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Plan for Today 
•  Implementing	the	last	data	structure	of	CS106B:	a	HashMap/
HashSet	
– What	is	hashing?	
– How	can	we	achieve	the	O(1)	add,	remove,	contains	of	a	HashSet?	
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Implementing a set 
• Consider	implementing	a	set	as	an	unfilled	array.	

– What	would	make	a	good	ordering	for	the	elements?	

•  If	we	store	them	in	the	next	available	index,	as	in	a	vector,	...	
	set.add(9);	
set.add(23);	
set.add(8);	
...	

– How	efficient	is	add?		contains?		remove?	
• O(1),	O(N),	O(N)	
• (contains	must	loop	over	the	array;		remove	must	shift	elements.)	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 9	 23	 8	 -3	 49	 12	 0	 0	 0	 0	
size	 6	 capacity	 10	
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Sorted array set 
• Suppose	we	store	the	elements	in	an	unfilled	array,	but	
in	sorted	order	rather	than	order	of	insertion.	
 set.add(9);	
set.add(23);	
set.add(8);	
set.add(-3);	
set.add(49);	
set.add(12);	

– How	efficient	is	add?		contains?		remove?	
• O(N),	O(log	N),	O(N)	
• (You	can	do	an	O(log	N)	binary	search	to	find	elements	in	contains,	
and	to	find	the	proper	index	in	add/remove;	but	add/remove	still	need	to	
shift	elements	right/left	to	make	room,	which	is	O(N)	on	average.)	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 -3	 8	 9	 12	 23	 49	 0	 0	 0	 0	
size	 6	 capacity	 10	
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A strange idea 
• Silly	idea:	When	client	adds	value	i,	store	it	at	index	i	in	the	array.	

– Would	this	work?	
–  Problems	/	drawbacks	of	this	approach?		How	to	work	around	them?	

 
set.add(7);	
set.add(1);	
set.add(9);	
...	

	
	set.add(18);	
	set.add(12);	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 1	 0	 0	 0	 0	 0	 7	 0	 9	
size	 3	 capacity	 10	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

value	 0	 1	 0	 0	 0	 0	 0	 7	 0	 9	 0	 0	 12	 0	 0	 0	 0	 0	 18	 0	

size	 5	 capacity	 20	
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Hash Functions 
• hash	function:	function	of	the	form	

int	hashCode(Type	arg);	
– must	be	deterministic	(same	input	produces	the	same	output)	
–  should	be	well-distributed	(the	numbers	produced	are	as	spread	out	
as	possible)	

	
	
	
•  Idea:	Store	any	given	element	value	in	the	index	given	by	the	hash	
function	(why	hash	functions	must	be	consistent)	
–  In	previous	slide,	our	(bad)	"hash	function"	was:		hashCode(i)	→	i.	
– Drawbacks?	

• Potentially	requires	a	large	array		(array	capacity	>	i).	
• Array	could	be	very	sparse,	mostly	empty		(memory	waste).	

	

hashCode	value	 some	number	
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Improving Space Efficiency 
•  If	any	number	is	equally	possible,	we'll	need	a	huge	array,	even	if	
we	only	have	a	couple	of	buckets	

•  Idea:	use	a	hash	function,	but	modify	the	result	to	be	within	a	much	
smaller	range	(the	size	of	the	array)	

• We	can	then	think	of	the	array	as	a	sequence	of	buckets	storing	
elements	

	
int	getIndex(Type	value)	{	
				return	hashCode(value)	%	capacity;	
}	
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Efficiency of hashing 
	int	getIndex(int	i)	{	
					return	hashCode(i)	%	capacity;	
	}	

	

–  add:	 	 	elements[getIndex(i)]	=	i;	

–  contains:	 	 	if	(elements[getIndex(i)]	==	i)	{	...	}	

–  remove: 	 	elements[getIndex(i)]	=	0;	
	
	

• Q:	What	is	the	runtime	of	add,	contains,	and	remove?	
	A.		O(1) 	B.		O(log	N) 	C.		O(N) 	D.		O(N	log	N) 	E.		O(N2)	

• Are	there	any	problems	with	this	approach?	
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Collisions 
• collision:	When	a	hash	function	maps	2	values	to	same	index.	

