Final Exam Review
Part |

CS106B
Lecture 30
Anand Shankar
Summer 2018

Based on content by Ashley Taylor, Keith Schwarz, Marty Stepp, Anton Apostolatos, and others.
Thanks to Ashley Taylor for her feedback.

Yesterday’s Today's

Lecture Lecture
» Backtracking * Trees
 Pointers * Graphs
* Linked Lists * Hashing
 Sorting Testing Strategies (if we

have time)

Trees

Binary Search Trees

A Binary Search Tree Is Either.. 2 6

oo i S
represented by ®

nullptr, Or..

.. a single node, . and whose right struct BSTNode {
whose left subfree subtree is a BST BSTNode* left;
is a BST of ot larger values., BSTNode* right;

smaller values .. int val;
e g }s

Binary Search Trees

 Traversals:
* /norder. visit left subtree, then self, then right subtree
 Preorder. visit self, then left subtree, then right subtree

 Postorder. visit left subtree, then right subtree, then self
» Typically used to free tree

» There’s also /evel order, which uses a Queue (very similar to BFS)
* Fun fact: | used this in a job interview

* These questions generally involve figuring out which traversal
you want to do, then adapting that traversal to the problem

 Solutions are generally recursive
« See: LineManager

e A frieis a tree structure
optimized for “prefix”
searches

* Instead of left/right child
pointers, store a pointer to
a subtree (child node) for
each letter of the alphabet

« See: Autocomplete

struct TrieNode {
bool isWord;
TrieNode* children[26];
// storing children
// depends on alphabet

}s

Tries

(Simplified four-letter alphabet for the sake of this trie)

~ |\

Binary Heaps
« Complete tree: every row of the heap, except for the last, must be full.
« Equivalently: each node, except leaf nodes, must have two children.
« Adding and removing involves bubbling up or bubbling down
» See: lecture 20 slides, textbook

Min-heap: each node < its children Max-heap: each node 2 its children
(root is smallest node) (root is largest node)

A ,-.;ﬁ

Trees Problem, Part 1: Spaghettii

* We’ve seen trees where each node has pointers to its children

* You can also have the opposite: each child has a pointer to its
parent. These are called Spaghetti Stacks

Write struct

definitions on
board

struct TreeNode { struct SpaghettiNode {
string val; string val;
Vector<TreeNode*> children; SpaghettiNode* parent;

s }s

/,lc:

Let's Make Spaghetti N

Top-down tree Spaghetti Stack

* With top-down trees, we usually
store a pointer to the root node

« Can find any node from the root

* With spaghetti stacks, we must
store a set of leaf nodes

« Can find any node from the
appropriate leaf node

» Jask: given a pointer to root of a normal, top-down tree,
construct a Spaghetti stack for that tree. Return a Set of
pointers to leaf nodes

Set<SpaghettiNode*> spaghettify(TreeNode* root);
 What questions do you have?

Let’'s Make Spaghetti: Strategy “

Set<SpaghettiNode*> spaghettify(TreeNode* root);

 Before writing code, think about
strategy

* Key insight: recursively convert
each tree to a spaghetti stack
by constructing each tree with
knowledge of its parent

* We must keep track of the parent at every step
* We also need to keep track of the Set<SpaghettiNode*>
» Use a helper function with these two additional parameters

Let’'s Make Spaghetti: Wrapper Function w

Set<SpaghettiNode*> spaghettify(TreeNode* root) {
Set<SpaghettiNode*> result;
spaghettifyRec(root, nullptr, result);
return result;

Let’'s Make
Spaghetti:
Helper Fn.

/* Builds a spaghetti stack from root whose parent in the spaghetti i~
* stack is the node parent.
“ i @«
void spaghettifyRec(TreeNode* root, SpaghettiNode* parent,
Set<SpaghettiNode>& result) {
/* If there is nothing to build, we're done. */
if (root == nullptr) return;

/* Construct a new spaghetti node wired into the parent. */
SpaghettiNode* sNode = new SpaghettiNode;

sNode->value = root->value;

sNode->parent = parent;

/* If this is a leaf node, add it to the result set. */
if (root->children.isEmpty()) {
result += sNode;

}

/* Otherwise, build up all the children of this node as spaghetti stacks
* that use the current node as a parent.
*/
else {
for (TreeNode* child: root-»>children) {
spaghettifyRec(child, sNode, result);

}

Trees Problem, Part 2: Cleaning Up Our 4
Spaghetti

* |[n the last problem, we created a spaghetti stack

* Now, we need to free the memory associated with the spaghetti
stack: void freeSpaghettiStack(Set<SpaghettiNode*> leaves);

 An initial attempt might be to walk from each leaf node to the
root and free every node on the way -

* Would that approach work on a spaghetti
stack?

Be Free, Little Spaghetti <

* If the green node frees its parent, the blue node
should not free its parent

* How can we avoid freeing the same node
multiple times?

