
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	7	
Sets,	Maps,	and	Lexicons	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	

Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Today’s Topics
•  Sets	(and	Lexicons)	

–  A	new	kind	of	ADT	
–  countUniqueWords	redux	

•  Maps	
–  An	ADT	for	pairs	of	data	
– wordCount	example	
– Where2Eat	

3

ADT Soup

4

CountUniqueWords
•  One	basic	statistic	about	a	text	
is	the	number	of	unique	words	
it	has	
-  Linguists	and	computer	scientists	

frequently	start	analysis	with	the	
number	of	unique	words	

-  Good	indication	of	vocabulary	

•  Problem:	how	can	we	
determine	the	number	of	
unique	words	in	a	file?	
	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Sets	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

6

Sets
•  Only	answers	question	of	
membership	
- No	duplicates	

•  Operations	
- contains(elem)	
- add(elem)	
- remove(elem)	

•  Comparison	to	Vector	
- Does	not	maintain	order	
- No	duplicates	
- Really	fast	at	finding	membership	

	

7

Looping over Sets
•  Sets	don’t	have	indices,	so	we	use	a	for-each	loop	
•  Iterates	in	sorted	order	(alphabetical	order	for	strings)	
•  Can’t	edit	while	we	iterate	
	
Set<string>	friends;		
friends.add("Shreya");	
friends.add("Leland");	
	
//	prints	in	alphabetical	order		
for	(string	myFriend	:	friends)	{						

	cout	<<	"Hi,	"	<<	myFriend	<<	endl;	
	cout	<<	"Let's	get	dinner."	<<	endl;		

}	
	

8

Good Operations to Know

9

Sets – Method List
s.add(value)	 O(log	N)	 Adds	an	element	to	this	set,	if	it	was	not	already	there	

s.clear()	 O(N)	 Removes	all	elements	from	this	set	

s.contains(value)	 O(log	N)	 Returns	true	if	value	is	in	this	set	

s.equals(set)	 O(N)	 Returns	true	if	the	two	sets	contain	the	same	elements	

s.first()	 O(log	N)	 Returns	the	first	value	in	the	set	in	order	

s.isEmpty()	 O(1)	 Returns	true	if	the	set	contains	no	elements	

s.isSubsetOf(s2)	 O(N)	 Returns	true	if	all	the	elements	in	the	set	are	also	in	s2	

s.remove(value)	 O(log	N)	 Removes	an	element	from	this	set	

s.size()	 O(1)	 Returns	the	number	of	elements	in	this	set	

s.toString()	 O(N)	 Converts	the	set	to	a	printable	string	representation	

10

Lexicons
•  Set	where	the	only	type	is	string	
•  Can	do	everything	a	Set	does	
•  Also	answers	the	question	–	do	any	words	
start	with	this	prefix?	
- lexicon.containsPrefix(prefix)	

•  Used	to	store	dictionaries	
•  We’ll	talk	about	lexicons	more	later	

11

ADT Soup Expanded

12

Announcements
• Assignment	1	due	today	at	5PM	
• Assignment	2	comes	out	today,	due	Wednesday,	July	11	at	5PM	
• Don't	forget	to	answer	the	debugging	questions	in	LaIR	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

Maps	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

14

Maps
•  Stores	pairs	of	information	

- First	half	of	the	pair	is	called	a	key,	and	
the	second	half	is	the	associated	value	

- Find	a	value	by	looking	up	its	associated	
key	

- Useful	when	you	will	only	have	half	the	
information	available	later	in	the	
program	

- Keys	must	be	unique	(just	like	elements	
in	a	Set!)	

•  Comparison	with	Vector	
- Vectors	look	up	elements	by	index,	Maps	
look	them	up	by	key	

- Need	to	have	two	types	(for	the	key	and	
the	value)	

- Ordered	by	key,	not	index	

15

Map Syntax
•  map.put(key,	value)	
- map[key]	=	value	
- Adds	the	key	if	it	wasn’t	already	in	the	map	
- Otherwise	edits	its	value	

•  map.get(key)	
- map[key]	

•  This	alternate	syntax	will	create	a	key	with	the	default	value	in	the	map	

•  map.remove(key)	
- No	effect	if	the	key	isn’t	in	the	map	

16

Map Example: Dictionary
ifstream	file;		
promptUserForFile(file,	"Where	is	your	dictionary?");		
Map<string,	string>	dictionary;			
string	word;	
		
while	(getline(file,	word))	{						

	string	definition;						
	getline(file,	definition);						
	dictionary[word]	=	definition;		

}			
	
while	(true)	{						

	string	query	=	getLine("Word	to	look	up?");							
	if	(dictionary.containsKey(query))	{										
	 	cout	<<	"The	definition	is	"	<<	dictionary[query]	<<	endl;					
	}	else	{										
	 	cout	<<	"I	don't	know	that	word!"	<<	endl;						
	}		

}			
	

17

Looping over Maps
•  Maps	also	don’t	have	indices,	so	we	use	a	for-each	loop	over	the	keys	
•  Iterates	in	sorted	order	over	the	keys	(alphabetical	order	for	strings)	
•  Can’t	edit	the	keys	while	we	iterate	(can	edit	values)	
	
Map<string,	int>	phonebook;		
phonebook["Ashley"]	=	5551234;	
phonebook["Shreya"]	=	5559876;	
		
//	prints	in	alphabetical	order		
for	(string	name:	phonebook)	{	

	int	phoneNumber	=	phonebook[name];	
	cout	<<	"I’m	going	to	call	"	<<	name;	
	cout	<<	"	at	"	<<	phoneNumber	<<	endl;		

}	
	

18

Word Count
•  We’ve	found	the	number	of	unique	words	

in	a	file.	Another	statistic	is	how	frequently	
each	word	is	used.	

•  Given	a	text	file	and	a	user-inputted	word,	
how	frequently	is	that	word	used	in	the	
file?	

to	be	or	not	to	be	

File?	tiny.txt	
	
Word?	to	
"to"	appears	2	times	
	
Word?	or	
"or"	appears	1	times		tiny.txt	

19

ADT Soup

20

Nesting ADTs: Where2Eat
•  Problem:	we	want	to	schedule	a	dinner	with	
some	group	of	our	friends	

•  We	have	a	text	file	with	all	our	friends'	
dinner	preferences	

•  Given	a	group	of	friends	going	to	a	dinner,	
where	should	we	eat	to	maximize	
happiness?	

•  We	might	not	be	able	to	find	a	place	that	
makes	everyone	happy	–	such	is	life	

•  Which	ADT(s)	should	we	use?	

Ashley	
In	n	Out	
Chipotle	
Axe	and	Palm	
	
Shreya	
Chipotle	
Bytes	Cafe	
	
Karel	
Bytes	Café	
Forbes	Cafe	

