
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	26	
Hashing	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
•  Implementing	the	last	data	structure	of	CS106B:	a	HashMap/
HashSet	
– What	is	hashing?	
– How	can	we	achieve	the	O(1)	add,	remove,	contains	of	a	HashSet?	

3

Implementing a set
• Consider	implementing	a	set	as	an	unfilled	array.	

– What	would	make	a	good	ordering	for	the	elements?	

•  If	we	store	them	in	the	next	available	index,	as	in	a	vector,	...	
	set.add(9);	
set.add(23);	
set.add(8);	
...	

– How	efficient	is	add?		contains?		remove?	
• O(1),	O(N),	O(N)	
• (contains	must	loop	over	the	array;		remove	must	shift	elements.)	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 9	 23	 8	 -3	 49	 12	 0	 0	 0	 0	
size	 6	 capacity	 10	

4

Sorted array set
• Suppose	we	store	the	elements	in	an	unfilled	array,	but	
in	sorted	order	rather	than	order	of	insertion.	
 set.add(9);	
set.add(23);	
set.add(8);	
set.add(-3);	
set.add(49);	
set.add(12);	

– How	efficient	is	add?		contains?		remove?	
• O(N),	O(log	N),	O(N)	
• (You	can	do	an	O(log	N)	binary	search	to	find	elements	in	contains,	
and	to	find	the	proper	index	in	add/remove;	but	add/remove	still	need	to	
shift	elements	right/left	to	make	room,	which	is	O(N)	on	average.)	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 -3	 8	 9	 12	 23	 49	 0	 0	 0	 0	
size	 6	 capacity	 10	

5

A strange idea
• Silly	idea:	When	client	adds	value	i,	store	it	at	index	i	in	the	array.	

– Would	this	work?	
–  Problems	/	drawbacks	of	this	approach?		How	to	work	around	them?	

set.add(7);	
set.add(1);	
set.add(9);	
...	

	
	set.add(18);	
	set.add(12);	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 1	 0	 0	 0	 0	 0	 7	 0	 9	
size	 3	 capacity	 10	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

value	 0	 1	 0	 0	 0	 0	 0	 7	 0	 9	 0	 0	 12	 0	 0	 0	 0	 0	 18	 0	

size	 5	 capacity	 20	

6

Hash Functions
• hash	function:	function	of	the	form	

int	hashCode(Type	arg);	
– must	be	deterministic	(same	input	produces	the	same	output)	
–  should	be	well-distributed	(the	numbers	produced	are	as	spread	out	
as	possible)	

	
	
	
•  Idea:	Store	any	given	element	value	in	the	index	given	by	the	hash	
function	(why	hash	functions	must	be	consistent)	
–  In	previous	slide,	our	(bad)	"hash	function"	was:		hashCode(i)	→	i.	
– Drawbacks?	

• Potentially	requires	a	large	array		(array	capacity	>	i).	
• Array	could	be	very	sparse,	mostly	empty		(memory	waste).	

	

hashCode	value	 some	number	

7

Improving Space Efficiency
•  If	any	number	is	equally	possible,	we'll	need	a	huge	array,	even	if	
we	only	have	a	couple	of	buckets	

•  Idea:	use	a	hash	function,	but	modify	the	result	to	be	within	a	much	
smaller	range	(the	size	of	the	array)	

• We	can	then	think	of	the	array	as	a	sequence	of	buckets	storing	
elements	

	
int	getIndex(Type	value)	{	
				return	hashCode(value)	%	capacity;	
}	

8

Efficiency of hashing
	int	getIndex(int	i)	{	
					return	hashCode(i)	%	capacity;	
	}	

	

–  add:	 	 	elements[getIndex(i)]	=	i;	

–  contains:	 	 	if	(elements[getIndex(i)]	==	i)	{	...	}	

–  remove: 	 	elements[getIndex(i)]	=	0;	
	
	

• Q:	What	is	the	runtime	of	add,	contains,	and	remove?	
	A.		O(1) 	B.		O(log	N) 	C.		O(N) 	D.		O(N	log	N) 	E.		O(N2)	

• Are	there	any	problems	with	this	approach?	

9

Collisions
• collision:	When	a	hash	function	maps	2	values	to	same	index.	

