
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	5	
Stacks	and	Big	O	

reading:	
Programming	Abstractions	in	C++,	Chapter	4-5	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	

Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	



2 

Plan for Today 
• Analyzing	algorithms	using	Big	O	analysis	

– Understand	what	makes	an	algorithm	"good"	and	how	to	compare	
algorithms	

• Another	type	of	collection:	the	Stack	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Big	O	



4 

Big O Intuition 
• Lots	of	different	ways	to	solve	a	problem;	which	is	best?	
• Measure	algorithmic	efficiency	

–  how	many	resources	(time?	memory?	etc.)	does	the	program	use	
– We'll	focus	on	time	

•  Idea:	algorithms	are	better	if	they	take	less	time	
• Problem:	amount	of	time	a	program	takes	is	variable	

– Depends	on	what	computer	you're	using,	what	other	programs	are	
running,	if	your	laptop	is	plugged	in…	



5 

Big O 
•  Idea:	assume	each	statement	of	code	takes	some	unit	of	time	

–  for	the	purposes	of	this	class,	that	unit	doesn't	matter	
• We	can	count	the	number	of	units	of	time	and	get	the	runtime	
• Sometimes,	the	number	of	statements	depends	on	the	input	–	we'll	
say	the	input	size	is	N	



6 

Big O 
statement1;																									//	runtime	=	1	
	
for	(int	i	=	1;	i	<=	N;	i++)	{						//	runtime	=	N^2	
				for	(int	j	=	1;	j	<=	N;	j++)	{		//	runtime	=	N	
								statement2;	
				}	
}	
	
for	(int	i	=	1;	i	<=	N;	i++)	{						//	runtime	=	3N	
				statement3;	
				statement4;	
				statement5;	
}																																			//	total	=	N^2	+	3N	+	1	
	



7 

Big O 
• The	actual	constant	doesn't	matter	(remember	that	we	haven't	
even	specified	how	much	a	unit	of	time	is)	–	so	we	get	rid	of	the	
constants:	N2	+	3N	+	1	->	N2	+	N	+	1	

• Only	the	biggest	power	of	N	matters:	N2	+	N	+	1	->	N2	
–  The	biggest	term	grows	so	much	faster	than	the	other	terms	that	the	
runtime	of	that	term	"dominates"	

–  Another	way	to	think	about	it:	N2+	N	+	1	<	2N2	when	N	is	big,	and	we	
already	said	we	don't	care	about	constants	

• We	would	then	say	the	code	snippet	has	O(N2)	runtime	



8 

Finding Big O 
• Work	from	the	innermost	indented	code	out	
• Realize	that	some	code	statements	are	more	costly	than	others	

–  It	takes	O(N2)	time	to	call	a	function	with	runtime	O(N2),	even	though	
calling	that	function	is	only	one	line	of	code	

• Nested	code	multiplies	
• Code	at	the	same	indentation	level	adds	



9 

What is the Big O? 
int	sum	=	0;	
for	(int	i	=	1;	i	<	100000;	i++)	{	
				for	(int	j	=	1;	j	<=	i;	j++;)	{	
								for	(int	k	=	1;	k	<=	N;	k++)	{	
												sum++;	
								}	
					}	
}	
Vector<int>	v;	
for	(int	x	=	1;	x	<=	N;	x	+=	2)	{	
				v.insert(0,	x);	
}	
cout	<<	v	<<	endl;	



10 

Complexity Classes 

• complexity	class:	A	category	of	algorithmic	efficiency	based	on	the	
algorithm's	relationship	to	the	input	size	"N".	

Class	 Big-Oh	 If	you	double	N,	...	 Example	
constant	 O(1)	 unchanged	 10ms	
logarithmic	 O(log2	N)	 increases	slightly	 175ms	
linear	 O(N)	 doubles	 3.2	sec	
log-linear	 O(N	log2	N)	 slightly	more	than	doubles	 11	sec	
quadratic	 O(N2)	 quadruples	 1	min	42	sec	
quad-linear	 O(N2	log2	N)	 slightly	more	than	quadruple	 8	min	
cubic	 O(N3)	 multiplies	by	8	 55	min	
...	 ...	 ...	 ...	
exponential	 O(2N)	 multiplies	drastically	 5	*	1061	years	
factorial	 O(N!)	 multiplies	drastically	 10200	years	



