CS 106B, Lecture 4
File /0 and Debugging

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others



Plan for Today

e Learn about another form of input and output: files
e Debugging strategies



File 1/O

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.



e Store data beyond the run of a program

e Easy way to gather a lot of information together (vs. user input)

e Stored in streams in C++
— Similar to strings — sequence of characters
— To read files, declare an ifstream (input file stream)

— To write to files, declare an ofstream (output file stream)
e Similar to cout



Common File I/0 Pattern

e Open File
- #include <fstream> // standard library pkg for files

- #include "filelib.h"™ // contains helpful methods

estring promptUserForFile(stream, prompt)
// asks user for filename and opens the file in stream

— If you already have the filename:
e stream.open("file.txt")

e Read/write to file (more on that soon)

e Close the file
— stream.close()



Creating and Closing

[ifstream infile; ]
promptUserForFile(infile, "File?");

char ch;
while(infile.get(ch)) {

// do something with ch
}

[infile.close(); ]

Same for every file-reading program
Creates ifstream object
Closes ifstream object




Opening File

ifstream infile;
[promthserForFile(infile, "File?");]

char ch;
while(infile.get(ch)) {
// do something with ch

infile.close();

Asks for the user for the filename




Opening File Alternative

ifstream infile;
[infile.open("File.txt"); ]

char ch;
while(infile.get(ch)) {
// do something with ch

infile.close();

Good when you know the file to open




Reading Char by Char

ifstream infile;

promptUserForFile(infile, "File?");

/Ehar ch; )

while(infile.get(ch)) {
// do something with ch

J y

infile.close();

Declare the variable to read data into (ch)
While loop continues until read fails
- Every iteration of while loop is new char




Reading Line by Line

ifstream infile;

promptUserForFile(infile, "File?");

/;tring line;

J

while(getline(infile, line) {
// do something with line

~

J

infile.close();

Now reads each line (breaks on newline characters)

Still declare the line before the while loop

Still continues until getline fails; each while loop
iteration has a different line

Notice lowercase | of getline




Reading Formatted Input

ifstream infile;
promptUserForFile(infile, "File?");

/;tring word; N

while(infile >> word) {
// do something with wonrd

J y

Now reads each word (removes whitespace)
Still declare the wordbefore the while loop

Still continues until fails to read a new word
each while loop iteration has a different word
Works with other types (Vector or int, e.g.) too
Don't try to mix with getline

infile.close();




Writing Output

[ofstream outfileﬂ

promptUserForFile(outfile, "File?");

(String word = "output”;
int x = 3;

\putfile << word << X;

\

outfile.close();

Similar to reading formatted input
Works a lot like cout
use <<

Works with (basically) any type

Use ofstreaminstead ifstream




Announcements

e Assignment O due tomorrow at 5PM

e Assignment 1 (Game of Life) will be released today; due Thursday,
July 5, at 5PM. You can work in a pair.

— Honor Code Reminder: Please review the Honor Code handout on the
course website before beginning this assignment

— Any student who is found in violation of the Honor Code will fail the
course in addition to sanctions applied by OCS

e No class on July 4t — if you have section, either attend a Thursday
or Friday section or watch the videoed section and email your SL a
summary

13



Debugging

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.



Steps to Debugging

e Determine that you have a bug
e [solate the bug's location
e Find the culprit code

15



Identifying a bug

e In order to find a bug, lots and lots of testing (more on that on
Tuesday)

e What is the behavior that you think is buggy (in words)?

e Why do you think that that behavior is buggy?
— Differs from given expected output?
— Not what you were expecting?

e Under what circumstances does the bug appear?
— Try different inputs or outputs
— Goal: find the smallest output possible that reproduces the bug

e Be specific!

16



Isolating the Bug

e Goal: where in the code could the bug be?
e Be creative — better to think of too many places than too few
e |dentify different functions that could be the culprit

— Then run each function separately

— Print out parameters and return values

— Use the debugger!

17



Finding the Bug

e Once you've found the function, need to find the bug

e \What does each line of code do?
— Use print statements or the debugger to verify your assumptions
— Explain each line of code to your partner or an inanimate object

e Draw pictures — keep track of values in data structures and variable
values

e |f you still can't find it, get help!
’ . o
— LalR

— OH

18
Source: https://pixabay.com/en/duckling-toys-yellow-rubber-duck-2542277




Using the Debugger

e Add a breakpoint — program W"i.l_,._f_’,.f'“f?_?ﬂhat line of code

// Returns the larger of the two values.
+ int main(Q) {
& int biggerl = larger(17, 42); // call the function
int bigger2 = larger(29, -3); // call the function again
int biggest = larger(biggerl, bigger2);

cout << "The biggest is " << biggest << "!!" << endl;
return 0;
}
e "Step" through code execution, line by line
Stop Step Over Step Into

Resume

Step Out
19




Print Debugging

e Alternative to debugger — personal choice (debugger is more
powerful, but doesn't represent collections well)

e |dea: print relevant information at every line
e Tips for good print debugging

— Give good messages at each line (slightly longer, but WAY better
output)

— Print variable values WITH the variable name
— Debug a section at a time (can be overwhelming otherwise)
— Add if statements to conditionally print

20



Debugging Example

e Please don't say the bug — this exercise is for good debugging
practices

e \What are some smaller inputs we could try?
e Which variables should we track?
e Which lines should we examine?

21



