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Plan for Today

e Learn about another form of input and output: files
e Debugging strategies



File 1/O
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e Store data beyond the run of a program

e Easy way to gather a lot of information together (vs. user input)

e Stored in streams in C++
— Similar to strings — sequence of characters
— To read files, declare an ifstream (input file stream)

— To write to files, declare an ofstream (output file stream)
e Similar to cout



Common File I/0 Pattern

e Open File
- #include <fstream> // standard library pkg for files

- #include "filelib.h"™ // contains helpful methods

estring promptUserForFile(stream, prompt)
// asks user for filename and opens the file in stream

— If you already have the filename:
e stream.open("file.txt")

e Read/write to file (more on that soon)

e Close the file
— stream.close()



Creating and Closing

[ifstream infile; ]
promptUserForFile(infile, "File?");

char ch;
while(infile.get(ch)) {

// do something with ch
}

[infile.close(); ]

Same for every file-reading program
Creates ifstream object
Closes ifstream object




Opening File

ifstream infile;
[promthserForFile(infile, "File?");]

char ch;
while(infile.get(ch)) {
// do something with ch

infile.close();

Asks for the user for the filename




Opening File Alternative

ifstream infile;
[infile.open("File.txt"); ]

char ch;
while(infile.get(ch)) {
// do something with ch

infile.close();

Good when you know the file to open




Reading Char by Char

ifstream infile;

promptUserForFile(infile, "File?");

/Ehar ch; )

while(infile.get(ch)) {
// do something with ch

J y

infile.close();

Declare the variable to read data into (ch)
While loop continues until read fails
- Every iteration of while loop is new char




Reading Line by Line

ifstream infile;

promptUserForFile(infile, "File?");

/;tring line;

J

while(getline(infile, line) {
// do something with line

~

J

infile.close();

Now reads each line (breaks on newline characters)

Still declare the line before the while loop

Still continues until getline fails; each while loop
iteration has a different line

Notice lowercase | of getline




Reading Formatted Input

ifstream infile;
promptUserForFile(infile, "File?");

/;tring word; N

while(infile >> word) {
// do something with wonrd

J y

Now reads each word (removes whitespace)
Still declare the wordbefore the while loop

Still continues until fails to read a new word
each while loop iteration has a different word
Works with other types (Vector or int, e.g.) too
Don't try to mix with getline

infile.close();




Writing Output

[ofstream outfileﬂ

promptUserForFile(outfile, "File?");

(String word = "output”;
int x = 3;

\putfile << word << X;

\

outfile.close();

Similar to reading formatted input
Works a lot like cout
use <<

Works with (basically) any type

Use ofstreaminstead ifstream




Announcements

e Assignment O due tomorrow at 5PM

e Assignment 1 (Game of Life) will be released today; due Thursday,
July 5, at 5PM. You can work in a pair.

— Honor Code Reminder: Please review the Honor Code handout on the
course website before beginning this assignment

— Any student who is found in violation of the Honor Code will fail the
course in addition to sanctions applied by OCS

e No class on July 4t — if you have section, either attend a Thursday
or Friday section or watch the videoed section and email your SL a
summary
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Debugging
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Steps to Debugging

e Determine that you have a bug
e [solate the bug's location
e Find the culprit code
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Identifying a bug

e In order to find a bug, lots and lots of testing (more on that on
Tuesday)

e What is the behavior that you think is buggy (in words)?

e Why do you think that that behavior is buggy?
— Differs from given expected output?
— Not what you were expecting?

e Under what circumstances does the bug appear?
— Try different inputs or outputs
— Goal: find the smallest output possible that reproduces the bug

e Be specific!
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Isolating the Bug

e Goal: where in the code could the bug be?
e Be creative — better to think of too many places than too few
e |dentify different functions that could be the culprit

— Then run each function separately

— Print out parameters and return values

— Use the debugger!
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Finding the Bug

e Once you've found the function, need to find the bug

e \What does each line of code do?
— Use print statements or the debugger to verify your assumptions
— Explain each line of code to your partner or an inanimate object

e Draw pictures — keep track of values in data structures and variable
values

e |f you still can't find it, get help!
’ . o
— LalR

— OH
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Using the Debugger

e Add a breakpoint — program W"i.l_,._f_’,.f'“f?_?ﬂhat line of code

// Returns the larger of the two values.
+ int main(Q) {
& int biggerl = larger(17, 42); // call the function
int bigger2 = larger(29, -3); // call the function again
int biggest = larger(biggerl, bigger2);

cout << "The biggest is " << biggest << "!!" << endl;
return 0;
}
e "Step" through code execution, line by line
Stop Step Over Step Into

Resume

Step Out
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Print Debugging

e Alternative to debugger — personal choice (debugger is more
powerful, but doesn't represent collections well)

e |dea: print relevant information at every line
e Tips for good print debugging

— Give good messages at each line (slightly longer, but WAY better
output)

— Print variable values WITH the variable name
— Debug a section at a time (can be overwhelming otherwise)
— Add if statements to conditionally print
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Debugging Example

e Please don't say the bug — this exercise is for good debugging
practices

e \What are some smaller inputs we could try?
e Which variables should we track?
e Which lines should we examine?
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