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Plan for Today 
• Analyzing	algorithms	using	Big	O	analysis	

– Understand	what	makes	an	algorithm	"good"	and	how	to	compare	
algorithms	

• Another	type	of	collection:	the	Stack	
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Big O Intuition 
• Lots	of	different	ways	to	solve	a	problem;	which	is	best?	
• Measure	algorithmic	efficiency	

–  how	many	resources	(time?	memory?	etc.)	does	the	program	use	
– We'll	focus	on	time	

•  Idea:	algorithms	are	better	if	they	take	less	time	
• Problem:	amount	of	time	a	program	takes	is	variable	

– Depends	on	what	computer	you're	using,	what	other	programs	are	
running,	if	your	laptop	is	plugged	in…	
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Big O 
•  Idea:	assume	each	statement	of	code	takes	some	unit	of	time	

–  for	the	purposes	of	this	class,	that	unit	doesn't	matter	
• We	can	count	the	number	of	units	of	time	and	get	the	runtime	
• Sometimes,	the	number	of	statements	depends	on	the	input	–	we'll	
say	the	input	size	is	N	
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Big O 
statement1;																									//	runtime	=	1	
	
for	(int	i	=	1;	i	<=	N;	i++)	{						//	runtime	=	N^2	
				for	(int	j	=	1;	j	<=	N;	j++)	{		//	runtime	=	N	
								statement2;	
				}	
}	
	
for	(int	i	=	1;	i	<=	N;	i++)	{						//	runtime	=	3N	
				statement3;	
				statement4;	
				statement5;	
}																																			//	total	=	N^2	+	3N	+	1	
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Big O 
• The	actual	constant	doesn't	matter	(remember	that	we	haven't	
even	specified	how	much	a	unit	of	time	is)	–	so	we	get	rid	of	the	
constants:	N2	+	3N	+	1	->	N2	+	N	+	1	

• Only	the	biggest	power	of	N	matters:	N2	+	N	+	1	->	N2	
–  The	biggest	term	grows	so	much	faster	than	the	other	terms	that	the	
runtime	of	that	term	"dominates"	

–  Another	way	to	think	about	it:	N2+	N	+	1	<	2N2	when	N	is	big,	and	we	
already	said	we	don't	care	about	constants	

• We	would	then	say	the	code	snippet	has	O(N2)	runtime	
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Finding Big O 
• Work	from	the	innermost	indented	code	out	
• Realize	that	some	code	statements	are	more	costly	than	others	

–  It	takes	O(N2)	time	to	call	a	function	with	runtime	O(N2),	even	though	
calling	that	function	is	only	one	line	of	code	

• Nested	code	multiplies	
• Code	at	the	same	indentation	level	adds	
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What is the Big O? 
int	sum	=	0;	
for	(int	i	=	1;	i	<	100000;	i++)	{	
				for	(int	j	=	1;	j	<=	i;	j++;)	{	
								for	(int	k	=	1;	k	<=	N;	k++)	{	
												sum++;	
								}	
					}	
}	
Vector<int>	v;	
for	(int	x	=	1;	x	<=	N;	x	+=	2)	{	
				v.insert(0,	x);	
}	
cout	<<	v	<<	endl;	
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Complexity Classes 

• complexity	class:	A	category	of	algorithmic	efficiency	based	on	the	
algorithm's	relationship	to	the	input	size	"N".	

Class	 Big-Oh	 If	you	double	N,	...	 Example	
constant	 O(1)	 unchanged	 10ms	
logarithmic	 O(log2	N)	 increases	slightly	 175ms	
linear	 O(N)	 doubles	 3.2	sec	
log-linear	 O(N	log2	N)	 slightly	more	than	doubles	 11	sec	
quadratic	 O(N2)	 quadruples	 1	min	42	sec	
quad-linear	 O(N2	log2	N)	 slightly	more	than	quadruple	 8	min	
cubic	 O(N3)	 multiplies	by	8	 55	min	
...	 ...	 ...	 ...	
exponential	 O(2N)	 multiplies	drastically	 5	*	1061	years	
factorial	 O(N!)	 multiplies	drastically	 10200	years	
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Announcements 
• Assignment	1	due	Thursday	at	5PM	
• Shreya	will	be	guest-presenting	tomorrow!	
• No	class	on	July	4th	–	if	you	have	section,	either	attend	a	Thursday	
or	Friday	section	or	watch	the	videoed	section	and	email	your	SL	a	
summary	
– No	LaIR	either	

