
Recap Queues More queues Unit Testing Conclusion

Queues and Unit Testing

Shreya Shankar

Stanford CS 106B

3 July 2018

Based on slides created by Ashley Taylor, Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric
Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others.

1

Recap Queues More queues Unit Testing Conclusion

Recap

2

Recap Queues More queues Unit Testing Conclusion

Big O

• Idea: measures algorithmic efficiency
• How long does the program take to run?

• Algorithms are better if they take less time

• Number of statements in code can depend on how large the
input is – we normally say the input size is N

• Only the biggest power of N matters

• To calculate big O, work from innermost indented code out

3

Recap Queues More queues Unit Testing Conclusion

Example

Q: What is the big O?

Vector<int> v;

for (int x = 1; x <= N; x += 2) {

v.add(x);

}

while (! v.isEmpty()) {

cout << v.remove(0) << endl;

}

A:

4

Recap Queues More queues Unit Testing Conclusion

Example

Q: What is the big O?

Vector<int> v;

for (int x = 1; x <= N; x += 2) {

v.add(x);

}

while (! v.isEmpty()) {

cout << v.remove(0) << endl;

}

A: O(n2)

5

Recap Queues More queues Unit Testing Conclusion

Stacks

• stack: ADT that only allows a user to push an element and
peek or pop the last element
• ”Last-in, first-out”
• O(1) for these operations

• Basic stack operations:
• push: add an element to the end of the stack
• pop: remove and return the last element in the stack
• peek: return (but do not remove) the last element in the stack

6

Recap Queues More queues Unit Testing Conclusion

Queues

7

Recap Queues More queues Unit Testing Conclusion

Motivation
• There is behavior that stacks fail to model well

• What if we want to remove from front instead of from back?
• Can we model first-in, first-out behavior using other ADTs?

• Vector: removing from the beginning of a list is an O(n)
operation

• Stack: need two stacks to get the first element (food for
thought: how to do this?)

• Grid: nah

• So, we need a new ADT...

8

Recap Queues More queues Unit Testing Conclusion

Queues
• queue: ADT that retrieves elements in the order they were

added
• First-in, First-out (”FIFO”)
• Elements are stored in order of insertion, no indexes
• Can add only to the end of a queue and can only examine or

remove the front
• Basic queue operations:

• enqueue: add an element to the back
• dequeue: remove the front element
• peek: examine the front element

queue

front back

1 2 3
enqueuedequeue, peek

9

Recap Queues More queues Unit Testing Conclusion

Class methods

#include "queue.h"

q.dequeue() O(1)
removes front value and returns it;
throws error if queue is empty

q.enqueue(value) O(1) places given value at back of queue

q.isEmpty() O(1) returns true of queue has no elements

q.peek() O(1)
returns front value without removing;
throws an error if queue is empty

q.size() O(1) returns number of elements in queue

Table 1: The Queue class in Stanford’s C++ libraries.

• Food for thought: what isn’t an O(1) operation?
10

http://stanford.edu/~stepp/cppdoc/Queue-class.html

Recap Queues More queues Unit Testing Conclusion

Example

Queue<int> q; // {} front -> back

q.enqueue(42); // {42}

q.enqueue(-3); // {42, -3}

q.enqueue(17); // {42, -3, 17}

cout << q.dequeue() << endl; // 42 (q is {-3, 17})

cout << q.peek() << endl; // -3 (q is {-3, 17})

cout << q.dequeue() << endl; // -3 (q is {17})

11

Recap Queues More queues Unit Testing Conclusion

Applications

• Real-world examples
• Middle school lunch lines (no cutting!)
• Escalators (when someone is taking up the whole step)
• Anything first-come-first-serve

• Computers
• Sending jobs to a printer
• Uploading photos on social media
• Call services – being on hold

12

Recap Queues More queues Unit Testing Conclusion

Exercise
Q: What is the output of the following code?

Queue<int> queue;

for (int i = 1; i <= 6; i++) {

queue.enqueue(i);

} // {1, 2, 3, 4, 5, 6}

for (int i = 0; i < queue.size(); i++) {

cout << queue.dequeue() << " ";

}

cout << queue << " size " << queue.size() << endl;

A. 1 2 3 4 5 6 {} size 0

B. 1 2 3 {4, 5, 6} size 3

C. 1 2 3 4 5 6 {1, 2, 3, 4, 5, 6} size 6

D. none of the above
13

Recap Queues More queues Unit Testing Conclusion

Exercise
Q: What is the output of the following code?

Queue<int> queue;

for (int i = 1; i <= 6; i++) {

queue.enqueue(i);

} // {1, 2, 3, 4, 5, 6}

for (int i = 0; i < queue.size(); i++) {

cout << queue.dequeue() << " ";

}

cout << queue << " size " << queue.size() << endl;

A. 1 2 3 4 5 6 {} size 0

B. 1 2 3 {4, 5, 6} size 3

C. 1 2 3 4 5 6 {1, 2, 3, 4, 5, 6} size 6

D. none of the above
14

Recap Queues More queues Unit Testing Conclusion

Exercise

Q: Write a function stutter that accepts a queue of integers and
replaces every element with two copies of itself. For example, {1,
2, 3} becomes {1, 1, 2, 2, 3, 3}.

