
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	4	
File	I/O	and	Debugging	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	

Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Learn	about	another	form	of	input	and	output:	files	
• Debugging	strategies	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

File	I/O	



4 

Files 
• Store	data	beyond	the	run	of	a	program	
• Easy	way	to	gather	a	lot	of	information	together	(vs.	user	input)	
• Stored	in	streams	in	C++	

–  Similar	to	strings	–	sequence	of	characters	
–  To	read	files,	declare	an	ifstream	(input	file	stream)	
–  To	write	to	files,	declare	an	ofstream	(output	file	stream)	

• Similar	to	cout	



5 

Common File I/O Pattern 
• Open	File	

– #include	<fstream>	//	standard	library	pkg	for	files	
– #include	"filelib.h"	//	contains	helpful	methods	

• string	promptUserForFile(stream,	prompt)		
//	asks	user	for	filename	and	opens	the	file	in	stream	

–  If	you	already	have	the	filename:	
• stream.open("file.txt")	

• Read/write	to	file	(more	on	that	soon)	
• Close	the	file	

– stream.close()	



6 

Creating and Closing 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Same	for	every	file-reading	program	
Creates	ifstream	object	
Closes	ifstream	object	



7 

Opening File 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Asks	for	the	user	for	the	filename	



8 

Opening File Alternative 
ifstream	infile;	
infile.open("File.txt");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Good	when	you	know	the	file	to	open	



9 

Reading Char by Char 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Declare	the	variable	to	read	data	into	(ch)	
While	loop	continues	until	read	fails	
	-	Every	iteration	of	while	loop	is	new	char	



10 

Reading Line by Line 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
string	line;	
while(getline(infile,	line)	{	
				//	do	something	with	line	
}	
	
infile.close();	 Now	reads	each	line	(breaks	on	newline	characters)	

Still	declare	the	line	before	the	while	loop	
Still	continues	until	getline	fails;	each	while	loop	
				iteration	has	a	different	line	
Notice	lowercase	l	of	getline	



11 

Reading Formatted Input 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
string	word;	
while(infile	>>	word)	{	
				//	do	something	with	word	
}	
	
infile.close();	Now	reads	each	word	(removes	whitespace)	

Still	declare	the	wordbefore	the	while	loop	
Still	continues	until	fails	to	read	a	new	word	
each	while	loop		iteration	has	a	different	word	
Works	with	other	types	(Vector	or	int,	e.g.)	too	
Don't	try	to	mix	with	getline	



12 

Writing Output 
ofstream	outfile;	
promptUserForFile(outfile,	"File?");	
	
string	word	=	"output";	
int	x	=	3;	
outfile	<<	word	<<	x;	
	
outfile.close();	

Similar	to	reading	formatted	input	
Works	a	lot	like	cout	
use	<<	
Works	with	(basically)	any	type	
	
Use	ofstream	instead	ifstream	



13 

Announcements 
• Assignment	0	due	tomorrow	at	5PM	
• Assignment	1	(Game	of	Life)	will	be	released	today;	due	Thursday,	
July	5,	at	5PM.	You	can	work	in	a	pair.	
– Honor	Code	Reminder:	Please	review	the	Honor	Code	handout	on	the	
course	website	before	beginning	this	assignment	

–  Any	student	who	is	found	in	violation	of	the	Honor	Code	will	fail	the	
course	in	addition	to	sanctions	applied	by	OCS	

• No	class	on	July	4th	–	if	you	have	section,	either	attend	a	Thursday	
or	Friday	section	or	watch	the	videoed	section	and	email	your	SL	a	
summary	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Debugging	



15 

Steps to Debugging 
• Determine	that	you	have	a	bug	
•  Isolate	the	bug's	location	
• Find	the	culprit	code	



16 

Identifying a bug 
•  In	order	to	find	a	bug,	lots	and	lots	of	testing	(more	on	that	on	
Tuesday)	

• What	is	the	behavior	that	you	think	is	buggy	(in	words)?	
• Why	do	you	think	that	that	behavior	is	buggy?	

– Differs	from	given	expected	output?	
– Not	what	you	were	expecting?	

• Under	what	circumstances	does	the	bug	appear?	
–  Try	different	inputs	or	outputs	
– Goal:	find	the	smallest	output	possible	that	reproduces	the	bug	

• Be	specific!	



17 

Isolating the Bug 
• Goal:	where	in	the	code	could	the	bug	be?	
• Be	creative	–	better	to	think	of	too	many	places	than	too	few	
•  Identify	different	functions	that	could	be	the	culprit	

–  Then	run	each	function	separately	
–  Print	out	parameters	and	return	values	
– Use	the	debugger!	



18 

Finding the Bug 
• Once	you've	found	the	function,	need	to	find	the	bug	
• What	does	each	line	of	code	do?	

– Use	print	statements	or	the	debugger	to	verify	your	assumptions	
–  Explain	each	line	of	code	to	your	partner	or	an	inanimate	object	

• Draw	pictures	–	keep	track	of	values	in	data	structures	and	variable	
values	

•  If	you	still	can't	find	it,	get	help!	
–  LaIR	
– OH	

Source:	https://pixabay.com/en/duckling-toys-yellow-rubber-duck-2542277/		



19 

Using the Debugger 
• Add	a	breakpoint	–	program	will	pause	at	that	line	of	code	

• "Step"	through	code	execution,	line	by	line	



20 

Print Debugging 
• Alternative	to	debugger	–	personal	choice	(debugger	is	more	
powerful,	but	doesn't	represent	collections	well)	

•  Idea:	print	relevant	information	at	every	line	
• Tips	for	good	print	debugging	

– Give	good	messages	at	each	line	(slightly	longer,	but	WAY	better	
output)	

–  Print	variable	values	WITH	the	variable	name	
– Debug	a	section	at	a	time	(can	be	overwhelming	otherwise)	
–  Add	if	statements	to	conditionally	print	



21 

Debugging Example 
• Please	don't	say	the	bug	–	this	exercise	is	for	good	debugging	
practices	

• What	are	some	smaller	inputs	we	could	try?	
• Which	variables	should	we	track?	
• Which	lines	should	we	examine?	