//	hashCode	=	abs(i)	
	
	
	set.add(11);	
	set.add(49);	
	set.add(24);	
	set.add(37);	
	set.add(54);			//	collides	with	24		:-(	
	
	
–  collision	resolution:	An	algorithm	for	fixing	collisions.	
–  A	hash	function	should	be	well-distributed	to	minimize	collisions.	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 11	 0	 0	 54	 0	 0	 37	 0	 49	
size	 5	 capacity	 10	
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Probing 
• probing:	Resolving	a	collision	by	moving	to	another	index.	

–  linear	probing:	Moves	to	the	next	available	index		(wraps	if	needed). 
	
	
	set.add(11);	
	set.add(49);	
	set.add(24);	
	set.add(37);	
	set.add(54);		//	collides	with	24;	must	probe	
	
	
–  quadratic	probing:	a	variation	that	moves	increasingly	far	away:	

• index	+1,	+4,	+9,	...	

– Drawbacks	of	probing?		How	does	this	change	add,	contains,	etc.?	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 11	 0	 0	 24	 54	 0	 37	 0	 49	
size	 5	 capacity	 10	
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Clustering 
• clustering:	Clumps	of	elements	at	neighboring	indexes.	

–  slows	down	the	hash	table	lookup;	you	must	loop	through	them.	
	
	
	set.add(11);	
	set.add(49);	
	set.add(24);	
	set.add(37);	
	set.add(54);		//	collides	with	24	
	set.add(14);		//	collides	with	24,	then	54	
	set.add(86);		//	collides	with	14,	then	37	
	
	
–  A	lookup	for	94	must	look	at	7	out	of	10	total	indexes.	
– Must	have	a	special	value	for	removed	elements	(tombstones).	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	 0	 11	 0	 0	 24	 54	 14	 37	 86	 49	
size	 5	 capacity	 10	
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Separate chaining 
• separate	chaining:	Solving	collisions	by	storing	a	list	at	each	index.	

–  add/search/remove	must	traverse	lists,	but	the	lists	are	short	
–  impossible	to	"run	out"	of	indexes,	unlike	with	probing	
	
	
	
	
	
	
struct	HashNode	{	
				int	data;	
				HashNode*	next;	
};	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	
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The add operation 
• How	do	we	add	an	element	to	the	hash	table?	

–  Recall:	To	modify	a	linked	list,	you	must	either	change	the	list's	front	
reference,	or	the	next	field	of	a	node	in	the	list.	

– Where	in	the	list	should	we	add	the	new	element?	
– Must	make	sure	to	avoid	duplicates.	

set.add(24);	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	24	

11	 7	 49	

new	node	
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The contains operation 
• How	do	we	search	for	an	element	in	the	hash	table?	

– Must	loop	through	the	linked	list	for	the	appropriate	hash	index,	
looking	for	the	desired	value.	

–  Recall:	Traverse	a	linked	list	with	a	"current"	node	pointer.	

set.contains(14)		//	true	
set.contains(84)		//	false	
set.contains(53)		//	false	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	

current	
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The remove operation 
• How	do	we	remove	an	element	from	the	hash	table?	

–  Cases	to	consider:	front	(24),	non-front	(14),	not	found	(94),	null	(32)	
–  To	remove	a	node	from	a	linked	list,	you	must	either	change	the	list's	
front,	or	the	next	field	of	the	previous	node	in	the	list.	

set.remove(54);	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

54	

14	

24	11	 7	 49	

current	
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Announcements 
• Calligraphy	was	released	yesterday	

– Multiple	parts,	please	start	early	(2nd	and	3rd	parts	are	harder	than	the	
1st	part)	

– No	late	days	may	be	used,	no	late	submissions	accepted	
• Final	is	a	week	from	Saturday,	at	8:30AM,	in	Cubberley	Auditorium	

–  Everything	from	the	course	is	fair	game,	emphasis	is	on	second	half	
materials	(starting	with	pointers)	

– More	information:	
https://web.stanford.edu/class/cs106b/exams/final.html		

– Wednesday	and	Thursday	next	week	will	be	final	review	
–  Practice	exam	will	be	released	on	Saturday	

• Please	give	us	feedback!	cs198.stanford.edu	
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Exercise: HashSet 
•  Implement	a	HashSet	class	that	represents	a	set	of	integers	using	
a	hash	table.	
–  Include	the	following	public	members:	

