
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	3	
Vector	and	Grid	

reading:	
Programming	Abstractions	in	C++,	Chapter	4-5	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Learn	about	two	new	"ADTs"	or	collections	

–  Vector:	a	data	structure	for	representing	lists	
– Grid:	a	data	structure	ideal	for	representing	two	dimensional	
information	

3

STL vs. Stanford
• collection:	an	object	that	stores	data;		a.k.a.	"data	structure"	

–  the	objects	stored	are	called	elements.	
–  Also	known	as	"ADTs"	–	abstract	data	types	

• Standard	Template	Library	(STL):	
C++	built	in	standard	library	of	collections.	
– vector,	map,	list,	...	
–  Powerful	but	somewhat	hard	to	use	for	new	coders		
				(messy	syntax)	–	take	106L!	

• Stanford	C++	library	(SPL):	
Custom	library	of	collections	made	for	use	in	CS	106B/X.	
– Vector,	Grid,	Stack,	Queue,	Set,	Map,	...	
–  Similar	to	STL,	but	simpler	interface	and	error	messages.	
– Note	the	capitalized	first	letter	

4

Vectors (Lists)
#include	"vector.h"	

	

• vector	(aka	list):	a	collection	of	elements	with	0-based	indexes	
–  like	a	dynamically-resizing	array			(Java	ArrayList	or	Python	list)	
–  Include	the	type	of	elements	in	the	<>	brackets	
	
//	initialize	a	vector	containing	5	integers	
//									index			0			1			2			3			4	
Vector<int>	nums	{42,	17,	-6,		0,	28};	
	

Vector<string>	names;							//	{}	
names.add("Ashley");							//	{"Ashley"}	
names.add("Shreya");						//	{"Ashley",	"Shreya"}	
names.insert(0,	"Ed");			//	{"Ed",	"Ashley",	"Shreya"}	

5

Why not arrays?
//	actual	arrays	in	C++	are	mostly	awful	
int	nums[5]	{42,	17,	-6,		0,	28};							//	no	
	
	
	
	

• Arrays	have	fixed	size	and	cannot	be	easily	resized.	
–  In	C++,	an	array	doesn't	even	know	its	size.		(no	.length	field)	

• C++	lets	you	index	out	of	the	array	bounds	(garbage	memory)	
without	necessarily	crashing	or	warning.	

• An	array	does	not	support	many	operations	that	you'd	want:	
–  inserting/deleting	elements	into	the	front/middle/back	of	the	array,	
reversing,	sorting	the	elements,	searching	for	a	given	value	...	

index	 0	 1	 2	 3	 4	
value	 42	 17	 -6	 0	 28	

6

Vector members (5.1)
v.add(value);		or	
v	+=	value;				or	
v	+=	v1,	v2,	...,	vN;	

appends	value(s)	at	end	of	vector	

v.clear();	 removes	all	elements	
v[i]		or		v.get(i)	 returns	the	value	at	given	index	
v.insert(i,	value);	 inserts	given	value	just	before	the	given	index,	shifting	

subsequent	values	to	the	right	
v.isEmpty()	 returns	true	if	the	vector	contains	no	elements	
v.remove(i);	 removes/returns	value	at	given	index,	shifting	

subsequent	values	to	the	left	
v[i]	=	value;		or	
v.set(i,	value);	

replaces	value	at	given	index	

v.subList(start,	length)	 returns	new	vector	of	sub-range	of	indexes	

v.size()	 returns	the	number	of	elements	in	vector	

v.toString()	 returns	a	string	representation	of	the	vector	
such	as	"{3,	42,	-7,	15}"	

ostr	<<	v	 prints	v	to	given	output	stream	(e.g.	cout	<<	v)	

7

Iterating over a vector
	Vector<string>	names	{"Ed",	"Hal",	"Sue"};	
	
	for	(int	i	=	0;	i	<	names.size();	i++)	{	
					cout	<<	names[i]	<<	endl;			//	for	loop	
	}																															//	Ed	Hal	Sue	
	
	
	for	(int	i	=	names.size()	-	1;	i	>=	0;	i--)	{	
					cout	<<	names[i]	<<	endl;			//	for	loop,	backward	
	}																															//	Sue	Hal	Ed	

	
		
	for	(string	name	:	names)	{	
					cout	<<	name	<<	endl;							//	"for-each"	loop	
	}																															//	Ed	Hal	Sue	
												//	Can't	edit	(insert/delete)	in	for-each	loop	

8

Vector insert/remove
	v.insert(2,	42);	

• shift	elements	right	to	make	room	for	the	new	element	

	v.remove(1);	
• shift	elements	left	to	cover	the	space	left	by	the	removed	element	

