CS 106B, Lecture 26
Hashing

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Implementing the last data structure of CS106B: a HashMap/
HashSet

— What is hashing?
— How can we achieve the O(1) add, remove, contains of a HashSet?

Implementing a set

e Consider implementing a set as an unfilled array.
— What would make a good ordering for the elements?

e |f we store them in the next available index, as in a vector, ...

set.add(9);
set.add(23);

set.add(8); value| 9 | 23| 8 | -3 49|12
toe size 6 capacity 10

— How efficient is add? contains? remove?
* O(1), O(N), O(N)
e (contains must loop over the array; remove must shift elements.)

Sorted array set

e Suppose we store the elements in an unfilled array, but
in sorted order rather than order of insertion.

set.add(9);
set.add(23);
set.add(8);
set.add(-3); value| -3 | 8 | 9 | 12|23 |49
set.add(49); size. 6 capacity 10
set.add(12);

— How efficient is add? contains? remove?
* O(N), O(log N), O(N)
e (You can do an O(log N) binary search to find elements in contains,

and to find the proper index in add/remove; but add/remove still need to
shift elements right/left to make room, which is O(N) on average.)

A strange idea

e Silly idea: When client adds value i, store it at index 1 in the array.
— Would this work?

— Problems / drawbacks of this approach? How to work around them?

set.add(7);
set.add(1);
set.add(9);

value 1 7 9

size 3 capacity 10

set.add(18);
set.add(12);

value 1 7 9 12 18

size 5 capacity 20

e hash function: function of the form

int hashCode(Type arg);
— must be deterministic (same input produces the same output)

— should be well-distributed (the numbers produced are as spread out
as possible)

v

value > hashCode some number

e /dea: Store any given element value in the index given by the hash
function (why hash functions must be consistent)
— In previous slide, our (bad) "hash function" was: hashCode(i) — i.
— Drawbacks?

e Potentially requires a large array (array capacity > i).
e Array could be very sparse, mostly empty (memory waste). 6

Improving Space Efficiency

e If any number is equally possible, we'll need a huge array, even if
we only have a couple of buckets

e |dea: use a hash function, but modify the result to be within a much
smaller range (the size of the array)

e \We can then think of the array as a sequence of buckets storing
elements

int getIndex(Type value) {
return hashCode(value) % capacity;

Efficiency of hashing

int getIndex(int i) {
return hashCode(i) % capacity;

}

— add: elements[getIndex(i)] = i;

— contains: if (elements[getIndex(i)] ==1i) { ... }
— remove: elements[getIndex(i)] = ©;

e Q: What is the runtime of add, contains, and remove?
A. O(1) B. O(logN) C.O(N) D.O(NlogN) E. O(N?)

e Are there any problems with this approach?

e collision: When a hash function maps 2 values to same index.
// hashCode = abs(i)

set.add(11);

set.add(49); value 11 54 37 49
set.add(24); size 5 capacity 10

set.add(37);

set.add(54); // collides with 24 :-(

— collision resolution: An algorithm for fixing collisions.
— A hash function should be well-distributed to minimize collisions.

Probing

e probing: Resolving a collision by moving to another index.
— linear probing: Moves to the next available index (wraps if needed).

set.add(11);

/ 11 24 | 54
set.add(49); vare 3 19
set.add(24); size 5 capacity 10
set.add(37);

set.add(54); // collides with 24; must probe

— quadratic probing: a variation that moves increasingly far away:
e index +1, +4, 49, ...

— Drawbacks of probing? How does this change add, contains, etc.?

10

e clustering: Clumps of elements at neighboring indexes.

— slows down the hash table lookup; you must loop through them.

set
set
set
set
set
set
set

.add(11);
.add(49);
.add(24);
.add(37);
.add(54);
.add(14);
.add(86);

//
//
//

value 11 24 154 (14|37 |86 |49
size 5 capacity 10

collides with 24
collides with 24, then 54
collides with 14, then 37

— A lookup for 94 must look at 7 out of 10 total indexes.
— Must have a special value for removed elements (tombstones).

11

Separate chaining

e separate chaining: Solving collisions by storing a list at each index.
— add/search/remove must traverse lists, but the lists are short
— impossible to "run out"” of indexes, unlike with probing

index 0 1 2 3 4 5 6 7 8 9

value /// 1 /////// 1 /// /// 1 /// 1
11 24 7 49

1

54

struct HashNode {
int data; 1

* .
HashNode* next; 14

s

12

The add operation

e How do we add an element to the hash table?

— Recall: To modify a linked list, you must either change the list's front
reference, or the next field of a node in the list.