HashSet()	
add(int	value)	
clear()	
contains(int	value)	
remove(int	value)	



18 

HashSet.h 
struct	HashNode	{	
				int	data;	
				HashNode*	next;	
};	
	
class	HashSet	{	
public:	
				HashSet();	
				~HashSet();	
				void	add(int	value);	
				void	clear();	
				bool	isEmpty()	const;	
				bool	contains(int	value)	const;	
				void	remove(int	value);	
				int	size()	const;	
	
private:	
				HashNode**	elements;	
				int	mysize;	
				int	capacity;	
				int	getIndex(int	value)	const;	
};	
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HashSet.cpp 
#include	"HashSet.h"	
	

HashSet::HashSet()	{	
				capacity	=	10;	
				mysize	=	0;	
				elements	=	new	HashNode*[capacity]();			//	all	are	null	
}	
	

void	HashSet::add(int	value)	{	
				if	(!contains(value))	{	
								int	h	=	hashCode(value);				//	insert	at	front	of	chain	
								elements[h]	=	new	HashNode(value,	elements[h]);	
								mysize++;	
				}	
}	
	

bool	HashSet::contains(int	value)	const	{	
				HashNode*	curr	=	elements[hashCode(value)];	
				while	(curr	!=	nullptr)	{	
								if	(curr->data	==	value)	{	return	true;	}	
								curr	=	curr->next;	
				}	
				return	false;	
}	
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HashSet.cpp 2 
HashSet::~HashSet()	{	
				clear();	
				delete[]	elements;	
}	
	
void	HashSet::clear()	{	
				for	(int	i	=	0;	i	<	capacity;	i++)	{	
								while	(elements[i]	!=	nullptr)	{			//	free	all	chains	
												HashNode*	trash	=	elements[i];	
												elements[i]	=	elements[i]->next;	
												delete	trash;	
								}	
				}	
				mysize	=	0;	
}	
	
int	HashSet::getIndex(int	value)	const	{	
				return	hash(value)	%	capacity;	
}	



21 

HashSet.cpp 3 
void	HashSet::remove(int	value)	{	
				int	h	=	hashCode(value);	
				if	(elements[h]	!=	nullptr)	{	
								if	(elements[h]->data	==	value)	{				//	remove	from	front	
												HashNode*	trash	=	elements[h];	
												elements[h]	=	elements[h]->next;	
												mysize--;	
												delete	trash;	
								}	else	{	
												HashNode*	curr	=	elements[h];	
												while	(curr->next	!=	nullptr)	{		//	from	middle/end	
																if	(curr->next->data	==	value)	{	
																				HashNode*	trash	=	curr->next;			//	found	it	
																				curr->next	=	curr->next->next;	
																				mysize--;	
																				delete	trash;	
																				break;	
																}	
																curr	=	curr->next;	
												}	
								}	
				}	
}	
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Rehashing 
•  rehash:	Growing	to	a	larger	array	when	the	table	is	too	full.	

	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

24	

14	

54	 7	 49	11	
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Rehashing 
•  rehash:	Growing	to	a	larger	array	when	the	table	is	too	full.	

–  Cannot	simply	copy	the	old	array	to	a	new	one.		(Why	not?)	

•  load	factor:	ratio	of	(#	of	elements	)	/	(hash	table	length	)	
– many	implementations	rehash	when	load	factor	≅	.75	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	

54	

14	

24	 11	7	 49	
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Rehash code 
//	Grows	hash	array	to	twice	its	original	size.	
void	HashSet::rehash()	{	
				HashNode**	oldElements	=	elements;	
				int	oldCapacity	=	capacity;	
				capacity	*=	2;	
				elements	=	new	HashNode*[capacity]();	
				for	(int	i	=	0;	i	<	oldCapacity;	i++)	{	
								HashNode*	curr	=	oldElements[i];	
								while	(curr	!=	nullptr)	{	
												//	put	node	at	front	of	bucket	in	bigger	hash	table	
												HashNode*	prev	=	curr;	
												curr	=	curr->next;	
												int	newHash	=	hashCode(prev->data);	
												prev->next	=	elements[newHash];	
												elements[newHash]	=	prev;	
								}	
				}	
				delete[]	oldElements;	
}	