//	hashCode	=	abs(i)	
	
	
	set.add(11);	
	set.add(49);	
	set.add(24);	
	set.add(37);	
	set.add(54);			//	collides	with	24		:-(
	
	
–  collision	resolution:	An	algorithm	for	fixing	collisions.	
–  A	hash	function	should	be	well-distributed	to	minimize	collisions.	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 11	 0	 0	 54	 0	 0	 37	 0	 49	
size	 5	 capacity	 10	

10

Probing
• probing:	Resolving	a	collision	by	moving	to	another	index.	

–  linear	probing:	Moves	to	the	next	available	index		(wraps	if	needed).
	
	
	set.add(11);	
	set.add(49);	
	set.add(24);	
	set.add(37);	
	set.add(54);		//	collides	with	24;	must	probe	
	
	
–  quadratic	probing:	a	variation	that	moves	increasingly	far	away:	

• index	+1,	+4,	+9,	...	

– Drawbacks	of	probing?		How	does	this	change	add,	contains,	etc.?	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 11	 0	 0	 24	 54	 0	 37	 0	 49	
size	 5	 capacity	 10	

11

Clustering
• clustering:	Clumps	of	elements	at	neighboring	indexes.	

–  slows	down	the	hash	table	lookup;	you	must	loop	through	them.	
	
	
	set.add(11);	
	set.add(49);	
	set.add(24);	
	set.add(37);	
	set.add(54);		//	collides	with	24	
	set.add(14);		//	collides	with	24,	then	54	
	set.add(86);		//	collides	with	14,	then	37	
	
	
–  A	lookup	for	94	must	look	at	7	out	of	10	total	indexes.	
– Must	have	a	special	value	for	removed	elements	(tombstones).	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 11	 0	 0	 24	 54	 14	 37	 86	 49	
size	 5	 capacity	 10	

12

Separate chaining
• separate	chaining:	Solving	collisions	by	storing	a	list	at	each	index.	

–  add/search/remove	must	traverse	lists,	but	the	lists	are	short	
–  impossible	to	"run	out"	of	indexes,	unlike	with	probing	
	
	
	
	
	
	
struct	HashNode	{	
				int	data;	
				HashNode*	next;	
};	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	

13

The add operation
• How	do	we	add	an	element	to	the	hash	table?	

–  Recall:	To	modify	a	linked	list,	you	must	either	change	the	list's	front	
reference,	or	the	next	field	of	a	node	in	the	list.	

– Where	in	the	list	should	we	add	the	new	element?	
– Must	make	sure	to	avoid	duplicates.	

set.add(24);	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	24	

11	 7	 49	

new	node	

14

The contains operation
• How	do	we	search	for	an	element	in	the	hash	table?	

– Must	loop	through	the	linked	list	for	the	appropriate	hash	index,	
looking	for	the	desired	value.	

–  Recall:	Traverse	a	linked	list	with	a	"current"	node	pointer.	

set.contains(14)		//	true	
set.contains(84)		//	false	
set.contains(53)		//	false	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	

current	

15

The remove operation
• How	do	we	remove	an	element	from	the	hash	table?	

–  Cases	to	consider:	front	(24),	non-front	(14),	not	found	(94),	null	(32)	
–  To	remove	a	node	from	a	linked	list,	you	must	either	change	the	list's	
front,	or	the	next	field	of	the	previous	node	in	the	list.	

set.remove(54);	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	

current	

16

Announcements
• Calligraphy	was	released	yesterday	

– Multiple	parts,	please	start	early	(2nd	and	3rd	parts	are	harder	than	the	
1st	part)	

– No	late	days	may	be	used,	no	late	submissions	accepted	
• Final	is	a	week	from	Saturday,	at	8:30AM,	in	Cubberley	Auditorium	

–  Everything	from	the	course	is	fair	game,	emphasis	is	on	second	half	
materials	(starting	with	pointers)	

– More	information:	
https://web.stanford.edu/class/cs106b/exams/final.html		

– Wednesday	and	Thursday	next	week	will	be	final	review	
–  Practice	exam	will	be	released	on	Saturday	

• Please	give	us	feedback!	cs198.stanford.edu	

17

Exercise: HashSet
•  Implement	a	HashSet	class	that	represents	a	set	of	integers	using	
a	hash	table.	
–  Include	the	following	public	members:	

