CS 106B, Lecture 25
Sorting

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Analyze several algorithms to do the same task: sorting
— Big-Oh in the real world

e sorting: Rearranging the values in a collection into a specific order.

— can be solved in many ways:

Algorithm Description
bogo sort shuffle and pray
bubble sort swap adjacent pairs that are out of order

selection sort

look for the smallest element, move to front

insertion sort

build an increasingly large sorted front portion

merge sort recursively divide the data in half and sort it
heap sort place the values into a binary heap then dequeue
quick sort recursively "partition" data based on a pivot value

bucket sort

cluster elements into smaller groups, sort the groups

radix sort

sort integers by last digit, then 2nd to last, then ...

Bogo sort

e bogo sort: Orders a list of values by repetitively shuffling them and
checking if they are sorted.

— name comes from the word "bogus"; a.k.a. "bogus sort"

The algorithm:
— Scan the list, seeing if it is sorted. If so, stop.
— Else, shuffle the values in the list and repeat.

e This sorting algorithm (obviously) has terrible performance!

— What is its runtime?

Bogo sort code

// Places the elements of v into sorted order.
void bogoSort(Vector<int>& v) {
while (!isSorted(v)) {
shuffle(v); // from shuffle.h

}
¥

// Returns true if v's elements are in sorted order.
bool isSorted(Vector<int>& v) {
for (int 1 = 0; 1 < v.size() - 1; i++) {
if (v[i] > v[i + 1]) {
return false;
}
}

return true;

Bogo sort runtime

e How long should we expect bogo sort to take?
— related to probability of shuffling into sorted order

— assuming shuffling code is fair, probability equals
1 / (number of permutations of N elements) = 1/N!

— average case performance: O(N * NI!)
— worst case performance: O(e<)
— What is the best case performance?

Selection sort example

e selection sort: Repeatedly swap smallest unplaced value to front.

index| O |1 |23 |4]|5|6|78]|9 (101112 |13|14|15]16
value | 221812 | -4 |27 (30|36|50| 7 |68|91|56| 2 [85|42|98 |25

e After 1st, 2nd, and 3rd passes:

index| O | 1|12 | 3|4 |5|6|7]8 |9 |10]11]12|13|14|15|16
value | -4 |18 12|22 |27 (30(36|50| 7 |68|91|56| 2 [85|42|98 |25

index| 0| 1|12 | 3|4 |5|6|7]8 |9 |10]11]12|13|14|15|16
value | -4 | 2 [12(22(27(30(36|50| 7 |68|91|56| 18 |85 |42 |98 |25

index| O |1 |23 |4]|5|6|78]|9 (101112 |13|14|15]16
value | -4 | 2 | 7 (22(27(30|36|50|12|68|91|56| 18 |85|42|98 |25

Selection sort code

// Rearranges elements of v into sorted order.
void selectionSort(Vector<int>& v) {
for (int 1 = 0; 1 < v.size() - 1; i++) {
// find index of smallest remaining value
int min = i;
for (int j =1 + 1; j < v.size(); j++) {
if (v[j] < vimin]) {
min = j;
}
}

// swap smallest value to proper place, v[i]
if (1 !'= min) {

int temp = v[i];

v[ii] = v[min];

vimin] = temp;

Insertion sort

e insertion sort: orders a list of values by repetitively inserting a
particular value into a sorted subset of the list

e more specifically:
— consider the first item to be a sorted sublist of length 1
— insert second item into sorted sublist, shifting first item if needed
— insert third item into sorted sublist, shifting items 1-2 as needed

— repeat until all values have been inserted into their proper positions
— How people line up when they have different arrival times!

e Runtime: O(N?).

— Generally somewhat faster than selection sort for most inputs.

Insertion sort example

— Makes N-1 passes over the array.

— At the end of pass i, the elements that occupied A[O]...A[i]
originally are still in those spots and in sorted order.

index |0 | 1|23 |4(|5]|6]|7
value |15 2 | 8 | 1 [{17|10(12| 5
pass1| 2 (15| 8 | 1 |17|10|12| 5
pass2| 2 | 8 |15 1 [17|10|12| 5
pass3| 1|2 | 8 |15(17|10|12| 5
pass4|1 1|2 |8 |15(17|10|12| 5
pass5|1 112 | 8101517 12| 5
pass6| 112 | 8(10(12|15|17| 5
pass/|1 112 |5| 8 (10|12 15|17

10

Insertion sort code

// Rearranges the elements of v into sorted order.
void insertionSort(Vector<int>& v) {
for (int 1 = 1; 1 < v.size(); i++) {
int temp = v[i];

// slide elements right to make room for v[i]
int j = 1;
while (j >= 1 && v[j - 1] > temp) {
vijl = v[J - 1];
J--5
}
v[j] = temp;

11

Bucket/radix sort

e bucket sort: arrange items into buckets or bins repeatedly
e radix sort: sort integers by 1s, then 10s, then 100s, ...

