
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	27	
Advanced	Hashing	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Discuss	how	HashMaps	differ	from	HashSets	
• Another	implementation	for	HashSet/Map:	Cuckoo	Hashing!	
• Discuss	qualities	of	a	good	hash	function.	
• Learn	about	another	application	for	hashing:	cryptography.	



3 

Hash map (15.4) 

• A	hash	map	is	like	a	set	where	the	nodes	store	key/value	pairs:	
	

	
	
	
	
	
	
	
	//							key	(ID)		value	(name)	
	map.put(51234562,	"Ashley");	
	map.put(62756179,	"Amy");	
	map.put(54727849,	"Marty");	
	map.put(46281955,	"Seth");	
	
– Must	modify	the	HashNode	class	to	store	a	key	and	a	value	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

62756179	 Amy	46281955	 Seth	51234562	 Ashley	

54727849	 Marty	



4 

Hash map vs. hash set 
–  The	hashing	is	always	done	on	the	keys,	not	the	values.	
–  The	contains	function	is	now	containsKey;	there	and	in	remove,	
you	search	for	a	node	whose	key	matches	a	given	key.	

–  The	add	method	is	now	put;	if	the	given	key	is	already	there,	you	must	
replace	its	old	value	with	the	new	one.	
	map.put(54727849,	"Chris");			//	replace	Marty	with	Chris	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

62756179	 Amy	46281955	 Seth	51234562	 Ashley	

54727849	 Marty	Chris	



5 

Another Way to Hash 
• Fun	(but	soon	to	be	relevant)	fact:	cuckoo	birds	lay	their	eggs	in	
other	birds’	nests	

Source:	wikimedia	



6 

Cuckoo Hashing 
• What	if	we	made	contains	really	fast	(look	at	at	most	two	elements,	
no	matter	what)?	

•  	Idea:	have	two	arrays	that	store	elements,	where	each	array	has	its	
own	hash	function	

• Try	hashing	the	element	into	both	arrays,	and	put	it	in	an	empty	
space	

•  If	no	space	is	empty,	kick	out	one	of	the	existing	elements	and	
move	it	to	the	other	array.		

• Contains	just	checks	the	corresponding	spot	in	both	arrays	
• Slower	add,	but	faster	contains	



7 

Cuckoo Hashing 
Insert:	3	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



8 

Cuckoo Hashing 

3	

Insert:	3	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



9 

Cuckoo Hashing 

3	

Insert:	6	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



10 

Cuckoo Hashing 

3	 6	

Insert:	6	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



11 

Cuckoo Hashing 

3	 6	

Insert:	5	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



12 

Cuckoo Hashing 

3	 6	

5	

Insert:	5	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



13 

Cuckoo Hashing 

3	 6	

5	

Insert:	7	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



14 

Cuckoo Hashing 

3	 6	

7	

Insert:	7	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	

5	



15 

Cuckoo Hashing 

3	

5	

6	

7	

Insert:	7	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



16 

Cuckoo Hashing 

3	

5	

6	

7	

Search	for	7	(look	in	both	arrays)	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	



17 

Cuckoo Hashing 
• What	are	the	advantages	or	disadvantages	of	cuckoo	hashing	
versus	resolving	collisions	through	chaining?	

• What	do	we	need	to	watch	out	for?	When	should	we	rehash?	



18 

Announcements 
• Calligraphy	announcements	

–  Should	start	the	3rd	part	today	or	tomorrow	at	the	latest	
–  Starter	code	and	Windows	–	please	redownload	
– No	late	days	may	be	used,	no	late	submissions	accepted	

• Last	class	tomorrow	–	go	to	poll.ly/#/LdVNgWyo/G6z0awRv	
• Final	is	a	on	Saturday,	at	8:30AM,	in	Cubberley	Auditorium	

–  Everything	from	the	course	through	today	is	fair	game,	emphasis	is	on	
second	half	materials	(starting	with	pointers)	

– More	information:	
https://web.stanford.edu/class/cs106b/exams/final.html		

–  Practice	exam	is	online	–	not	guaranteed	to	match	in	format,	etc.	
– Wednesday	and	Thursday	will	be	final	review	

• Please	give	us	feedback!	cs198.stanford.edu	



19 

Hashing strings 

•  It	is	easy	to	hash	an	integer	i	(use	index	abs(i)	%	length	).	
– How	can	we	hash	other	types	of	values	(such	as	strings)?	

•  If	we	could	convert	strings	into	integers,	we	could	hash	them.	
– What	kind	of	integer	is	appropriate	for	a	given	string?	
– Does	it	matter	what	integer	we	choose?		What	should	it	be	based	on?	

index	 0	 1	 2	 3	 4	 5	 6	 7	

character	 'H'	 'i'	 '	'	 'D'	 '0'	 '0'	 'd'	 '!'	



20 

hashCode consistency 
• A	valid	hashCode	function	must	be	consistent	
(must	produce	same	results	on	each	call)	
	

	hashCode(x)	==	hashCode(x),	if	x's	state	doesn't	change	



21 

hashCode and equality 
• A	valid	hashCode	function	must	be	consistent	with	equality.	

a	==	b	must	imply	that	hashCode(a)	==	hashCode(b)	.	
Vector<int> v1;   Vector<int> v2; 
v1.add(1);    v2.add(3); 
v1.add(3);    v2.insert(0, 1); 
// hashCode(v1) == hashCode(v2) 
 
 
 
 
 
 

 
	
a	!=	b does	NOT	necessarily	imply	that		

hashCode(a)	!=	hashCode(b)  (why	not?)	



