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Plan for Today

e Discuss how HashMaps differ from HashSets

e Another implementation for HashSet/Map: Cuckoo Hashing!
e Discuss qualities of a good hash function.

e Learn about another application for hashing: cryptography.



Hash map (15.4)

e A hash map is like a set where the nodes store key/value pairs:

index 0 1 2 3 4 5 6 7 8 9

value | N\ L

v v v
51234562 | Ashley || 46281955 | Seth 62756179 | Amy

A

54727849 | Marty

// key (ID) value (name)
map.put(51234562, "Ashley");
map.put(62756179, "Amy");
map.put (54727849, "Marty");
map.put (46281955, "Seth");

— Must modify the HashNode class to store a key and a value



Hash map vs. hash set

— The hashing is always done on the keys, not the values.

— The contains function is now containsKey; there and in remove,
you search for a node whose key matches a given key.

— The add method is now put; if the given key is already there, you must
replace its old value with the new one.
map.put (54727849, "Chris"); // replace Marty with Chris

index 0 1 2 3 4 5 6 7 8 9

value | N LN L LU

v v v
51234562 | Ashley || 46281955 | Seth 62756179 | Amy

A 4

54727849 | Shaity




Another Way to Hash

e Fun (but soon to be relevant) fact: cuckoo birds lay their eggs in
other birds’ nests

Source: wikimedia




Cuckoo Hashing

e What if we made contains really fast (look at at most two elements,
no matter what)?

e |dea: have two arrays that store elements, where each array has its
own hash function

e Try hashing the element into both arrays, and put it in an empty
space

e |f no space is empty, kick out one of the existing elements and
move it to the other array.

e Contains just checks the corresponding spot in both arrays
e Slower add, but faster contains



Cuckoo Hashing

Insert: 3

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4



Cuckoo Hashing

Insert: 3

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4



Cuckoo Hashing

Insert: 6

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4



Cuckoo Hashing

Insert: 6

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

Insert: 5

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

Insert: 5

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

Insert: 7

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

Insert: 7

</5 7

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

Insert: 7

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

Search for 7 (look in both arrays)

s

Hash Function: 3x % 4 Hash Function: (2x + 1) % 4
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Cuckoo Hashing

e What are the advantages or disadvantages of cuckoo hashing
versus resolving collisions through chaining?

e \What do we need to watch out for? When should we rehash?
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Announcements

e Calligraphy announcements
— Should start the 3™ part today or tomorrow at the latest
— Starter code and Windows — please redownload
— No late days may be used, no late submissions accepted

e Last class tomorrow — go to poll.ly/#/LdVNgWyo/G6z0awRv

e Final is a on Saturday, at 8:30AM, in Cubberley Auditorium

— Everything from the course through today is fair game, emphasis is on
second half materials (starting with pointers)

— More information:
https://web.stanford.edu/class/cs106b/exams/final.html

— Practice exam is online — not guaranteed to match in format, etc.

— Wednesday and Thursday will be final review

e Please give us feedback! cs198.stanford.edu
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Hashing strings

e |t is easy to hash an integer i (use index abs(i) % length ).
— How can we hash other types of values (such as strings)?

e If we could convert strings into integers, we could hash them.
— What kind of integer is appropriate for a given string?
— Does it matter what integer we choose? What should it be based on?

index 0 1 2 3 4 5 6 7

character | 'H" | "1 | " "|'D'|'@"['@" | 'd"| "I’
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hashCode consistency

e A valid hashCode function must be consistent
(must produce same results on each call)

hashCode(x) == hashCode(x), if x's state doesn't change

"stantord ->-—7 Ol
‘slarford .,-v 314
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hashCode and equality

e A valid hashCode function must be consistent with equality.
a == b must imply that hashCode(a) == hashCode(b) .

Vector<int> vl; Vector<int> v2;
vl.add(1l) ; v2.add (3) ;
vl.add (3) ; v2.insert (0, 1) ;
// hashCode (vl) == hashCode (v2)
“sianford S 3y
band”
"mantis S ['2
C w2
Shrinp

a != b does NOT necessarily imply that

hashCode(a) != hashCode(b) (why not?) o,



hashCode distribution

e A good hashCode function is well-distributed.

— For a large set of distinct values, they should generally return unique
hash codes rather than often colliding into the same hash bucket.

— This property is desired but not required. Why?