HashSet()	
add(int	value)	
clear()	
contains(int	value)	
remove(int	value)	

18

HashSet.h
struct	HashNode	{	
				int	data;	
				HashNode*	next;	
};	
	
class	HashSet	{	
public:	
				HashSet();	
				~HashSet();	
				void	add(int	value);	
				void	clear();	
				bool	isEmpty()	const;	
				bool	contains(int	value)	const;	
				void	remove(int	value);	
				int	size()	const;	
	
private:	
				HashNode**	elements;	
				int	mysize;	
				int	capacity;	
				int	getIndex(int	value)	const;	
};	

19

HashSet.cpp
#include	"HashSet.h"	
	

HashSet::HashSet()	{	
				capacity	=	10;	
				mysize	=	0;	
				elements	=	new	HashNode*[capacity]();			//	all	are	null	
}	
	

void	HashSet::add(int	value)	{	
				if	(!contains(value))	{	
								int	h	=	hashCode(value);				//	insert	at	front	of	chain	
								elements[h]	=	new	HashNode(value,	elements[h]);	
								mysize++;	
				}	
}	
	

bool	HashSet::contains(int	value)	const	{	
				HashNode*	curr	=	elements[hashCode(value)];	
				while	(curr	!=	nullptr)	{	
								if	(curr->data	==	value)	{	return	true;	}	
								curr	=	curr->next;	
				}	
				return	false;	
}	

20

HashSet.cpp 2
HashSet::~HashSet()	{	
				clear();	
				delete[]	elements;	
}	
	
void	HashSet::clear()	{	
				for	(int	i	=	0;	i	<	capacity;	i++)	{	
								while	(elements[i]	!=	nullptr)	{			//	free	all	chains	
												HashNode*	trash	=	elements[i];	
												elements[i]	=	elements[i]->next;	
												delete	trash;	
								}	
				}	
				mysize	=	0;	
}	
	
int	HashSet::getIndex(int	value)	const	{	
				return	hash(value)	%	capacity;	
}	

21

HashSet.cpp 3
void	HashSet::remove(int	value)	{	
				int	h	=	hashCode(value);	
				if	(elements[h]	!=	nullptr)	{	
								if	(elements[h]->data	==	value)	{				//	remove	from	front	
												HashNode*	trash	=	elements[h];	
												elements[h]	=	elements[h]->next;	
												mysize--;	
												delete	trash;	
								}	else	{	
												HashNode*	curr	=	elements[h];	
												while	(curr->next	!=	nullptr)	{		//	from	middle/end	
																if	(curr->next->data	==	value)	{	
																				HashNode*	trash	=	curr->next;			//	found	it	
																				curr->next	=	curr->next->next;	
																				mysize--;	
																				delete	trash;	
																				break;	
																}	
																curr	=	curr->next;	
												}	
								}	
				}	
}	

22

Rehashing
•  rehash:	Growing	to	a	larger	array	when	the	table	is	too	full.	

	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

24	

14	

54	 7	 49	11	

23

Rehashing
•  rehash:	Growing	to	a	larger	array	when	the	table	is	too	full.	

–  Cannot	simply	copy	the	old	array	to	a	new	one.		(Why	not?)	

•  load	factor:	ratio	of	(#	of	elements)	/	(hash	table	length)	
– many	implementations	rehash	when	load	factor	≅	.75	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	

54	

14	

24	 11	7	 49	

24

Rehash code
//	Grows	hash	array	to	twice	its	original	size.	
void	HashSet::rehash()	{	
				HashNode**	oldElements	=	elements;	
				int	oldCapacity	=	capacity;	
				capacity	*=	2;	
				elements	=	new	HashNode*[capacity]();	
				for	(int	i	=	0;	i	<	oldCapacity;	i++)	{	
								HashNode*	curr	=	oldElements[i];	
								while	(curr	!=	nullptr)	{	
												//	put	node	at	front	of	bucket	in	bigger	hash	table	
												HashNode*	prev	=	curr;	
												curr	=	curr->next;	
												int	newHash	=	hashCode(prev->data);	
												prev->next	=	elements[newHash];	
												elements[newHash]	=	prev;	
								}	
				}	
				delete[]	oldElements;	
}	

