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Plan for Today 
• Learn	about	another	form	of	input	and	output:	files	
• Debugging	strategies	
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Files 
• Store	data	beyond	the	run	of	a	program	
• Easy	way	to	gather	a	lot	of	information	together	(vs.	user	input)	
• Stored	in	streams	in	C++	

–  Similar	to	strings	–	sequence	of	characters	
–  To	read	files,	declare	an	ifstream	(input	file	stream)	
–  To	write	to	files,	declare	an	ofstream	(output	file	stream)	

• Similar	to	cout	
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Common File I/O Pattern 
• Open	File	

– #include	<fstream>	//	standard	library	pkg	for	files	
– #include	"filelib.h"	//	contains	helpful	methods	

• string	promptUserForFile(stream,	prompt)		
//	asks	user	for	filename	and	opens	the	file	in	stream	

–  If	you	already	have	the	filename:	
• stream.open("file.txt")	

• Read/write	to	file	(more	on	that	soon)	
• Close	the	file	

– stream.close()	
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Creating and Closing 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Same	for	every	file-reading	program	
Creates	ifstream	object	
Closes	ifstream	object	
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Opening File 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Asks	for	the	user	for	the	filename	
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Opening File Alternative 
ifstream	infile;	
infile.open("File.txt");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Good	when	you	know	the	file	to	open	
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Reading Char by Char 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
char	ch;	
while(infile.get(ch))	{	
				//	do	something	with	ch	
}	
	
infile.close();	

Declare	the	variable	to	read	data	into	(ch)	
While	loop	continues	until	read	fails	
	-	Every	iteration	of	while	loop	is	new	char	



10 

Reading Line by Line 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
string	line;	
while(getline(infile,	line)	{	
				//	do	something	with	line	
}	
	
infile.close();	 Now	reads	each	line	(breaks	on	newline	characters)	

Still	declare	the	line	before	the	while	loop	
Still	continues	until	getline	fails;	each	while	loop	
				iteration	has	a	different	line	
Notice	lowercase	l	of	getline	
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Reading Formatted Input 
ifstream	infile;	
promptUserForFile(infile,	"File?");	
	
string	word;	
while(infile	>>	word)	{	
				//	do	something	with	word	
}	
	
infile.close();	Now	reads	each	word	(removes	whitespace)	

Still	declare	the	wordbefore	the	while	loop	
Still	continues	until	fails	to	read	a	new	word	
each	while	loop		iteration	has	a	different	word	
Works	with	other	types	(Vector	or	int,	e.g.)	too	
Don't	try	to	mix	with	getline	
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Writing Output 
ofstream	outfile;	
promptUserForFile(outfile,	"File?");	
	
string	word	=	"output";	
int	x	=	3;	
outfile	<<	word	<<	x;	
	
outfile.close();	

Similar	to	reading	formatted	input	
Works	a	lot	like	cout	
use	<<	
Works	with	(basically)	any	type	
	
Use	ofstream	instead	ifstream	
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Announcements 
• Assignment	0	due	tomorrow	at	5PM	
• Assignment	1	(Game	of	Life)	will	be	released	today;	due	Thursday,	
July	5,	at	5PM.	You	can	work	in	a	pair.	
– Honor	Code	Reminder:	Please	review	the	Honor	Code	handout	on	the	
course	website	before	beginning	this	assignment	

–  Any	student	who	is	found	in	violation	of	the	Honor	Code	will	fail	the	
course	in	addition	to	sanctions	applied	by	OCS	

• No	class	on	July	4th	–	if	you	have	section,	either	attend	a	Thursday	
or	Friday	section	or	watch	the	videoed	section	and	email	your	SL	a	
summary	
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Steps to Debugging 
• Determine	that	you	have	a	bug	
•  Isolate	the	bug's	location	
• Find	the	culprit	code	
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Identifying a bug 
•  In	order	to	find	a	bug,	lots	and	lots	of	testing	(more	on	that	on	
Tuesday)	

• What	is	the	behavior	that	you	think	is	buggy	(in	words)?	
• Why	do	you	think	that	that	behavior	is	buggy?	

– Differs	from	given	expected	output?	
– Not	what	you	were	expecting?	

• Under	what	circumstances	does	the	bug	appear?	
–  Try	different	inputs	or	outputs	
– Goal:	find	the	smallest	output	possible	that	reproduces	the	bug	

• Be	specific!	
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Isolating the Bug 
• Goal:	where	in	the	code	could	the	bug	be?	
• Be	creative	–	better	to	think	of	too	many	places	than	too	few	
•  Identify	different	functions	that	could	be	the	culprit	

–  Then	run	each	function	separately	
–  Print	out	parameters	and	return	values	
– Use	the	debugger!	
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Finding the Bug 
• Once	you've	found	the	function,	need	to	find	the	bug	
• What	does	each	line	of	code	do?	

– Use	print	statements	or	the	debugger	to	verify	your	assumptions	
–  Explain	each	line	of	code	to	your	partner	or	an	inanimate	object	

• Draw	pictures	–	keep	track	of	values	in	data	structures	and	variable	
values	

•  If	you	still	can't	find	it,	get	help!	
–  LaIR	
– OH	

Source:	https://pixabay.com/en/duckling-toys-yellow-rubber-duck-2542277/		
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Using the Debugger 
• Add	a	breakpoint	–	program	will	pause	at	that	line	of	code	

• "Step"	through	code	execution,	line	by	line	
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Print Debugging 
• Alternative	to	debugger	–	personal	choice	(debugger	is	more	
powerful,	but	doesn't	represent	collections	well)	

•  Idea:	print	relevant	information	at	every	line	
• Tips	for	good	print	debugging	

– Give	good	messages	at	each	line	(slightly	longer,	but	WAY	better	
output)	

–  Print	variable	values	WITH	the	variable	name	
– Debug	a	section	at	a	time	(can	be	overwhelming	otherwise)	
–  Add	if	statements	to	conditionally	print	
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Debugging Example 
• Please	don't	say	the	bug	–	this	exercise	is	for	good	debugging	
practices	

• What	are	some	smaller	inputs	we	could	try?	
• Which	variables	should	we	track?	
• Which	lines	should	we	examine?	