— O(N) when used with data in a known fixed range (!)

First Pass Second Pass Third Pass

A

11213 1111 609 0lo]2
o[o]|2 ojo]2 olof2 1011
99| 9|e=a(1|2]|3|=211l1}l—=>l1]2]3
6[0|9 9(9]9 11213 6|09
1011 6/0|9 B E SEE

29 25 49 9 37 21 43
10-19 20-29 30-39 40-49

- -
9 49 1
25 7 43

10-19 20-29 30-39 40-49
21 25 29 37 43 49 12

Announcements

e MiniBrowser is due today, Calligraphy will be released later today

— Multiple parts, please start early (2" and 3 parts are harder than the
15t part)

e Final is a week from Saturday, at 8:30AM

— Practice exam will be released in the next few days
e Please give us feedback! cs198.stanford.edu
e Course feedback:

— A note on LalR/Piazza

13

Merge sort

e merge sort: Repeatedly divides the data in half, sorts each half, and
combines the sorted halves into a sorted whole.

The algorithm:

— Divide the list into two roughly equal halves.

— Sort the left half.

— Sort the right half.

— Merge the two sorted halves into one sorted list.

— Often implemented recursively.
— An example of a "divide and conquer" algorithm.
e Invented by John von Neumann in 1945

— Runtime: O(N log N). Somewhat faster for asc/descending input.
14

Merge sort example

index | O | 1|2 |3]|4|5|6]|7
value | 2211812 (-4 |58| 7 |31|42

o T

22 (18 |12 | -4 58 7 | 31|42
split split

22 | 18 12| -4 58| 7 31|42
split L split L split L split -
22 18 12 -4 58 7 31 42
merge N merge N merge N merge N
18 | 22 -4 |12 /7 | 58 31|42

merge\ — merge\ —

-4 11218 | 22 7 3142 |58

merg\,/

15

Merging sorted halves

Subarrays Next include Merged array
0 1 2 3 0 1 2 3 0 1 2 3 < 5 6 7
14 | 32 | 67| 76 23 |41 | 58| 85 |4 from left 14
il i2 i
14 | 32 | 67| 76 23 | 41| 58| 85 23 from right 14 | 23
il i2 i
14 | 32 | 67| 76 23 |41 | 58| 85 32 from left 14 |23 |32
il i2 i
14 [32 | 67 | 76 23 (41 | 58| 85 41 from right 14 | 23|32 | 41
il i2 i
14 | 32 | 67 | 76 23 (41| 58| 85 58 from right 14 |23 | 32 | 41| 58
il i2 i
14 | 32 | 67 | 76 23|41 | 58| 85 67 from left 14 | 23 |32 |41 |58 | 67
il i2 i
14 |32 | 67 | 76 23|41 | 58| 85 76 from left 14 | 23 | 32 |41 | 58|67 |76
il i2 i
14 |32 | 67| 76 23|41 | 58| 85 85 from right 14 |23 |32 |41 |58 |67 |76 | 85
16

Merge sort code

// Rearranges the elements of v into sorted order using
// the merge sort algorithm.
void mergeSort(Vector<int>& v) {
if (v.size() >= 2) {

// split vector into two halves

Vector<int> left = v.sublList(Q, v.size() / 2);

Vector<int> right =

v.subList(v.size() / 2 + 1, (v.size() - 1) / 2);

// recursively sort the two halves
mergeSort(left);
mergeSort(right);

// merge the sorted halves into a sorted whole

v.clear();
merge(v, left, right);

17

Merge halves code

// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted
void merge(Vector<int>& result,
Vector<int>& left, Vector<int>& right) {
int leftIndex = 0O;
int rightIndex = 0;

for (int 1 = @0; 1 < left.size() + right.size(); i++) {
if (rightIndex >= right.size() ||
(leftIndex < left.size() &&
left[leftIndex] <= right[rightIndex])) {

result += left[leftIndex]; // take from left
leftIndex++;

} else {

result += right[rightIndex]; // take from right
rightIndex++;

18

Runtime intuition

e Merge sort performs O(N) operations on each level.
— Each level splits the data in 2, so there are log, N levels.
— Product of these = N * log, N = O(N log N).

