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Plan for Today

e Implementing the last data structure of CS106B: a HashMap/
HashSet

— What is hashing?
— How can we achieve the O(1) add, remove, contains of a HashSet?



Implementing a set

e Consider implementing a set as an unfilled array.
— What would make a good ordering for the elements?

e |f we store them in the next available index, as in a vector, ...

set.add(9);
set.add(23);

set.add(8); value| 9 | 23| 8 | -3 49|12
toe size 6  capacity 10

— How efficient is add? contains? remove?
* O(1), O(N), O(N)
e (contains must loop over the array; remove must shift elements.)



Sorted array set

e Suppose we store the elements in an unfilled array, but
in sorted order rather than order of insertion.

set.add(9);
set.add(23);
set.add(8);
set.add(-3); value| -3 | 8 | 9 | 12|23 |49
set.add(49); size. 6 capacity 10
set.add(12);

— How efficient is add? contains? remove?
* O(N), O(log N), O(N)
e (You can do an O(log N) binary search to find elements in contains,

and to find the proper index in add/remove; but add/remove still need to
shift elements right/left to make room, which is O(N) on average.)



A strange idea

e Silly idea: When client adds value i, store it at index 1 in the array.
— Would this work?

— Problems / drawbacks of this approach? How to work around them?

set.add(7);
set.add(1);
set.add(9);

value 1 7 9

size 3 capacity 10

set.add(18);
set.add(12);

value 1 7 9 12 18

size 5 capacity 20




e hash function: function of the form

int hashCode(Type arg);
— must be deterministic (same input produces the same output)

— should be well-distributed (the numbers produced are as spread out
as possible)

v

value > hashCode some number

e /dea: Store any given element value in the index given by the hash
function (why hash functions must be consistent)
— In previous slide, our (bad) "hash function" was: hashCode(i) — i.
— Drawbacks?

e Potentially requires a large array (array capacity > i).
e Array could be very sparse, mostly empty (memory waste). 6



Improving Space Efficiency

e If any number is equally possible, we'll need a huge array, even if
we only have a couple of buckets

e |dea: use a hash function, but modify the result to be within a much
smaller range (the size of the array)

e \We can then think of the array as a sequence of buckets storing
elements

int getIndex(Type value) {
return hashCode(value) % capacity;



Efficiency of hashing

int getIndex(int i) {
return hashCode(i) % capacity;

}

— add: elements[getIndex(i)] = i;

— contains: if (elements[getIndex(i)] ==1i) { ... }
— remove: elements[getIndex(i)] = ©;

e Q: What is the runtime of add, contains, and remove?
A. O(1) B. O(logN) C.O(N) D.O(NlogN) E. O(N?)

e Are there any problems with this approach?



e collision: When a hash function maps 2 values to same index.
// hashCode = abs(i)

set.add(11);

set.add(49); value 11 54 37 49
set.add(24); size 5  capacity 10

set.add(37);

set.add(54); // collides with 24 :-(

— collision resolution: An algorithm for fixing collisions.
— A hash function should be well-distributed to minimize collisions.



Probing

e probing: Resolving a collision by moving to another index.
— linear probing: Moves to the next available index (wraps if needed).

set.add(11);

/ 11 24 | 54
set.add(49); vare 3 19
set.add(24); size 5 capacity 10
set.add(37);

set.add(54); // collides with 24; must probe

— quadratic probing: a variation that moves increasingly far away:
e index +1, +4, 49, ...

— Drawbacks of probing? How does this change add, contains, etc.?
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e clustering: Clumps of elements at neighboring indexes.

— slows down the hash table lookup; you must loop through them.

set
set
set
set
set
set
set

.add(11);
.add(49);
.add(24);
.add(37);
.add(54);
.add(14);
.add(86);

//
//
//

value 11 24 154 (14|37 |86 |49
size 5 capacity 10

collides with 24
collides with 24, then 54
collides with 14, then 37

— A lookup for 94 must look at 7 out of 10 total indexes.
— Must have a special value for removed elements (tombstones).
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Separate chaining

e separate chaining: Solving collisions by storing a list at each index.
— add/search/remove must traverse lists, but the lists are short
— impossible to "run out"” of indexes, unlike with probing

index 0 1 2 3 4 5 6 7 8 9

value /// 1 /////// 1 /// /// 1 /// 1
11 24 7 49

1

54

struct HashNode {
int data; 1

* .
HashNode* next; 14

s
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The add operation

e How do we add an element to the hash table?

— Recall: To modify a linked list, you must either change the list's front
reference, or the next field of a node in the list.