22 

hashCode distribution 
• A		good	hashCode	function	is	well-distributed.	

–  For	a	large	set	of	distinct	values,	they	should	generally	return	unique	
hash	codes	rather	than	often	colliding	into	the	same	hash	bucket.	

–  This	property	is	desired	but	not	required.		Why?	



23 

Possible hashCode 1 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#1	
				return	42;	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	



24 

Possible hashCode 2 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#2	
				return	randomInteger(0,	9999999);	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	



25 

Possible hashCode 3 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#3	
				return	(int)	&s;			//	address	of	s	(a	pointer)	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	



26 

Possible hashCode 4 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#4	
				return	s.length();	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	



27 

Possible hashCode 5 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#5	
				if	(s.length()	>	0)	{	
								return	(int)	s[0];			//	ascii	of	1st	char	
				}	else	{	
								return	0;	
				}	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	



28 

Possible hashCode 6 
•  This	function	sums	the	characters'	ASCII	values.	

–  Is	it	valid?	Is	it	good?	
– What	will	collide?	
	
int	hashCode(string	s)	{	//	#6	
				int	hash	=	0;	
				for	(int	i	=	0;	i	<	s.length();	i++)	{	
								hash	+=	(int)	s[i];			//	ASCII	of	char	
				}	
				return	hash;	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	



29 

Measuring collisions 
• Hash	function	=	sum	of	characters	of	string.	
• Add	50,000,000	article	titles	to	a	hash	map	with	50,000	buckets:	



30 

Idea: Weighted sum 
hash	=	s[0]	+	s[1]	+	s[2]	+	...	+	s[n]	

•  Instead	of	adding,	let's	give	each	character	a	weight.	
– Multiply	it	by	increasing	powers	of	some	prime	number;		say,	31.	
–  This	helps	spread	the	strings'	hash	codes	over	the	range	of	int	values.	

hash	=	s[0]	+	(31	*	s[1])	+	(312	*	s[2])	+	...	+	(31n	*	s[n])	



31 

hashCode for strings 
int	hashCode(string	s)	{	
				int	hash	=	5381;	
				for	(int	i	=	0;	i	<	(int)	s.length();	i++)	{	
								hash	=	31	*	hash	+	(int)	s[i];	
				}	
				return	hash;	
}	
	
	
–  FYI:		The	above	is	the	actual	hash	function	used	for	strings	in	Java.	

–  As	with	any	general	hashing	function,	collisions	are	possible.	
• Example:	"Ea"	and	"FB"	have	the	same	hash	value.	



32 

Measuring collisions 
• Hash	function	=	sum	of	characters	of	string,	multiplying	by	31.	
• Add	50,000,000	article	titles	to	a	hash	map	with	50,000	buckets:	



33 

Hashing structs/objects 
• By	default	you	cannot	add	your	own	structs/objects	to	hash	sets.	

– Our	libraries	don't	know	how	to	hash	these	objects.	
	
struct	Point	{	
				int	x;	
				int	y;	

				...	

};	
	
HashSet<Point>	hset;	
Point	p	{17,	35};	
hset.add(p);	
	
ERROR:	no	matching	function	for	call	to	
'hashCode(const	Point&)'	



34 

Hashing structs/objects 
• To	make	your	own	types	hashable	by	our	libraries:	

–  1)	Overload	the	==	operator.	
–  2)	Write	a	hashCode	function	that	takes	your	type	as	its	parameter.	

• "Add	up"	the	object's	state;	scale/multiply	parts	to	distribute	the	results.	
	

struct	Point	{	
				int	x;	
				int	y;	

				...	

};	
	

int	hashCode(const	Point&	p)	{	
				return	1337	*	p.y	+	31	*	p.x;	
}	
	

bool	operator	==(const	Point&	p1,	const	Point&	p2)	{	
				return	p1.x	==	p2.x	&&	p1.y	==	p2.y;	
}	



35 

Hashing and Passwords 
• We	want	to	store	a	file	of	user	passwords	

– When	a	user	types	a	password,	see	if	it	matches	our	file	
• Problem:	anyone	who	can	see	our	file	can	get	all	the	passwords	

User   Password 
Ashley   password123 

Shreya   traceComics 
Seth   ki88leLuv 



36 

Hashing and Passwords 
• What	if	we	stored	a	unique	code	for	each	password	instead	of	the	
string?	
– Hashing!	

• Extra	requirements	for	the	hash	function:	
– Want	a	large	number	of	possible	values	(hard	to	find	collisions)	
–  Can’t	find	the	password	from	the	hash	(one-way)	
– Generally	use	a	different	hash	function	(e.g.	SHA-256)	

• The	need	for	salting	
User   Password 
Ashley   17851691385 

Marty   63158910316 
Amy    90713593110 



37 

Hashing and Data Integrity 
• A	common	"attack"	in	cryptography	is	man-in-the-middle	
• How	can	you	ensure	that	a	hacker	didn't	interfere	with	the	data?	
• Get	the	hash	from	a	trusted	source	–	since	hash	functions	only	
rarely	have	collisions,	changes	to	data	will	lead	to	a	different	hash	