• SCPD	Exam	Form	Typo:	final	exam	is	on	August	18	NOT	August	25;	
please	check	your	Stanford	email/Piazza	for	details	(only	SCPD	
students	who	did	not	indicate	they'd	take	the	exam	on	August	18	
were	emailed)	
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ADTs – the Story so Far 
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A new ADT: the Stack 
• A	specialized	data	structure	that	only	
allows	a	user	to	add,	access,	and	
remove	the	last	element	
–  "Last	In,	First	Out"	
–  Super	fast	(O(1))	for	these	operations	

• Built	directly	into	the	hardware	
• Main	operations:	

– push(value):	add	an	element	to	
the	end	of	the	stack	

– pop():	remove	and	return	the	last	
element	in	the	stack	

– peek():	return	(but	do	not	remove)	
the	last	element	in	the	stack	

stack	

top	 3	
2	

bottom	 1	

pop	push	
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"Stacked" examples 
• Real	life	

–  Pancakes	
–  Clothes	
–  Plates	in	the	dining	hall	

•  In	computer	science	
–  Function	calls	
–  Keeping	track	of	edits	to	undo	
or	pages	visited	on	a	website	
to	go	back	to	(you'll	
implement	this	in	assignment	
5)	 source:	https://c2.staticflickr.com/8/7583/15638298618_104af94267_b.jpg		
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Stack Syntax 
#include	"stack.h"	

	

Stack<int>	nums;	

nums.push(1);	
nums.push(3);	
nums.push(5);	
cout	<<	nums.peek()	<<	endl;	//	5	
cout	<<	nums	<<	endl;	//	{1,	3,	5}	
nums.pop();	//	nums	=	{1,	3}	

s.isEmpty()	 O(1)	 returns	true	if	stack	has	no	elements	
s.peek()	 O(1)	 returns	top	value	without	removing	it;	

throws	an	error	if	stack	is	empty	
s.pop()	 O(1)	 removes	top	value	and	returns	it;	

throws	an	error	if	stack	is	empty	
s.push(value);	 O(1)	 places	given	value	on	top	of	stack	
s.size()	 O(1)	 returns	number	of	elements	in	stack	
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Stack limitations/idioms 
• You	cannot	access	a	stack's	elements	by	index. 

 

	Stack<int>	s;	
	...	
	for	(int	i	=	0;	i	<	s.size();	i++)	{	
					do	something	with	s[i];									//	does	not	compile	
	}	
	

•  Instead,	you	pull	elements	out	of	the	stack	one	at	a	time.	

• common	idiom:	Pop	each	element	until	the	stack	is	empty.	
	

	//	process	(and	empty!)	an	entire	stack	
	while	(!s.isEmpty())	{	
					do	something	with	s.pop();	
	}	
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Sentence Reversal 
• Goal:	print	the	words	of	a	sentence	in	reverse	order	

–  "Hello	my	name	is	Inigo	Montoya"	->	"Montoya	Inigo	is	name	my	Hello"	
–  "Inconceivable"	->	"Inconceivable"	

• Assume	characters	are	only	letters	and	spaces	
• How	could	we	use	a	Stack?	
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Sentence Reversal Solution 
void	printSentenceReverse(const	string	&sentence)	{		
				Stack<string>	wordStack;		
				for	(char	c	:	sentence)	{		
								if	(c	==	SPACE)	{		
												wordStack.push(word);		
												word	=	"";	//	reset		
								}	else	{		
												word	+=	c;		
								}		
				}		
				if	(word	!=	"")	{		
								wordStack.push(word);		
				}		
				cout	<<	"	New	sentence:	";		
				while	(!wordStack.isEmpty())	{		
								word	=	wordStack.pop();		
								cout	<<	word	<<	SPACE;		
				}		
				cout	<<	endl;	
}	
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ADTs – the Story so Far 