	(These	operations	are	slower	the	more	elements	they	need	to	shift.)	

index	 0	 1	 2	 3	 4	
value	 3	 8	 9	 7	 5	

index	 0	 1	 2	 3	 4	 5	
value	 3	 8	 42	 9	 7	 5	

index	 0	 1	 2	 3	 4	 5	
value	 3	 8	 42	 9	 7	 5	

index	 0	 1	 2	 3	 4	
value	 3	 42	 9	 7	 5	

9

Announcements
• Assignment	0	due	Friday	

–  Fill	out	the	exam	survey	by	5PM	on	Friday	
–  If	you	need	help	with	Qt	stop	by	LaIR	or	Ashley's	office	hours	(last	
chance	to	get	help	is	12:15PM	on	Thursday)	

• Sections	start	today!	Should	have	received	an	email	from	
cs198@cs.stanford.edu	
–  You	can	switch	your	section	or	sign	up	late	at	cs198.stanford.edu	
–  Email	Shreya	at	shreya@cs.stanford.edu	if	you	were	assigned	a	
different	section	than	your	partner	

10

Grid (5.1)
#include	"grid.h"	

	

•  like	a	2D	array,	but	more	powerful	
• Good	for	board	games,	matrices,	images,	city	maps,	etc.		
• must	specify	element	type	in	<	>		(a	template	or	a	type	parameter)

//	constructing	a	Grid	
Grid<int>	matrix(3,	4);	
matrix[0][0]	=	75;	
...	
	

//	or	specify	elements	in	{}	
Grid<int>	matrix	=	{	
				{75,	61,	83,	71},	
				{94,	89,	98,	100},	
				{63,	54,	51,	49}	
};	

0	 1	 2	 3	
0	 75	 61	 83	 71	
1	 94	 89	 98	 100	
2	 63	 54	 51	 49	

row	

column	

11

Grid members (5.1)*
Grid<type>	name(r,	c);	
Grid<type>	name;	

create	grid	with	given	number	of	rows/cols;	
empty	0x0	grid	if	omitted	

g[r][c]		or		g.get(r,	c)	 returns	value	at	given	row/col	
g.fill(value);	 set	every	cell	to	store	the	given	value	
g.inBounds(r,	c)	 returns	true	if	given	position	is	in	the	grid	
g.numCols()	or	g.width()	 returns	number	of	columns	
g.numRows()	or	g.height()	 returns	number	of	rows	
g.resize(nRows,	nCols);	 resizes	grid	to	new	size,	discarding	old	contents	
g[r][c]	=	value;		or	
g.set(r,	c,	value);	

stores	value	at	given	row/col	

g.toString()	 returns	a	string	representation	of	the	grid	
such	as	"{{3,	42},	{-7,	1},	{5,	19}}"	

ostr	<<	g	 prints,	e.g.	{{3,	42},	{-7,	1},	{5,	19}}	

*	(a	partial	list;	see	http://stanford.edu/~stepp/cppdoc/)	

12

Looping over a grid
• Row-major	order:	

for	(int	r	=	0;	r	<	grid.numRows();	r++)	{	
				for	(int	c	=	0;	c	<	grid.numCols();	c++)	{	
								do	something	with	grid[r][c];	
				}	
}	
	

//	"for-each"	loop		(also	row-major)	
for	(int	value	:	grid)	{	
				do	something	with	value;	
}	
	

• Column-major	order:	
for	(int	c	=	0;	c	<	grid.numCols();	c++)	{	
				for	(int	r	=	0;	r	<	grid.numRows();	r++)	{	
								do	something	with	grid[r][c];	
				}	
}	

0	 1	 2	 3	

0	 75	 61	 83	 71	

1	 94	 89	 98	 91	

2	 63	 54	 51	 49	

0	 1	 2	 3	

0	 75	 61	 83	 71	

1	 94	 89	 98	 91	

2	 63	 54	 51	 49	

13

Grid as parameter
• When	a	Grid	is	passed	by	value,	C++	makes	a	copy	of	its	contents.	

