CS 106B, Lecture 7
Sets, Maps, and Lexicons

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Today's Topics

Sets (and Lexicons)
— A new kind of ADT

— countUniqgueWords redux

Maps

— An ADT for pairs of data
— wordCount example

— Where2Eat

Start

How many dimensions of data do

Two

Grid

Frequent looping or
middle elements

| have?

One

Y

Which elements do | need to
access?

First element

Last element

CountUniqueWords

Console [completed]

One basic statistic about atext File? ladygaga.txt

is the number of unique words ~ There are 774 unique words 1in
it has ladygaga. txt

— Linguists and computer scientists
frequently start analysis with the
number of unique words

— Good indication of vocabulary
Problem: how can we
determine the number of
unique words in a file?

Sets

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

* Only answers question of
membership

—No duplicates
* Operations

—-contains(elem)

—add(elem)
-remove(elem)

psyCH 1 o°
064

* Comparison to Vector
. MATH
—Does not maintain order >
—No duplicates

—Really fast at finding membership

Looping over Sets

* Sets don’t have indices, so we use a for-each loop
* lterates in sorted order (alphabetical order for strings)

e Can’t edit while we iterate

Set<string> friends;
friends.add("Shreya");
friends.add("Leland");

// prints in alphabetical order

for (string myFriend : friends) {
cout << "Hi, " << myFriend << endl;
cout << "Let's get dinner." << endl;

Good Operations to Know

set1 set2 set1 set2 set1 set2

Union: set1 + set2 Difference: set1 - set2 Intersection: set1 * set2

Sets — Method List

s.add(value) O(log N) | Adds an element to this set, if it was not already there
s.clear() O(N) Removes all elements from this set
s.contains(value) | O(log N) | Returns true if value is in this set

s.equals(set) O(N) Returns true if the two sets contain the same elements
s.first() O(log N) | Returns the first value in the set in order

Ss.isEmpty() 0(1) Returns true if the set contains no elements
Ss.isSubsetOf(s2) | O(N) Returns true if all the elements in the set are also in s2
s.remove(value) O(log N) | Removes an element from this set

s.size() 0O(1) Returns the number of elements in this set
s.toString() O(N) Converts the set to a printable string representation

9

Lexicons

Set where the only type is string

Can do everything a Set does

Also answers the question — do any words
start with this prefix?

—-lexicon.containsPrefix(prefix)

Used to store dictionaries

We'll talk about lexicons more later

10

ADT Soup Expanded

Start

Two
order

Frequent looping or
middle elements

.| How many dimensions of data do One
| have?
Y
No - need duplicates or Do | only care about

4

Which elements do | need to
access?

First element

membership?

Yes

Last element

11

Announcements

e Assignment 1 due today at 5PM
e Assignment 2 comes out today, due Wednesday, July 11 at 5PM
e Don't forget to answer the debugging questions in LalR

12

Maps

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

e Stores pairs of information

— First half of the pair is called a key, and
the second half is the associated value

— Find a value by looking up its associated
key

— Useful when you will only have half the
information available later in the

program
— Keys must be unique (just like elements
in a Set!)
 Comparison with Vector

— Vectors look up elements by index, Maps
look them up by key

— Need to have two types (for the key and
the value)

— Ordered by key, not index

Ashley, .
Je’%y_. 867.5309 % 555“2612

e

e

Map Syntax

* map.put(Rey, value)
-map[Rey] = value
—Adds the key if it wasn’t already in the map
— Otherwise edits its value
* map.get(Rey)
—-map[Rey]
* This alternate syntax will create a key with the default value in the map

* map.remove (kRey)
—No effect if the key isn’t in the map

15

Map Example: Dictionary

ifstream file;

promptUserForFile(file, "Where is your dictionary?");
Map<string, string> dictionary;

string word;

while (getline(file, word)) {
string definition;
getline(file, definition);
dictionary[word] = definition;

¥

while (true) {
string query = getLine("Word to look up?");
if (dictionary.containsKey(query)) {
cout << "The definition is " << dictionary[query] << endl;

} else {
cout << "I don't know that word!" << endl;
}

16

Looping over Maps

* Maps also don’t have indices, so we use a for-each loop over the keys
* lterates in sorted order over the keys (alphabetical order for strings)
* Can’t edit the keys while we iterate (can edit values)

Map<string, int> phonebook;
phonebook["Ashley"] = 5551234;
phonebook["Shreya"] = 5559876;

// prints in alphabetical order

for (string name: phonebook) {
int phoneNumber = phonebook[name];
cout << "I’m going to call " << name;
cout << " at " << phoneNumber << endl;

17

* We’'ve found the number of unique words
in a file. Another statistic is how frequently
each word is used.

* Given a text file and a user-inputted word,

how frequently is that word used in the
file?

to be or not to be
tiny.txt

File? tiny.txt

Word? to
"to" appears 2 times

Word? or

or" appears 1 times

18

| How many dimensions | One oo | Yes
Start > of data do | have? > |s my data in pairs”

No - need duplicates or order | Do | only care about
membership?
I Yes
Which elements do | need to
access?

Last element

Frequent looping or

middle elements First element

19

Nesting ADTs: Where2Eat

* Problem: we want to schedule a dinner with Ashley
some group of our friends In n Out
« We have a text file with all our friends' Chipotle

dinner preferences Axe and Palm

e Given a group of friends going to a dinner,

where should we eat to maximize Shr.‘eya
happiness? Chipotle
' Bytes Cafe
* We might not be able to find a place that y
makes everyone happy - such is life
Karel
Bytes Café

Forbes Cafe

* Which ADT(s) should we use? 50