"CUCkOOH r %

hashing -

"john !

coltrane

"mantis 11
Shrmp"

“stanford — ) 3l
band" Lﬁj
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Possible hashCode 1

e Q: Is this a valid hash function? Is it good? 0 1 2 3 4 5 6 7

H|1 Dle|o|d|!

int hashCode(string s) { // #1
return 42;

}
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Possible hashCode 2

e Q: Is this a valid hash function? Is it good? 0 1 2 3 4 5 6 7

H|1 Dle|o|d|!

int hashCode(string s) { // #2
return randomInteger(0, 9999999);

}
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Possible hashCode 3

e Q: Is this a valid hash function? Is it good? 0 1 2 3 4 5 6 7

H|1 Dle|o|d|!

int hashCode(string s) { // #3
return (int) &s; // address of s (a pointer)

}
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Possible hashCode 4

e Q: Is this a valid hash function? Is it good? 0 1 2 3 4 5 6 7

H|1 Dle|o|d|!

int hashCode(string s) { // #4
return s.length();

}
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Possible hashCode 5

e Q: Is this a valid hash function? Is it good? 0 1 2 3 4 5 6 7

H|1 Dle|o|d|!

int hashCode(string s) { // #5
if (s.length() > 0) {
return (int) s[0]; // ascii of 1lst char
} else {
return 9;

¥
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Possible hashCode 6

e This function sums the characters' ASCII values. 0 1 2 3 4 5 6 7

— Is it valid? Is it good?
— What will collide?

int hashCode(string s) { // #6
int hash = 0;
for (int 1 = 0; 1 < s.length(); i++) {
hash += (int) s[i]; // ASCII of char
}

return hash;
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Measuring collisions

e Hash function = sum of characters of string.
e Add 50,000,000 article titles to a hash map with 50,000 buckets:

& HashMap

Each pixel is one Jo@d2 4
bucket H:E3 W5

Number of collisions
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Idea: Weighted sum

hash =s[0] + s[1] + s[2] + ... + s[n]

e Instead of adding, let's give each character a weight.
— Multiply it by increasing powers of some prime number; say, 31.
— This helps spread the strings' hash codes over the range of int values.

hash =s[0] + (31 * s[1]) + (312 * s[2]) + ... + (31" * s[n])
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hashCode for strings

int hashCode(string s) {
int hash = 5381;
for (int 1 = 0; 1 < (int) s.length(); i++) {
hash = 31 * hash + (int) s[i];
}

return hash;

— FYI: The above is the actual hash function used for strings in Java.

— As with any general hashing function, collisions are possible.
e Example: "Ea" and "FB" have the same hash value.
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Measuring collisions

e Hash function = sum of characters of string, multiplying by 31.
e Add 50,000,000 article titles to a hash map with 50,000 buckets:

o HashMap
X v y A . o --1"..'. .:" ,.:?.r-- . qm
R b
e e e Sy iR e
g . b :

Dom2 04
B103 B>-=5

Number of collisions
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Hashing structs/objects

e By default you cannot add your own structs/objects to hash sets.
— QOur libraries don't know how to hash these objects.

struct Point {
int x;
int y;

s

HashSet<Point> hset;
Point p {17, 35};
hset.add(p);

ERROR: no matching function for call to
*hashCode(const Point&)'
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Hashing structs/objects

e To make your own types hashable by our libraries:
— 1) Overload the == operator.

— 2) Write a hashCode function that takes your type as its parameter.
e "Add up" the object's state; scale/multiply parts to distribute the results.

struct Point {
int x;
int y;

s

int hashCode(const Point& p) {
return 1337 * p.y + 31 * p.x;
}

bool operator ==(const Point& pl, const Point& p2) {
return pl.x == p2.x && pl.y == p2.y;
} 34



Hashing and Passwords

e \We want to store a file of user passwords

— When a user types a password, see if it matches our file

e Problem: anyone who can see our file can get all the passwords

User
Ashley
Shreya
Seth

Password
passwordl23
traceComics
ki88lelLuv
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Hashing and Passwords

e What if we stored a unique code for each password instead of the

string?
— Hashing!

e Extra requirements for the hash function:

— Want a large number of possible values (hard to find collisions)

— Can’t find the password from the hash (one-way)

— Generally use a different hash function (e.g. SHA-256)

e The need for salting

User
Ashley
Marty
Amy

Password

17851691385
63158910316
90713593110
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Hashing and Data Integrity

e A common "attack" in cryptography is man-in-the-middle
e How can you ensure that a hacker didn't interfere with the data?

e Get the hash from a trusted source — since hash functions only
rarely have collisions, changes to data will lead to a different hash
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