–  Copying	is	slow;	you	should	pass	by	reference	with	&	
–  If	the	code	won't	modify	the	grid,	also	pass	it	as	const	

//	Which	one	is	best?	
A)	int	computeSum(Grid<int>	g)	{	
B)	int	computeSum(Grid<int>&	g)	{	
C)	int	computeSum(const	Grid<int>	g)	{	
D)	int	computeSum(const	Grid<int>&	g)	{	
	
//	Which	one	is	best?	
A)	void	invert(Grid<double>	matrix)	{	
B)	void	invert(Grid<double>&	matrix)	{	
C)	void	invert(const	Grid<double>	matrix)	{	
D)	void	invert(const	Grid<double>&	matrix)	{	

14

Grid exercise
•  Write	a	function	knightCanMove	that	accepts	a	grid	and	two	row/column	pairs	
(r1,	c1),	(r2,	c2)	as	parameters,	and	returns	true	if	there	is	a	knight	at	chess	
board	square	(r1,	c1)	that	can	legally	move	to	empty	square	(r2,	c2).	
–  Recall	that	a	knight	makes	an	"L"	shaped	move,	going	2	squares	in	one	
dimension	and	1	square	in	the	other.	

–  knightCanMove(board,	1,	2,	2,	4)	returns	true	
0	 1	 2	 3	 4	 5	 6	 7	

0	 "king"	

1	 "knight"	

2	

3	 "rook"	

4	

5	

6	

7	

knightCanMove	

15

Grid exercise solution
bool	knightCanMove(Grid<string>&	board,	int	r1,	int	c1,	
																																								int	r2,	int	c2)	{	
				if	(!board.inBounds(r1,	c1)	||	!board.inBounds(r2,	c2))	{	
								return	false;	
				}	
	

				if	(board[r1][c1]	!=	"knight"	||	board[r2][c2]	!=	"")	{	
								return	false;	
				}	
	

				int	dr	=	abs(r1	-	r2);	
				int	dc	=	abs(c1	-	c2);	
				if	(!((dr	==	1	&&	dc	==	2)	||	(dr	==	2	&&	dc	==	1)))	{	
								return	false;	
				}	
	

				return	true;	
}	

16

Grid solution 2
bool	knightCanMove(Grid<string>&	board,	int	r1,	int	c1,	
																																								int	r2,	int	c2)	{	
				int	dr	=	abs(r1	-	r2),	dc	=	abs(c1	-	c2);	
				return	board.inBounds(r1,	c1)	&&	board.inBounds(r2,	c2)	
												&&	board[r1][c1]	==	"knight"	&&	board[r2][c2]	==	""	
												&&	((dr	==	1	&&	dc	==	2)	||	(dr	==	2	&&	dc	==	1));	
}	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Overflow	(extra)	slides	

18

istringstream
#include	<sstream>	

	

• An	istringstream	lets	you	tokenize	a	string.	
	

//	read	specific	word	tokens	from	a	string	
istringstream	input("Jenny	Smith	8675309");	
string	first,	last;	
int	phone;	
input	>>	first	>>	last;			//	first="Jenny",	last="Smith"	
input	>>	phone;											//	8675309	
	
//	read	all	tokens	from	a	string	
istringstream	input2("To	be	or	not	to	be");	
string	word;	
while	(input2	>>	word)	{	
				cout	<<	word	<<	endl;			//	To	\n	be	\n	or	\n	not	\n	...	
}	

19

ostringstream
#include	<sstream>	

	

• An	ostringstream	lets	you	write	output	into	a	string	buffer.	
– Use	the	str	method	to	extract	the	string	that	was	built.	
	
//	produce	a	formatted	string	of	output	
int	age	=	42,	iq	=	95;	
ostringstream	output;	
output	<<	"Zoidberg's	age	is	"	<<	age	<<	endl;	
output	<<	"	and	his	IQ	is	"	<<	iq	<<	"!"	<<	endl;	
string	result	=	output.str();	
	
//	result	=	"Zoidberg's	age	is	42\nand	his	IQ	is	95!\n"	
	

20

Bug: Mix lines/tokens
cout	<<	"How	old	are	you?	";	
int	age;	
cin	>>	age;	
	

cout	<<	"And	what's	your	name?	";	
string	name;	
getline(cin,	name);	
cout	<<	"Wow,	"	<<	name	<<	"	is	"	<<	age	<<	"!"	<<	endl;	
	
//	output:	
//	How	old	are	you:	17	
//	And	what's	your	name:	Stuart	
//	Wow,		is	17!	
	
–  Advice:	Don't	mix	getline	and	>>	on	the	same	input	stream.	
–  Advice:	Always	use	Stanford	getXxx	methods	to	read	from	cin.	

user	input:	
	

17\n	
Stuart\n	

21

Exercise: inputStats2
• Write	a	function	inputStats2	that	prints	statistics	about	the	data	
in	a	file.		Example	file,		carroll.txt	:	
	

	1		Beware	the	Jabberwock,	my	son,	
	2		the	jaws	that	bite,	the	claws	that	catch,	
	3			
	4		Beware	the	JubJub	bird	and	shun	
	5		the	frumious	bandersnatch.	
	