11 

Announcements 
• Assignment	1	due	Thursday	at	5PM	
• Shreya	will	be	guest-presenting	tomorrow!	
• No	class	on	July	4th	–	if	you	have	section,	either	attend	a	Thursday	
or	Friday	section	or	watch	the	videoed	section	and	email	your	SL	a	
summary	
– No	LaIR	either	

• SCPD	Exam	Form	Typo:	final	exam	is	on	August	18	NOT	August	25;	
please	check	your	Stanford	email/Piazza	for	details	(only	SCPD	
students	who	did	not	indicate	they'd	take	the	exam	on	August	18	
were	emailed)	



This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Stacks	



13 

ADTs – the Story so Far 



14 

A new ADT: the Stack 
• A	specialized	data	structure	that	only	
allows	a	user	to	add,	access,	and	
remove	the	last	element	
–  "Last	In,	First	Out"	
–  Super	fast	(O(1))	for	these	operations	

• Built	directly	into	the	hardware	
• Main	operations:	

– push(value):	add	an	element	to	
the	end	of	the	stack	

– pop():	remove	and	return	the	last	
element	in	the	stack	

– peek():	return	(but	do	not	remove)	
the	last	element	in	the	stack	

stack	

top	 3	
2	

bottom	 1	

pop	push	



15 

"Stacked" examples 
• Real	life	

–  Pancakes	
–  Clothes	
–  Plates	in	the	dining	hall	

•  In	computer	science	
–  Function	calls	
–  Keeping	track	of	edits	to	undo	
or	pages	visited	on	a	website	
to	go	back	to	(you'll	
implement	this	in	assignment	
5)	 source:	https://c2.staticflickr.com/8/7583/15638298618_104af94267_b.jpg		



16 

Stack Syntax 
#include	"stack.h"	

	

Stack<int>	nums;	

nums.push(1);	
nums.push(3);	
nums.push(5);	
cout	<<	nums.peek()	<<	endl;	//	5	
cout	<<	nums	<<	endl;	//	{1,	3,	5}	
nums.pop();	//	nums	=	{1,	3}	

s.isEmpty()	 O(1)	 returns	true	if	stack	has	no	elements	
s.peek()	 O(1)	 returns	top	value	without	removing	it;	

throws	an	error	if	stack	is	empty	
s.pop()	 O(1)	 removes	top	value	and	returns	it;	

throws	an	error	if	stack	is	empty	
s.push(value);	 O(1)	 places	given	value	on	top	of	stack	
s.size()	 O(1)	 returns	number	of	elements	in	stack	



17 

Stack limitations/idioms 
• You	cannot	access	a	stack's	elements	by	index. 

 

	Stack<int>	s;	
	...	
	for	(int	i	=	0;	i	<	s.size();	i++)	{	
					do	something	with	s[i];									//	does	not	compile	
	}	
	

•  Instead,	you	pull	elements	out	of	the	stack	one	at	a	time.	

• common	idiom:	Pop	each	element	until	the	stack	is	empty.	
	

	//	process	(and	empty!)	an	entire	stack	
	while	(!s.isEmpty())	{	
					do	something	with	s.pop();	
	}	



18 

Sentence Reversal 
• Goal:	print	the	words	of	a	sentence	in	reverse	order	

–  "Hello	my	name	is	Inigo	Montoya"	->	"Montoya	Inigo	is	name	my	Hello"	
–  "Inconceivable"	->	"Inconceivable"	

• Assume	characters	are	only	letters	and	spaces	
• How	could	we	use	a	Stack?	



19 

Sentence Reversal Solution 
void	printSentenceReverse(const	string	&sentence)	{		
				Stack<string>	wordStack;		
				for	(char	c	:	sentence)	{		
								if	(c	==	SPACE)	{		
												wordStack.push(word);		
												word	=	"";	//	reset		
								}	else	{		
												word	+=	c;		
								}		
				}		
				if	(word	!=	"")	{		
								wordStack.push(word);		
				}		
				cout	<<	"	New	sentence:	";		
				while	(!wordStack.isEmpty())	{		
								word	=	wordStack.pop();		
								cout	<<	word	<<	SPACE;		
				}		
				cout	<<	endl;	
}	



20 

ADTs – the Story so Far 