— Example: N = 32. Performs ~ log,32 =5 levels of N operations each:

=log, N

height

(width)
(height)

(area)

| L

1l

1

1l

1

1

1

IO

1

1

1

1l

1l

1l

width = N

32

16

L, N P

19

e quick sort: Orders a list of values by partitioning the list around one
element called a pivot, then sorting each partition.

— invented by British computer scientist C.A.R. Hoare in 1960

e Quick sort is another divide and conquer algorithm:
— Choose one element in the list to be the pivot.

— Divide the elements so that all elements less than the pivot are to its
left and all greater (or equal) are to its right.

— Conquer by applying quick sort (recursively) to both partitions.

e Runtime: O(N log N) average, but O(N?) worst case.
— Generally somewhat faster than merge sort.

20

Choosing a "pivot”

e The algorithm will work correctly no matter which element you
choose as the pivot.

— A simple implementation can just use the first element.

e But for efficiency, it is better if the pivot divides up the array into
roughly equal partitions.
— What kind of value would be a good pivot? A bad one?

index| 0| 123 |4 |5|6|7|8]9(10|11|12(13(14|15|16
value | 8 |18 12| -4 |27 (30(36|50| 7 |68|91|56| 2 [85|42|98|25

21

Partitioning an array

e Swap the pivot to the last array slot, temporarily.
e Repeat until done partitioning (until i,j meet):
— Starting fromi=0, find an element a[i] = pivot.
— Starting from j = N-1, find an element alj] £ pivot.
— These elements are out of order, so swap a[i] and alj].
e Swap the pivot back to index i to place it between the partitions.

index | O 1 2 3 4 5 6 7 8 9
value | 6 1 4 9 0 3 5 2 7 8

8i —~ j 6
2 i - - i 8
5 i —|9
6 9
2|1|4|5|0|3]|6|8]|7]|09

22

Quick sort example

index| 0| 123 |4|5|6|7]| 8|29

value | 65123 (81|43 (92|39|57|16| 75| 32| choose pivot=65

32123(81|43|92(39|57|16| 75 | 65 | swap pivot (65) to end
321231643 |92|39|57|81|75|65|swap8l,16
32|23|16|43 |57(39|92|81|75|65|swap57,92
32123|16(43|57|139(92|81|75]|65
3223|1643 |57(39(65|81| 75|92 |swap pivot back in

recursively quicksort each hay/\

3223|116 |43 |57 | 39| pivot=32 81| 75| 92 | pivot=81
39|23|16|43 |57|32|swaptoend 92| 75 | 81 | swap to end

16 |23 (39| 43 |57 | 32 |swap 39, 16 75192 | 81 |swap 92, 75

16 |23 (32| 43 | 57 | 39 | swap 32 back in 75| 81 | 92 | swap 81 back in

23

Quick sort code

void quickSort(Vector<int>& v) {

}

quickSortHelper(v, 0, v.size() - 1);

void quickSortHelper(Vector<int>& v, int min, int max) {

if (min >= max) { // base case; no need to sort
return;
}

// choose pivot; we'll use the first element (might be bad!)
int pivot = v[min];
swap(v, min, max); // move pivot to end

// partition the two sides of the array
int middle = partition(v, min, max - 1, pivot);

swap(v, middle, max); // restore pivot to proper location

// recursively sort the left and right partitions
quickSortHelper(v, min, middle - 1);
quickSortHelper(v, middle + 1, max);

24

Partition code

// Partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
int partition(Vector<int>& v, int i, int j, int pivot) {
while (i <= j) {
// move index markers i,j toward center
// until we find a pair of out-of-order elements
while (i <= j && v[i] < pivot) { i++; }
while (i <= j && v[j] > pivot) { j--; }

if (i <= j) {
swap(v, i++, j--);
}
}

return i;

¥

// Moves the value at index i to index j, and vice versa.
void swap(Vector<int>& v, int i, int j) {

int temp = v[i]; v[i] = v[j]l; Vv[j] = temp;
}

25

Choosing a better pivot

e Choosing the first element as the pivot leads to very poor
performance on certain inputs (ascending, descending)

— does not partition the array into roughly-equal size chunks

e Alternative methods of picking a pivot:
— random: Pick a random index from [min .. max]

— median-of-3: look at left/middle/right elements and pick the one with
the medium value of the three:
ev[min], v[(max+min)/2], andv[max]
e better performance than picking random numbers every time
e provides near-optimal runtime for almost all input orderings

index| 0 |12 |3 (4|5|6|7|8]|9(10|11(12|13|14|15]16
value | 8 |18 (91| -4 2730865065 (78| 5 56| 2 [25|42|98|31

26