15

Recap Queues More queues Unit Testing Conclusion

Exercise

Q: Write a function stutter that accepts a queue of integers and
replaces every element with two copies of itself. For example, {1,
2, 3} becomes {1, 1, 2, 2, 3, 3}.

void stutter(Queue<int>& q) {

int size = q.size();

for (int i = 0; i < size; i++) {

int n = q.dequeue();

q.enqueue(n);

q.enqueue(n);

}

}

16

Recap Queues More queues Unit Testing Conclusion

Helpful hints for queues

• Don’t use size() directly

int size = q.size();

for (int i = 0; i < size; i++) {

// do something with q.dequeue();

// (including possibly re-adding it to the

queue)

}

• As with stacks, must pull contents out of queue to view them

// process (and destroy) an entire queue

while (!q.isEmpty()) {

// do something with q.dequeue();

}

17

Recap Queues More queues Unit Testing Conclusion

More Queues

18

Recap Queues More queues Unit Testing Conclusion

Mixing stacks and queues

How can we reverse the order of elements in a queue?

Queue<int> q {1, 2, 3}; // q={1, 2, 3}

Stack<int> s;

while (!q.isEmpty()) { // transfer queue to stack

s.push(q.dequeue()); // q={} s={1, 2, 3}

}

while (!s.isEmpty()) { // transfer stack to queue

q.enqueue(s.pop()); // q={3, 2, 1} s={}

}

cout << q << endl; // {3, 2, 1}

19

Recap Queues More queues Unit Testing Conclusion

Exercise

Q: Write a function mirror that accepts a queue of strings and
appends the queue’s contents to itself in reverse order. For
example, {"a", "b", "c"} becomes {"a", "b", "c", "c",

"b", "a"}.

20

Recap Queues More queues Unit Testing Conclusion

Exercise
Q: Write a function mirror that accepts a queue of strings and
appends the queue’s contents to itself in reverse order.

void mirror(Queue<string>& q) {

Stack<string> s;

int size = q.size();

for (int i = 0; i < size; i++) {

string str = q.dequeue();

s.push(str);

q.enqueue(str);

}

while (!s.isEmpty()) {

q.enqueue(s.pop());

}

}

21

Recap Queues More queues Unit Testing Conclusion

Deques
• deque: double-ended queue (pronounced ”deck”)

• Can add/remove from either end
• Combines many of the benefits of stack and queue

• Basic deque operations:
• enqueueFront, enqueueBack
• dequeueFront, dequeueBack
• peekFront, peekBack

• Get queue and stack functionality in one data structure!

queue

front back

1 2 3

enqueueBack,
dequeueBack,
peekBack

enqueueFront,
dequeueFront,
peekFront

22

Recap Queues More queues Unit Testing Conclusion

Unit Testing

23

Recap Queues More queues Unit Testing Conclusion

Early Google Maps

24

Recap Queues More queues Unit Testing Conclusion

Evolution of Google Maps: real-world technology

• Version 1: could only look up a city in the US and see roads
in it – ”paper atlas in living form” (Recode article)

• Then, added functionality to calculate directions from one
place to another

• Added ability to search for local businesses

• Added satellite imagery for people to view their own houses,
making Maps very popular

• A couple years into development, the team completely rewrote
all code to make it run faster

• Problems: How to make sure all this code is functional? How
to make sure functionality persists throughout all these
changes?

25

https://www.recode.net/2015/2/8/11558788/ten-years-of-google-maps-from-slashdot-to-ground-truth

Recap Queues More queues Unit Testing Conclusion

Motivation

• Code in the real world:
• You are not the only one reading the code you write
• Code is frequently updated to offer new functionality, fix old

bugs, etc.
• We often know what functionality we need, and we want to

make sure our code hits all the ”edge cases”

• Unit testing is a method for testing small pieces or ”units” of
source code for a larger piece of software

• Usually a series of functions to run
• Benefits of unit testing:

• Limits your code to only what is necessary and finds bugs early
• Easily preserves functionality when code is changed

26

Recap Queues More queues Unit Testing Conclusion

Unit testing basics

• Unit tests are usually a list of functions in a file, where each
function tests a small piece of functionality
• We don’t want to test lots of things in one unit test function

• Each unit test (function) has a way of indicating ”pass” or
”failure”

• Each programming language has its own style of unit testing

• Unit tests are usually designed before code is written

• Unit testing is usually automated – before new code can enter
the codebase, the test file is run and all unit tests must pass

27

Recap Queues More queues Unit Testing Conclusion

Common unit test macros

• assert: throws error if condition inside assert statement is
false

void checkNumStreetsInBigCities(Location &loc) {

int numStreets = getNumStreets(loc);

assert(numStreets > 100); // will crash program

if false

}

• expect: displays error when condition inside expect statement
is false, but other tests continue to run

• Use assert when test is critical, expect otherwise

28

Recap Queues More queues Unit Testing Conclusion

Exercise

Recall grids: Write a function getPossibleMoves that accepts a
grid and a row/column pair (row, col) as parameters, and returns a
vector of empty locations that a knight can legally move to from
(row, col).