« Walk the tree deleting nodes and keep track
of what we’ve deleted. If we encounter a node that
was already deleted, stop exploring that path.

* Or, make a Set<SpaghettiNode*> with all the
nodes in the tree, then free each one

,lﬁ

7

Be Free, Little Spaghetti: Solution 1 **

« Walk the tree deleting nodes and keep track of what we’'ve deleted.

* If we encounter a node that was already deleted, stop exploring that
path.

void freeSpaghettiStack(Set<SpaghettiNode*> leaves) {
Set<SpaghettiNode*> deletedNodes;
for (SpaghettiNode* leaf: leaves) {
while (leaf != nullptr) {

if (deletedNodes.contains(leaf)) break;
deletedNodes += leaf;
SpaghettiNode* next = leaf->parent;
delete leaf;
leaf = next;

,lﬁ

7

Be Free, Little Spaghetti: Solution2 **

 Make a Set<SpaghettiNode*> with all the nodes in the tree, then
free each one

void freeSpaghettiStack(Set<SpaghettiNode*> leaves) {
Set<SpaghettiNode*> nodes;
for (SpaghettiNode* leaf: leaves) {
for (SpaghettiNode* curr = leaf; curr != nullptr; curr = curr->parent) {
nodes += curr;

}
for (SpaghettiNode* node: nodes) {

delete node;

Graphs

Graphs I"lilﬁg

* Graph: mathematical structure for representing relationships
» Consists of a set of nodes connected by edges
P

@ s
&= s -
‘/ \b N

Vv
 Can be directed or undirected
@ CéN MAN RAN
e

| i
Graphs: Terminology

« Connected. every node is reachable from every other node
» Cyclic: there exists a path from a node back to the same node
« Complete:there exists an edge between every pair of nodes

* Representing a graph:
« Edge list
* Adjacency list
» Adjacency matrix

Graphs: Breadth First Search

» Breadth-first search will find all nodes reachable from the
starting node

* |t will visit them in increasing order of hops/distance
* Runtime: O(V + E)

« See: word ladder assignment, lecture slides for animated
examples

function bfs(v):
add v to the queue.
while queue is not empty:
dequeue a node n.
enqueue n's unseen neighbors.

?I;’\/
s

Graphs: Depth First Search (DFS)

« Starting a depth-first search at a given node will find all nodes
reachable from that node

* Runtime: O(V + E)
« Usually implemented using recursion or a Stack
« See: assignment 6, lecture slides for animated examples

function dfs(v):
mark v as seen.

for each of v’s unvisited neighbors n:
dfs(n)

?I;’\/
s

Graphs: Topological Sort

« Want to order tasks such that every

task's prerequisites appear before
the task itself

* If you need to make coffee before
eating breakfast, then coffee should
appear before breakfast in the
topological ordering

* Works only on dlirected, acyclic
graphs (DAGs)

* Runtime: O(V + E)

* Pseudocode omitted; you
implemented it on assignment 6!

Shower

Make
omelette

Eat
breakfast

Sauté
veggies

I"llu:ﬁg

W ELGE
coffee

I"I\ﬁg
Graphs: Bipartite Graph Matching |

CS106A

Nvidia

* A bipartite graphis a graph with two
types of nodes (left-hand side and 51068
right-hand side), where all the Hewlett

undirected edges go from LHS to the
RHS

* A maltchingis a set of edges such that each node is connected to
at most one edge

« Maximum matching. largest such set of edges
* Pseudocode omitted; see: HW6, animated examples from lecture
 Side note: you should take the classes on the LHS - they’re cool!

s
Graphs: Dijkstra’s Algorithm |

* Find /east-cost path (only applies to graphs with weighted
edges)

» Based on BFS but uses a Priority Queue instead of a Queue to
visit nodes

» Google Maps uses a modified version of this algorithm
* Runtime: O(E log V)

o Stanford University
- Computer Science...
[] [[] t =
« See: lecture 24 (includes animations
" J
eeeeeeeeee
[
[
textbook f o
Ued/g — 0.5 mile
£ Sa e Iy Departmel
0 T%eed, A 10min - ofEcono
n ;5 .. 0.5 mill
Memorial ¥
£ 10
0.5 mill
Coe QH oooooooooo
@
Lomita Mall Stanfor.d.
Universi ty,
[}
$

s
....

ooooooooooooooooo

Graphs: Dijkstra’s Algorithm Pseudocode |

function dijkstra(v,, v,):

consider every vertex to have a cost of infinity, except v, which has a
cost of O.

create a priority queue of vertexes, ordered by cost, storing only v;,.

while the priority queue is not empty:
dequeue a vertex v from the priority queue, and mark it as visited.
for each unvisited neighbor, n, of v, we can reach n
with a total cost of (v's cost + the weight of the edge from v to n).
if this cost is cheaper than n's current cost,
we should the neighbor n to the priority queue with this new cost,
and remember v was its previous vertex.

when we are done, we can reconstruct the path from v, back to v,
by following the path of previous vertices.

s
Graphs: Kruskal's Algorithm |

* A spanning tree in an undirected graph is a set of edges with no
cycles that connects all nodes

* A minimum spanning tree (or MST) is a spanning tree with the
least total cost. Kruskal's Algorithm finds an MST.