— Where in the list should we add the new element?
— Must make sure to avoid duplicates.

index 0 1 2 3 4 5 6 7 8 9

va/ue/|///|//l/l

! . ! !
11 54 7 49

set.add(24);

new node | 24 14
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The contains operation

e How do we search for an element in the hash table?

— Must loop through the linked list for the appropriate hash index,
looking for the desired value.

— Recall: Traverse a linked list with a "current” node pointer.

index 0 1 2 3 4 5 6 7 8 9

value | )\ A LA L

v v v v

11 / 24 7 49
set.contains(14) // true current — | >4
set.contains(84) // false \ y
set.contains(53) // false 14
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The remove operation

e How do we remove an element from the hash table?

— Cases to consider: front (24), non-front (14), not found (94), null (32)

— To remove a node from a linked list, you must either change the list's
front, or the next field of the previous node in the list.

index | 0 | 1| 2 41516171819

3
value | | | L L L

v v v v
11 / 24 7 49
current 54
set.remove(54);

14
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Announcements

e Calligraphy was released yesterday
— Multiple parts, please start early (2" and 3 parts are harder than the
15t part)
— No late days may be used, no late submissions accepted
e Final is a week from Saturday, at 8:30AM, in Cubberley Auditorium

— Everything from the course is fair game, emphasis is on second half
materials (starting with pointers)

— More information:
https://web.stanford.edu/class/cs106b/exams/final.html

— Wednesday and Thursday next week will be final review

— Practice exam will be released on Saturday

e Please give us feedback! cs198.stanford.edu
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Exercise: HashSet

e Implement a HashSet class that represents a set of integers using
a hash table.

— Include the following public members:

HashSet ()

add(int value)
clear()
contains(int value)
remove(int value)
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struct HashNode {
int data;
HashNode* next;

s

class HashSet {
public:
HashSet();
~HashSet();
void add(int value);
void clear();
bool isEmpty() const;
bool contains(int value) const;
void remove(int value);
int size() const;

private:
HashNode** elements;
int mysize;
int capacity;
int getIndex(int value) const;

s

18



HashSet.cpp

#include "HashSet.h"

HashSet: :HashSet() {
capacity = 10;
mysize =
elements

.
J

new HashNode*[capacity](); // all are null

N © 1

}

void HashSet::add(int value) {
if (!contains(value)) {

int h = hashCode(value); // insert at front of chain
elements[h] = new HashNode(value, elements[h]);
mysize++;

¥

bool HashSet::contains(int value) const {
HashNode* curr = elements[hashCode(value)];
while (curr != nullptr) {
if (curr->data == value) { return true; }
curr = curr->next;

}

return false;
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HashSet.cpp 2

HashSet: :~HashSet() {
clear();
delete[] elements;

¥

void HashSet::clear() {
for (int i = @; i < capacity; i++) {
while (elements[i] != nullptr) { // free all chains
HashNode* trash = elements[i];
elements[i] = elements[i]->next;
delete trash;

}
}
mysize = 0;

}

int HashSet::getIndex(int value) const {
return hash(value) % capacity;
}
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HashSet.cpp 3

void HashSet::remove(int value) {
int h = hashCode(value);
if (elements[h] != nullptr) {
if (elements[h]->data == value) { // remove from front
HashNode* trash = elements[h];
elements[h] = elements[h]->next;

mysize--;
delete trash;
} else {

HashNode* curr = elements[h];
while (curr->next != nullptr) { // from middle/end
if (curr->next->data == value) {
HashNode* trash = curr->next; // found it
curr->next = curr->next->next;

mysize--;
delete trash;
break;

}

curr = curr->next;



Rehashing

e rehash: Growing to a larger array when the table is too full.

o 1 2 3 4 5 6 7 8 9 10
/1//1//1/
11 54 7 49
24
14
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Rehashing

e rehash: Growing to a larger array when the table is too full.
— Cannot simply copy the old array to a new one. (Why not?)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
////1//1/ /1//1/////
24 7 1;9 11 54
l
14

e load factor: ratio of (# of elements ) / (hash table length )
— many implementations rehash when load factor = .75
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Rehash code

// Grows hash array to twice its original size.
void HashSet::rehash() {
HashNode** oldElements = elements;
int oldCapacity = capacity;
capacity *= 2;
elements = new HashNode*[capacity]();
for (int 1 = 0; i < oldCapacity; i++) {
HashNode* curr = oldElements[i];
while (curr != nullptr) {
// put node at front of bucket in bigger hash table
HashNode* prev = curr;
curr = curr->next;
int newHash = hashCode(prev->data);
prev->next = elements[newHash];
elements[newHash] = prev;

}
}
delete[] oldElements;
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