• Recall that a knight makes an ”L” shaped move, going 2
squares in one dimension and 1 square in the other.

• getPossibleMoves(board, 1, 2) returns Vector<Point>

{(0, 0), (2, 0), (3, 3), (2, 4)}

29

Recap Queues More queues Unit Testing Conclusion

Exercise

getPossibleMoves(board, 1, 2) returns Vector<Point>

{(0, 0), (2, 0), (3, 3), (2, 4)}

0 1 2 3 4 5 6 7

0 "king"

1 "knight"

2

3 "rook"

4

5

6

7

30

Recap Queues More queues Unit Testing Conclusion

Exercise

Step one: think about all subunit functionalities (for lecture
purposes, we’ll list a few)

1. Need to be able to process all valid moves from a given
location

2. Need to make sure our valid moves don’t have our pieces in
them

3. Need to make sure our valid moves processed don’t go out of
bounds

4. Need to make sure user is passing a location in bounds

31

Recap Queues More queues Unit Testing Conclusion

Solution

Vector<Point> getPossibleMoves(Grid<string>& board, int row, int col) {

Vector<Point> validMoves;

if (!board.inBounds(row, col) || board[row][col] != "knight") return validMoves;

for (int xDir = -1; xDir <= 1; xDir += 2) {

for (int yDir = -1; yDir <= 1; yDir += 2) {

for (int xLen = 1; xLen <= 2; xLen++) {

int yLen = 3 - xLen;

Point point = (xLen * xDir, yLen * yDir);

if (board.inBounds(row + point.getX(), col + point.getY())

&& board[row + point.getX()][col + point.getY()] == "")

validMoves.add(point);

}

}

}

return validMoves;

}

32

Recap Queues More queues Unit Testing Conclusion

Testing exercise

Prototype for functionality 1:

const Grid<string> TEST_BOARD;

void checkNumPossibleMoves() {

/* Get possibleMoves: vector of possible locations

knight could end up at */

Vector<Point> possibleMoves = getPossibleMoves

(TEST_BOARD, 1, 2);

// No more than 8 possible locations to move to

assert(possibleMoves.size() <= 8);

}

33

Recap Queues More queues Unit Testing Conclusion

Testing exercise
Prototype for functionality 2:

const Grid<string> TEST_BOARD;

void checkNoPiecesInPossibleMoves() {

Vector<Point> possibleMoves = getPossibleMoves

(TEST_BOARD, 1, 2);

Vector<Point> currentLocs =

getCurrentPieceLocations();

// Check to make sure possibleMoves doesn’t contain

our pieces

for (Point pLoc: possibleMoves) {

for (Point cLoc: currentLocs) {

assert(pLoc != cLoc);

}

}

} 34

Recap Queues More queues Unit Testing Conclusion

Testing exercise

Prototype for functionality 3:

const Grid<string> TEST_BOARD;

void checkPossibleMovesInBounds() {

Vector<Point> possibleMoves = getPossibleMoves

(TEST_BOARD, 1, 2);

// Check to make sure possibleMoves are in bounds

for (Point pLoc: possibleMoves) {

assert(TEST_BOARD.inBounds(pLoc.getX(),

pLoc.getY()));

}

}

35

Recap Queues More queues Unit Testing Conclusion

Testing exercise

Prototype for functionality 4:

const Grid<string> TEST_BOARD;

void checkBadUserLoc () {

// (-1, -1) is a bad location

Vector<Point> possibleMoves = getPossibleMoves

(TEST_BOARD, -1, -1);

// There are no moves from invalid location

assert(possibleMoves.size() == 0);

}

36

Recap Queues More queues Unit Testing Conclusion

Testing takeaways

• Think about tests early, and think about them often!

• This class does not heavily focus on unit tests in assignments,
but software engineering in general does.

• Unit tests are a lot of work to write! But they’re valuable
when code is used in production and frequently updated.

Meme taken from me.me
37

https://me.me/i/your-code-cant-fail-unit-tests-openim-if-you-dont-9913796

Recap Queues More queues Unit Testing Conclusion

Thank you!

• Any questions? Email me at shreya@cs.stanford.edu or come
to my office hours today (Tuesday) from 1:30-3:30 PM in
Gates B02

• Assignment 1 (Life) due Thursday

• Today is last day of LaIR before assignment is due

• No class tomorrow – have a great 4th of July!

38

mailto:shreya@cs.stanford.edu
https://web.stanford.edu/class/cs106b/assignments/life.html

	Recap
	Title
	Big-Oh
	Stacks

	Queues
	Title
	Motivation
	Definition
	Example
	Applications
	Exercises
	Helpful hints

	More queues
	Title
	Combining queues and stacks
	Deques

	Unit Testing
	Title
	Motivation
	Definitions
	Exercise
	Takeaways

	Conclusion