— Where in the list should we add the new element?
— Must make sure to avoid duplicates.

index 0 1 2 3 4 5 6 7 8 9

va/ue/|///|//l/l

! . ! !
11 54 7 49

set.add(24);

new node | 24 14

13

The contains operation

e How do we search for an element in the hash table?

— Must loop through the linked list for the appropriate hash index,
looking for the desired value.

— Recall: Traverse a linked list with a "current” node pointer.

index 0 1 2 3 4 5 6 7 8 9

value |)\ A LA L

v v v v

11 / 24 7 49
set.contains(14) // true current — | >4
set.contains(84) // false \ y
set.contains(53) // false 14

14

The remove operation

e How do we remove an element from the hash table?

— Cases to consider: front (24), non-front (14), not found (94), null (32)

— To remove a node from a linked list, you must either change the list's
front, or the next field of the previous node in the list.

index | 0 | 1| 2 41516171819

3
value | | | L L L

v v v v
11 / 24 7 49
current 54
set.remove(54);

14

15

Announcements

e Calligraphy was released yesterday
— Multiple parts, please start early (2" and 3 parts are harder than the
15t part)
— No late days may be used, no late submissions accepted
e Final is a week from Saturday, at 8:30AM, in Cubberley Auditorium

— Everything from the course is fair game, emphasis is on second half
materials (starting with pointers)

— More information:
https://web.stanford.edu/class/cs106b/exams/final.html

— Wednesday and Thursday next week will be final review

— Practice exam will be released on Saturday

e Please give us feedback! cs198.stanford.edu

16

Exercise: HashSet

e Implement a HashSet class that represents a set of integers using
a hash table.

— Include the following public members:

HashSet ()

add(int value)
clear()
contains(int value)
remove(int value)

17

struct HashNode {
int data;
HashNode* next;

s

class HashSet {
public:
HashSet();
~HashSet();
void add(int value);
void clear();
bool isEmpty() const;
bool contains(int value) const;
void remove(int value);
int size() const;

private:
HashNode** elements;
int mysize;
int capacity;
int getIndex(int value) const;

s

18

HashSet.cpp

#include "HashSet.h"

HashSet: :HashSet() {
capacity = 10;
mysize =
elements

.
J

new HashNode*[capacity](); // all are null

N © 1

}

void HashSet::add(int value) {
if (!contains(value)) {

int h = hashCode(value); // insert at front of chain
elements[h] = new HashNode(value, elements[h]);
mysize++;

¥

bool HashSet::contains(int value) const {
HashNode* curr = elements[hashCode(value)];
while (curr != nullptr) {
if (curr->data == value) { return true; }
curr = curr->next;

}

return false;

19

HashSet.cpp 2

HashSet: :~HashSet() {
clear();
delete[] elements;

¥

void HashSet::clear() {
for (int i = @; i < capacity; i++) {
while (elements[i] != nullptr) { // free all chains
HashNode* trash = elements[i];
elements[i] = elements[i]->next;
delete trash;

}
}
mysize = 0;

}

int HashSet::getIndex(int value) const {
return hash(value) % capacity;
}

20

HashSet.cpp 3

void HashSet::remove(int value) {
int h = hashCode(value);
if (elements[h] != nullptr) {
if (elements[h]->data == value) { // remove from front
HashNode* trash = elements[h];
elements[h] = elements[h]->next;

mysize--;
delete trash;
} else {

HashNode* curr = elements[h];
while (curr->next != nullptr) { // from middle/end
if (curr->next->data == value) {
HashNode* trash = curr->next; // found it
curr->next = curr->next->next;

mysize--;
delete trash;
break;

}

curr = curr->next;

Rehashing

e rehash: Growing to a larger array when the table is too full.

o 1 2 3 4 5 6 7 8 9 10
/1//1//1/
11 54 7 49
24
14

22

Rehashing

e rehash: Growing to a larger array when the table is too full.
— Cannot simply copy the old array to a new one. (Why not?)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
////1//1/ /1//1/////
24 7 1;9 11 54
l
14

e load factor: ratio of (# of elements) / (hash table length)
— many implementations rehash when load factor = .75

23

Rehash code

// Grows hash array to twice its original size.
void HashSet::rehash() {
HashNode** oldElements = elements;
int oldCapacity = capacity;
capacity *= 2;
elements = new HashNode*[capacity]();
for (int 1 = 0; i < oldCapacity; i++) {
HashNode* curr = oldElements[i];
while (curr != nullptr) {
// put node at front of bucket in bigger hash table
HashNode* prev = curr;
curr = curr->next;
int newHash = hashCode(prev->data);
prev->next = elements[newHash];
elements[newHash] = prev;

}
}
delete[] oldElements;

24