Graphs: Kruskal's Algorithm Pseudocode |

function kruskal(graph):

MST = empty set

Place all edges into a priority queue based on their weight (cost).

While the priority queue is not empty:

Dequeue an edge e from the priority queue.

If e's endpoints aren't already connected, add that edge into the MST.
Otherwise, skip the edge.

return MST

 Using a priority queue ensures that we add cheap edges before
adding expensive edges

* Runtime: O(E log V)
« See: lecture 24 (includes animations)

Mo
Graphs Problem: Eccentricity

» The distance between two nodes in a graph is the length of the
shortest path between them.

* The eccentricity of a node in a graph is the maximum distance
between that node and any other node in the graph (of the
nodes that it can actually reach)

@ e * Eccentricity of Ais 4
* Eccentricity of F is 4

O—O * Eccentricity of D is 3
D E

"“ﬂ Q%/
How To Be Eccentric: Strategy

« Jask: write a function that, given an adjacency list, returns the
eccentricity of the given node in the given graph

int eccentricityOf(const Map<string, Set<string>>& graph, const string& node);

» Strategy: Which graph algorithm should we use? Why?
* Imagine that we run a BFS starting at a given node

* The very last node we dequeue has to be as far away as
possible from the source node, since
(1) BFS visits nodes in increasing order of distance, and
(2) no other nodes will be visited after it.

« We’'ll run BFS from the given node; the last node we see is the
furthest away

e

int eccentricityOf(const Map<string, Set<string>>& graph, const string& node) { IIIIIiﬁ?
Queue<string> worklist;
worklist.enqueue(node);

How To Be
/* Associate each element with a parent node. The parent node is the node that added it Eccentric:
* into the queue, which means it’1l1l be one step closer to the start node. Solution
*/
HashMap<string, string> parents; (1/2)

/* Track the last node we’ve seen. */
string last = node;

/*¥ Do the BFS! */
while (!worklist.isEmpty()) {
string curr = worklist.dequeue();

for (string next: graph[curr]) {
/* Don’t revisit something we’ve already enqueued. */
if (!parents.containsKey(next)) {
parents[next] = curr; // We discovered this node.
worklist.enqueue(next);

}
}

/* Remember the last node we’ve seen. */
last = curr;

Continued on next slide

/* Track back from this node to the start, counting how many steps were

s

* needed. III" ﬁ
*/

int result = 0;

while (parents.containsKey(last)) { How To Be
last = parents[last]; Eccentric:
resulte; Solution
}

return result; (2/2)

Hashing

Hashing: Hash Functions

 Basic definition: a hash function maps something (like an int or
string) to a number

A valid hash function is deterministic: always returns the same
number given two inputs that are considered equal

* A good hash function distributes the values uniformly over all

the numbers

Your Name!

-

\
/

nameHash

Some Number!

/
\

L

Hashing: Data Structures

* HashMap and HashSet use hash functions to achieve amortized
O(1) addition, removal, and lookup. To do so, they:

1. Maintain a large number of small collections called buckets
2. Find a rule that lets us tell where each object should go
3. To find something, only lookin the bucket assigned to it

e See: lectures 26 and 27

 Side note: hashing is super useful for interview questions.

Hashing: Data Structures Example

Buckets [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia

* We want to find erato
« Suppose the hash function tells us it’s in bucket 3
* We only need to look in bucket 3 and see if erato is there

Hashing: Data Structures Example

Buckets [0] [1] [2] [3] [4] [5]
calliope || |polyhymnia| | | euterpe clio melpomene
terpsichore erato thalia

 We want to add urania to the HashSet
« Suppose the hash function tells us it’s in bucket 2
 We add urania to bucket 2

Testing Strategies

Testing Strategies

» Before Saturday, take the practice test under realistic conditions
* Read all questions before answering any

* Don’t write code until you silently fel/ yourself (in words) what you’re
going to do

» Draw pictures (especially for trees/pointer questions)

» Break the problem down into smaller parts (especially for recursion)
* If you get stuck, try a different question and come back later

» Pace yourself

* Get lots of s/eep before the exam (trust me...taking exams while
sleepy is not fun)

* Your lecturer, head TA and SLs want you to do well (seriously!)
» You can do it/

Congratulations, you’re done with your last
lecture of CS106B.

You have worked hard this quarter, and the
entire course staff is very proud of your efforts.

We hope you’ll continue to explore CS, be it
here or elsewhere.