• The	call	of		inputStats2("carroll.txt");				should	print:	
	

Line	1:	30	chars,	5	words		
Line	2:	41	chars,	8	words	
Line	3:	0	chars,	0	words	
Line	4:	31	chars,	6	words	
Line	5:	26	chars,	3	words	
longest	=	41,	average	=	25.6	

inputStats2	

22

inputStats2 solution
/*	Prints	length/count	statistics	about	data	in	the	given	file.	*/	
void	inputStats2(string	filename)	{	
				ifstream	input;	
				input.open(filename);	
	
				int	lineCount	=	0,	longest	=	0,	totalChars	=	0;	
				string	line;	
				while	(getline(input,	line))	{	
								lineCount++;	
								totalChars	+=	line.length();	
								longest	=	max(longest,	line.length());	
								int	wordCount	=	countWords(line);			//	on	next	slide	
								cout	<<	"Line	"	<<	lineCount	<<	":	"	<<	line.length()	
													<<	"	chars,	"	<<	wordCount	<<	"words"	<<	endl;	
				}	
				double	average	=	(double)	totalChars	/	lineCount;	
				cout	<<	longest	=	"	<<	longest	
									<<	",	average	=	"	<<	average	<<	endl;	
}	

23

inputStats2 solution
/*	Returns	the	number	of	words	in	the	given	string.	*/	
int	countWords(string	line)	{	
				istringstream	words(line);	
				int	wordCount	=	0;	
				string	word;	
				while	(words	>>	word)	{	
								wordCount++;	
				}	
				return	wordCount;	
}	

24

Formatted I/O
#include	<iomanip>	

–  helps	produce	formatted	output,	a	la	printf	
	
	
	
	
	
	
	
	
	
	

for	(int	i	=	2;	i	<=	2000;	i	*=	10)	{													//	2							1.41	
				cout	<<	left		<<	setw(4)	<<	i																	//	20						4.47	
									<<	right	<<	setw(8)	<<	fixed													//	200				14.14	
									<<	setprecision(2)	<<	sqrt(i)	<<	endl;			//	2000			44.72	
}																																															

Member	name	 Description	

setw(n)	 right-aligns	next	token	in	a	field	n	chars	wide	

setfill(ch)	 sets	padding	chars	inserted	by	setw	to	the	given	char	(default	'	')	

setbase(b)	 prints	future	numeric	tokens	in	base-b	

left,	right	 left-	or	right-aligns	tokens	if	setw	is	used	

setprecision(d)	 prints	future	doubles	with	d	digits	after	decimal	

fixed	 prints	future	doubles	with	a	fixed	number	of	digits	

scientific	 prints	future	doubles	in	scientific	notation	

25

Exercise: Hours
• Given	hours.txt	of	section	leader	hours	worked,	in	this	format:	

	

		1		123	Alex	3	2	4	1	
		2		46	Jessica	8.5	1.5	5	5	10	6	
		3		7289	Erik	3	6	4	4.68	4	
	

• Write	code	to	output	hours	worked	by	each	SL	in	this	format:	
	

	Alex					(ID#		123)	worked	10.0	hours	(2.50/day)	
	Jessica		(ID#			46)	worked	36.0	hours	(6.00/day)	
	Erik					(ID#	7289)	worked	21.7	hours	(4.34/day)	

hoursWorked	

26

Hours solution
/*	This	program	computes	the	...	*/	
#include	<fstream>	
#include	<iomanip>	
#include	<iostream>	
#include	<sstream>	
using	namespace	std;	
	
int	main()	{	
				ifstream	input;	
				input.open("hours.txt");	
	
				string	line;	
				while	(getline(input,	line))	{	
								//	"7289	Erik	3	6	4	4.68	4"	
	
								istringstream	tokens(line);	
								int	id;								//	7289	
								string	name;			//	"Erik"	
								tokens	>>	id	>>	name;	
	
								//	rest	of	tokens	are	days	
								double	totalHours	=	0.0;	
								int	days	=	0;	
								...	

								double	hours;	
								while	(tokens	>>	hours)	{	
												totalHours	+=	hours;	
												days++;	
								}	
	
//	Erik					(ID#	7289)	worked	
//										21.7	hours	(4.34/day)	
								cout	<<	left	<<	setw(9)	
									<<	name	<<	"(ID#"	
									<<	right	<<	setw(5)	
									<<	id	<<	")	worked	"	
									<<	fixed	<<	setprecision(1)	
									<<	totalHours	<<	"	hours	("	
									<<	setprecision(2)	
									<<	totalHours/days	
									<<	"/day)"	<<	endl;	
				}	
				return	0;	
}	

