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Plan for Today 
• Discuss	how	HashMaps	differ	from	HashSets	
• Another	implementation	for	HashSet/Map:	Cuckoo	Hashing!	
• Discuss	qualities	of	a	good	hash	function.	
• Learn	about	another	application	for	hashing:	cryptography.	
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Hash map (15.4) 

• A	hash	map	is	like	a	set	where	the	nodes	store	key/value	pairs:	
	

	
	
	
	
	
	
	
	//							key	(ID)		value	(name)	
	map.put(51234562,	"Ashley");	
	map.put(62756179,	"Amy");	
	map.put(54727849,	"Marty");	
	map.put(46281955,	"Seth");	
	
– Must	modify	the	HashNode	class	to	store	a	key	and	a	value	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

62756179	 Amy	46281955	 Seth	51234562	 Ashley	

54727849	 Marty	
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Hash map vs. hash set 
–  The	hashing	is	always	done	on	the	keys,	not	the	values.	
–  The	contains	function	is	now	containsKey;	there	and	in	remove,	
you	search	for	a	node	whose	key	matches	a	given	key.	

–  The	add	method	is	now	put;	if	the	given	key	is	already	there,	you	must	
replace	its	old	value	with	the	new	one.	
	map.put(54727849,	"Chris");			//	replace	Marty	with	Chris	

index	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	
value	

62756179	 Amy	46281955	 Seth	51234562	 Ashley	

54727849	 Marty	Chris	
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Another Way to Hash 
• Fun	(but	soon	to	be	relevant)	fact:	cuckoo	birds	lay	their	eggs	in	
other	birds’	nests	

Source:	wikimedia	
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Cuckoo Hashing 
• What	if	we	made	contains	really	fast	(look	at	at	most	two	elements,	
no	matter	what)?	

•  	Idea:	have	two	arrays	that	store	elements,	where	each	array	has	its	
own	hash	function	

• Try	hashing	the	element	into	both	arrays,	and	put	it	in	an	empty	
space	

•  If	no	space	is	empty,	kick	out	one	of	the	existing	elements	and	
move	it	to	the	other	array.		

• Contains	just	checks	the	corresponding	spot	in	both	arrays	
• Slower	add,	but	faster	contains	
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Cuckoo Hashing 
Insert:	3	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	

Insert:	3	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	

Insert:	6	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	 6	

Insert:	6	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	 6	

Insert:	5	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	 6	

5	

Insert:	5	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	 6	

5	

Insert:	7	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	 6	

7	

Insert:	7	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	

5	
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Cuckoo Hashing 

3	

5	

6	

7	

Insert:	7	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 

3	

5	

6	

7	

Search	for	7	(look	in	both	arrays)	

Hash	Function:	3x	%	4	 Hash	Function:	(2x	+	1)	%	4	
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Cuckoo Hashing 
• What	are	the	advantages	or	disadvantages	of	cuckoo	hashing	
versus	resolving	collisions	through	chaining?	

• What	do	we	need	to	watch	out	for?	When	should	we	rehash?	
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Announcements 
• Calligraphy	announcements	

–  Should	start	the	3rd	part	today	or	tomorrow	at	the	latest	
–  Starter	code	and	Windows	–	please	redownload	
– No	late	days	may	be	used,	no	late	submissions	accepted	

• Last	class	tomorrow	–	go	to	poll.ly/#/LdVNgWyo/G6z0awRv	
• Final	is	a	on	Saturday,	at	8:30AM,	in	Cubberley	Auditorium	

–  Everything	from	the	course	through	today	is	fair	game,	emphasis	is	on	
second	half	materials	(starting	with	pointers)	

– More	information:	
https://web.stanford.edu/class/cs106b/exams/final.html		

–  Practice	exam	is	online	–	not	guaranteed	to	match	in	format,	etc.	
– Wednesday	and	Thursday	will	be	final	review	

• Please	give	us	feedback!	cs198.stanford.edu	
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Hashing strings 

•  It	is	easy	to	hash	an	integer	i	(use	index	abs(i)	%	length	).	
– How	can	we	hash	other	types	of	values	(such	as	strings)?	

•  If	we	could	convert	strings	into	integers,	we	could	hash	them.	
– What	kind	of	integer	is	appropriate	for	a	given	string?	
– Does	it	matter	what	integer	we	choose?		What	should	it	be	based	on?	

index	 0	 1	 2	 3	 4	 5	 6	 7	

character	 'H'	 'i'	 '	'	 'D'	 '0'	 '0'	 'd'	 '!'	
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hashCode consistency 
• A	valid	hashCode	function	must	be	consistent	
(must	produce	same	results	on	each	call)	
	

	hashCode(x)	==	hashCode(x),	if	x's	state	doesn't	change	
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hashCode and equality 
• A	valid	hashCode	function	must	be	consistent	with	equality.	

a	==	b	must	imply	that	hashCode(a)	==	hashCode(b)	.	
Vector<int> v1;   Vector<int> v2; 
v1.add(1);    v2.add(3); 
v1.add(3);    v2.insert(0, 1); 
// hashCode(v1) == hashCode(v2) 
 
 
 
 
 
 

 
	
a	!=	b does	NOT	necessarily	imply	that		

hashCode(a)	!=	hashCode(b)  (why	not?)	
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hashCode distribution 
• A		good	hashCode	function	is	well-distributed.	

