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Sets, Maps, and Lexicons
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Today's Topics

Sets (and Lexicons)
— A new kind of ADT

— countUniqgueWords redux

Maps

— An ADT for pairs of data
— wordCount example

— Where2Eat
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CountUniqueWords

Console [completed]

One basic statistic about atext  File? ladygaga.txt

is the number of unique words ~ There are 774 unique words 1in
it has ladygaga. txt

— Linguists and computer scientists
frequently start analysis with the
number of unique words

— Good indication of vocabulary
Problem: how can we
determine the number of
unique words in a file?



Sets
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* Only answers question of
membership

—No duplicates
* Operations

—-contains(elem)

—add(elem)
-remove(elem)

psyCH 1 o°
064

* Comparison to Vector
. MATH
—Does not maintain order >
—No duplicates

—Really fast at finding membership



Looping over Sets

* Sets don’t have indices, so we use a for-each loop
* lterates in sorted order (alphabetical order for strings)

e Can’t edit while we iterate

Set<string> friends;
friends.add("Shreya");
friends.add("Leland");

// prints in alphabetical order

for (string myFriend : friends) {
cout << "Hi, " << myFriend << endl;
cout << "Let's get dinner." << endl;



Good Operations to Know

set1 set2 set1 set2 set1 set2

Union: set1 + set2 Difference: set1 - set2 Intersection: set1 * set2



Sets — Method List

s.add(value) O(log N) | Adds an element to this set, if it was not already there
s.clear() O(N) Removes all elements from this set
s.contains(value) | O(log N) | Returns true if value is in this set

s.equals(set) O(N) Returns true if the two sets contain the same elements
s.first() O(log N) | Returns the first value in the set in order

Ss.isEmpty() 0(1) Returns true if the set contains no elements
Ss.isSubsetOf(s2) | O(N) Returns true if all the elements in the set are also in s2
s.remove(value) O(log N) | Removes an element from this set

s.size() 0O(1) Returns the number of elements in this set
s.toString() O(N) Converts the set to a printable string representation
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Lexicons

Set where the only type is string

Can do everything a Set does

Also answers the question — do any words
start with this prefix?

—-lexicon.containsPrefix(prefix)

Used to store dictionaries

We'll talk about lexicons more later
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ADT Soup Expanded
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Announcements

e Assignment 1 due today at 5PM
e Assignment 2 comes out today, due Wednesday, July 11 at 5PM
e Don't forget to answer the debugging questions in LalR
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Maps
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e Stores pairs of information

— First half of the pair is called a key, and
the second half is the associated value

— Find a value by looking up its associated
key

— Useful when you will only have half the
information available later in the

program
— Keys must be unique (just like elements
in a Set!)
 Comparison with Vector

— Vectors look up elements by index, Maps
look them up by key

— Need to have two types (for the key and
the value)

— Ordered by key, not index

Ashley, .
Je’%y_. 867.5309 % 555“2612

e

e



Map Syntax

* map.put(Rey, value)
-map[Rey] = value
—Adds the key if it wasn’t already in the map
— Otherwise edits its value
* map.get(Rey)
—-map[Rey ]
* This alternate syntax will create a key with the default value in the map

* map.remove (kRey)
—No effect if the key isn’t in the map
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Map Example: Dictionary

ifstream file;

promptUserForFile(file, "Where is your dictionary?");
Map<string, string> dictionary;

string word;

while (getline(file, word)) {
string definition;
getline(file, definition);
dictionary[word] = definition;

¥

while (true) {
string query = getLine("Word to look up?");
if (dictionary.containsKey(query)) {
cout << "The definition is " << dictionary[query] << endl;

} else {
cout << "I don't know that word!" << endl;
}
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Looping over Maps

* Maps also don’t have indices, so we use a for-each loop over the keys
* lterates in sorted order over the keys (alphabetical order for strings)
* Can’t edit the keys while we iterate (can edit values)

Map<string, int> phonebook;
phonebook["Ashley"] = 5551234;
phonebook["Shreya"] = 5559876;

// prints in alphabetical order

for (string name: phonebook) {
int phoneNumber = phonebook[name];
cout << "I’m going to call " << name;
cout << " at " << phoneNumber << endl;
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* We’'ve found the number of unique words
in a file. Another statistic is how frequently
each word is used.

* Given a text file and a user-inputted word,

how frequently is that word used in the
file?

to be or not to be
tiny.txt

File? tiny.txt

Word? to
"to" appears 2 times

Word? or

or" appears 1 times
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| How many dimensions | One oo | Yes
Start > of data do | have? > |s my data in pairs”

No - need duplicates or order | Do | only care about
membership?
I Yes
Which elements do | need to
access?

Last element

Frequent looping or

middle elements First element
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Nesting ADTs: Where2Eat

* Problem: we want to schedule a dinner with Ashley
some group of our friends In n Out
« We have a text file with all our friends' Chipotle

dinner preferences Axe and Palm

e Given a group of friends going to a dinner,

where should we eat to maximize Shr.‘eya
happiness? Chipotle
' Bytes Cafe
* We might not be able to find a place that y
makes everyone happy - such is life
Karel
Bytes Café

Forbes Cafe

* Which ADT(s) should we use? 50



