CS 106B, Lecture 5
Stacks and Big O

reading:
Programming Abstractions in C++, Chapter 4-5

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Analyzing algorithms using Big O analysis
— Understand what makes an algorithm "good" and how to compare
algorithms

e Another type of collection: the Stack

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

Big O Intuition

e Lots of different ways to solve a problem; which is best?

e Measure algorithmic efficiency
— how many resources (time? memory? etc.) does the program use
— We'll focus on time

e |dea: algorithms are better if they take less time

e Problem: amount of time a program takes is variable

— Depends on what computer you're using, what other programs are
running, if your laptop is plugged in...

Big O

e |dea: assume each statement of code takes some unit of time

— for the purposes of this class, that unit doesn't matter
e \We can count the number of units of time and get the runtime

e Sometimes, the number of statements depends on the input — we'll
say the input size is N

Big O

statementl; // runtime = 1
for (int 1 = 1; 1 <= N; i++) { // runtime = N”2
for (int j = 1; j <= N; j++) { // runtime = N
statement2;
}
}
for (int 1 = 1; 1 <= N; i++) { // runtime = 3N
statement3;
statement4;
statement5;

} // total = N*2 + 3N + 1

Big O

e The actual constant doesn't matter (remember that we haven't
even specified how much a unit of time is) — so we get rid of the
constants:N2 + 3N + 1 -> N2 + N + 1

e Only the biggest power of N matters: N> + N + 1 ->N?

— The biggest term grows so much faster than the other terms that the
runtime of that term "dominates"

— Another way to think about it: N>+ N + 1 < 2N? when N is big, and we
already said we don't care about constants

e We would then say the code snippet has O(N?) runtime

Finding Big O

e \WWork from the innermost indented code out

e Realize that some code statements are more costly than others

— It takes O(N?) time to call a function with runtime O(N?), even though
calling that function is only one line of code

e Nested code multiplies
e Code at the same indentation level adds

What is the Big O?

int sum = ©;
for (int 1 = 1; i < 100000; i++) {
for (int j = 1; j <= 1i; j++;) {
for (int k = 1; k <= N; k++) {
SUmM++;

¥

Vector<int> v;

for (int x = 1; x <= N; x += 2) {
v.insert(9, x);

}

cout << v << endl;

e complexity class: A category of algorithmic efficiency based on the

Complexity Classes

algorithm's relationship to the input size "N".

Class Big-Oh If you double N, ... Example
constant O(1) unchanged 10ms
logarithmic O(log, N) increases slightly 175ms
linear O(N) doubles 3.2 sec
log-linear O(N log, N) | slightly more than doubles 11 sec
guadratic O(N?) guadruples 1 min 42 sec
quad-linear O(N? log, N) | slightly more than quadruple |8 min
cubic O(N3) multiplies by 8 55 min
exponential o(2N) multiplies drastically 5 * 10°%! years
factorial O(N!) multiplies drastically 1029 years

10

Announcements

e Assignment 1 due Thursday at 5PM
e Shreya will be guest-presenting tomorrow!

e No class on July 4t - if you have section, either attend a Thursday
or Friday section or watch the videoed section and email your SL a
summary

— No LalR either

e SCPD Exam Form Typo: final exam is on August 18 NOT August 25;

please check your Stanford email/Piazza for details (only SCPD

students who did not indicate they'd take the exam on August 18
were emailed)

11

Stacks

This document is copyright (C) Stanford Computer Science and Marty Stepp, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

ADTs - the Story so Far

Start

Grid

Two

_| How many dimensions of data do

| have?

One

13

A new ADT: the Stack

e A specialized data structure that only
allows a user to add, access, and
remove the last element

— "Last In, First Out"
— Super fast (O(1)) for these operations
e Built directly into the hardware
e Main operations:

— push(value): add an element to
the end of the stack

- pop(): remove and return the last
element in the stack

— peek(): return (but do not remove)
the last element in the stack

push pop
top 3
2
bottom 1
stack

14

"Stacked” examples

e Real life

— Pancakes

— Clothes

— Plates in the dining hall
e |n computer science

— Function calls

— Keeping track of edits to undo
or pages visited on a website
to go back to (you'll
implement this in assignment

5) source: https://c2.staticflickr.com/8/7583/15638298618 104af94267 b.jpg

15

Stack Syntax

#include "stack.h"

Stack<int> nums;

nums.push(1);

nums.push(3);

nums.push(5);

cout << nums.peek() << endl; // 5
cout << nums << endl; // {1, 3, 5}

nums.pop(); // nums = {1, 3}

s.isEmpty() O(1) | returns true if stack has no elements

s.peek() O(1) | returns top value without removing it;
throws an error if stack is empty

s.pop() O(1) | removes top value and returns it;
throws an error if stack is empty

s.push(value); | O(1) | places given value on top of stack

s.size() O(1) | returns number of elements in stack 16

Stack limitations/idioms

e You cannot access a stack's elements by index.

Stack<int> s;

// does not compile

e Instead, you pull elements out of the stack one at a time.

e common idiom: Pop each element until the stack is empty.

// process (and empty!) an entire stack
while (!s.isEmpty()) {
do something with s.pop();

¥

17

Sentence Reversal

e Goal: print the words of a sentence in reverse order
— "Hello my name is Inigo Montoya" -> "Montoya Inigo is name my Hello"
— "Inconceivable" -> "Inconceivable"

e Assume characters are only letters and spaces
e How could we use a Stack?

18

Sentence Reversal Solution

void printSentenceReverse(const string &sentence) {
Stack<string> wordStack;
for (char c : sentence) {
if (c == SPACE) {
wordStack.push(word);
word = ""; // reset
} else {
word += c;
}
}
if (word != "") {
wordStack.push(word);
}
cout <« New sentence: ";
while (!wordStack.isEmpty()) {

word = wordStack.pop();
cout << word << SPACE;

}

cout << endl;

ADTs - the Story so Far

How many dimensions of data do

Start | have?

\i

Two

Grid One

\4

Which elements do | need to
access?

Frequent looping or
middle elements

Last element

20