–  For	a	large	set	of	distinct	values,	they	should	generally	return	unique	
hash	codes	rather	than	often	colliding	into	the	same	hash	bucket.	

–  This	property	is	desired	but	not	required.		Why?	
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Possible hashCode 1 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#1	
				return	42;	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	
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Possible hashCode 2 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#2	
				return	randomInteger(0,	9999999);	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	
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Possible hashCode 3 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#3	
				return	(int)	&s;			//	address	of	s	(a	pointer)	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	
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Possible hashCode 4 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#4	
				return	s.length();	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	
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Possible hashCode 5 
• Q:	Is	this	a	valid	hash	function?	Is	it	good?	
	
int	hashCode(string	s)	{	//	#5	
				if	(s.length()	>	0)	{	
								return	(int)	s[0];			//	ascii	of	1st	char	
				}	else	{	
								return	0;	
				}	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	
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Possible hashCode 6 
•  This	function	sums	the	characters'	ASCII	values.	

–  Is	it	valid?	Is	it	good?	
– What	will	collide?	
	
int	hashCode(string	s)	{	//	#6	
				int	hash	=	0;	
				for	(int	i	=	0;	i	<	s.length();	i++)	{	
								hash	+=	(int)	s[i];			//	ASCII	of	char	
				}	
				return	hash;	
}	

0	 1	 2	 3	 4	 5	 6	 7	

H	 i	 		 D	 0	 0	 d	 !	
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Measuring collisions 
• Hash	function	=	sum	of	characters	of	string.	
• Add	50,000,000	article	titles	to	a	hash	map	with	50,000	buckets:	
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Idea: Weighted sum 
hash	=	s[0]	+	s[1]	+	s[2]	+	...	+	s[n]	

•  Instead	of	adding,	let's	give	each	character	a	weight.	
– Multiply	it	by	increasing	powers	of	some	prime	number;		say,	31.	
–  This	helps	spread	the	strings'	hash	codes	over	the	range	of	int	values.	

hash	=	s[0]	+	(31	*	s[1])	+	(312	*	s[2])	+	...	+	(31n	*	s[n])	
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hashCode for strings 
int	hashCode(string	s)	{	
				int	hash	=	5381;	
				for	(int	i	=	0;	i	<	(int)	s.length();	i++)	{	
								hash	=	31	*	hash	+	(int)	s[i];	
				}	
				return	hash;	
}	
	
	
–  FYI:		The	above	is	the	actual	hash	function	used	for	strings	in	Java.	

–  As	with	any	general	hashing	function,	collisions	are	possible.	
• Example:	"Ea"	and	"FB"	have	the	same	hash	value.	
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Measuring collisions 
• Hash	function	=	sum	of	characters	of	string,	multiplying	by	31.	
• Add	50,000,000	article	titles	to	a	hash	map	with	50,000	buckets:	
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Hashing structs/objects 
• By	default	you	cannot	add	your	own	structs/objects	to	hash	sets.	

– Our	libraries	don't	know	how	to	hash	these	objects.	
	
struct	Point	{	
				int	x;	
				int	y;	

				...	

};	
	
HashSet<Point>	hset;	
Point	p	{17,	35};	
hset.add(p);	
	
ERROR:	no	matching	function	for	call	to	
'hashCode(const	Point&)'	
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Hashing structs/objects 
• To	make	your	own	types	hashable	by	our	libraries:	

–  1)	Overload	the	==	operator.	
–  2)	Write	a	hashCode	function	that	takes	your	type	as	its	parameter.	

• "Add	up"	the	object's	state;	scale/multiply	parts	to	distribute	the	results.	
	

struct	Point	{	
				int	x;	
				int	y;	

				...	

};	
	

int	hashCode(const	Point&	p)	{	
				return	1337	*	p.y	+	31	*	p.x;	
}	
	

bool	operator	==(const	Point&	p1,	const	Point&	p2)	{	
				return	p1.x	==	p2.x	&&	p1.y	==	p2.y;	
}	



35 

Hashing and Passwords 
• We	want	to	store	a	file	of	user	passwords	

– When	a	user	types	a	password,	see	if	it	matches	our	file	
• Problem:	anyone	who	can	see	our	file	can	get	all	the	passwords	

User   Password 
Ashley   password123 

Shreya   traceComics 
Seth   ki88leLuv 
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Hashing and Passwords 
• What	if	we	stored	a	unique	code	for	each	password	instead	of	the	
string?	
– Hashing!	

• Extra	requirements	for	the	hash	function:	
– Want	a	large	number	of	possible	values	(hard	to	find	collisions)	
–  Can’t	find	the	password	from	the	hash	(one-way)	
– Generally	use	a	different	hash	function	(e.g.	SHA-256)	

• The	need	for	salting	
User   Password 
Ashley   17851691385 

Marty   63158910316 
Amy    90713593110 
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Hashing and Data Integrity 
• A	common	"attack"	in	cryptography	is	man-in-the-middle	
• How	can	you	ensure	that	a	hacker	didn't	interfere	with	the	data?	
• Get	the	hash	from	a	trusted	source	–	since	hash	functions	only	
rarely	have	collisions,	changes	to	data	will	lead	to	a	different	hash	


