move	pivot	to	end	
	
				//	partition	the	two	sides	of	the	array	
				int	middle	=	partition(v,	min,	max	-	1,	pivot);	
					
				swap(v,	middle,	max);			//	restore	pivot	to	proper	location	
	
				//	recursively	sort	the	left	and	right	partitions	
				quickSortHelper(v,	min,	middle	-	1);	
				quickSortHelper(v,	middle	+	1,	max);	
}	

25

Partition code
//	Partitions	a	with	elements	<	pivot	on	left	and	
//	elements	>	pivot	on	right;	
//	returns	index	of	element	that	should	be	swapped	with	pivot	
int	partition(Vector<int>&	v,	int	i,	int	j,	int	pivot)	{	
				while	(i	<=	j)	{	
								//	move	index	markers	i,j	toward	center	
								//	until	we	find	a	pair	of	out-of-order	elements	
								while	(i	<=	j	&&	v[i]	<	pivot)	{	i++;	}	
								while	(i	<=	j	&&	v[j]	>	pivot)	{	j--;	}	
	
								if	(i	<=	j)	{	
												swap(v,	i++,	j--);	
								}	
				}	
				return	i;	
}	
	
//	Moves	the	value	at	index	i	to	index	j,	and	vice	versa.	
void	swap(Vector<int>&	v,	int	i,	int	j)	{	
				int	temp	=	v[i];		v[i]	=	v[j];		v[j]	=	temp;	
}	

26

Choosing a better pivot
• Choosing	the	first	element	as	the	pivot	leads	to	very	poor	
performance	on	certain	inputs	(ascending,	descending)	
–  does	not	partition	the	array	into	roughly-equal	size	chunks	

• Alternative	methods	of	picking	a	pivot:	
–  random:	Pick	a	random	index	from	[min	..	max]	
– median-of-3:	look	at	left/middle/right	elements	and	pick	the	one	with	
the	medium	value	of	the	three:	
• v[min],				v[(max+min)/2],				and	v[max]	
• better	performance	than	picking	random	numbers	every	time	
• provides	near-optimal	runtime	for	almost	all	input	orderings	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	
value	 8	 18	 91	 -4	 27	 30	 86	 50	 65	 78	 5	 56	 2	 25	 42	 98	 31	

