
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	and	others.	

CS	106B,	Lecture	8	
Recursion	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• Learn	a	powerful	algorithmic	technique	called	recursion	

–  Exploit	self-similarity	in	problems	
–  Learn	recursive	problem-solving	

• We	will	spend	several	days	on	recursion	–	don't	worry	if	it	doesn't	
make	sense	today	
– Goal:	do	as	many	examples	as	we	can	
–  You	should	practice:	CodeStepByStep,	section	problems,	or	examples	
from	the	textbook	

3

Recursion
•  recursion:	The	function	definition	involving	a	call	to	the	same	
function	
–  Solving	a	problem	using	recursion	depends	on	solving	
smaller	(simpler)	occurrences	of	the	same	problem	until	the	problem	is	
simple	enough	that	you	can	solve	it	directly	

–  Key	question:	"How	is	this	problem	self-similar?"	–	what	are	the	
smaller	subproblems	that	make	up	the	bigger	problem?	

• Occurs	in	many	places	in	code	and	in	real	world:	
–  Looking	up	a	word	in	dictionary	may	involve	looking	up	other	words	
– Nested	structures	(trees,	file	folders,	collections)	can	be	self-similar.	
–  Patterns	can	contain	smaller	versions	of	the	same	pattern		(fractals)	

4

Recursive Programming
•  recursive	programming:	Writing	functions	that	call	themselves	to	
solve	problems	that	are	recursive	in	nature.	

–  An	equally	powerful	substitute	for	iteration	(loops)	

–  Particularly	well-suited	to	solving	certain	types	of	problems	

–  Leads	to	elegant,	simplistic,	short	code	(when	used	well)	

– Many	programming	languages	("functional"	languages	such	as	
Scheme,	ML,	and	Haskell)	use	recursion	exclusively		(no	loops)	

–  A	key	component	of	the	rest	of	our	assignments	in	this	course	

5

Recursive Stanford Gear
• We	want	to	count	the	number	of	people	in	the	room	who	are	
wearing	Stanford	clothing	

• We	can't	directly	count	(there	are	a	lot	of	people	in	the	room)	
• BUT	you	all	can	help	
• You	can	ask	questions	of	the	person	behind	you	and	respond	to	
questions	from	the	person	in	front	of	you	

	
How	can	we	solve	this	recursively?	

6

Recursive Stanford Gear
• The	first	person	looks	behind	them:	

–  If	there	is	no	one	there,	the	person	responds	with	1	if	they	are	wearing	
Stanford	gear	or	0	if	they	are	not	

–  If	there	is	someone	behind	the	person,	ask	them	how	many	people	
behind	them	(including	the	answerer)	are	wearing	Stanford	gear	

– Once	the	person	receives	a	response,	they	add	1	if	they	are	wearing	
Stanford	gear,	or	0	if	they	are	not,	and	respond	to	the	person	in	front	
of	them	

•  I	just	need	to	ask	everyone	in	the	front	row	–	much	simpler!	

7

Recursive Stanford Gear
• The	first	person	looks	behind	them:	

–  If	there	is	no	one	there,	the	person	responds	with	1	if	they	are	wearing	
Stanford	gear	or	0	if	they	are	not	

–  If	there	is	someone	behind	the	person,	ask	them	how	many	people	
behind	them	(including	the	answerer)	are	wearing	Stanford	gear	

– Once	the	person	receives	a	response,	they	add	1	if	they	are	wearing	
Stanford	gear,	or	0	if	they	are	not,	and	respond	to	the	person	in	front	
of	them	

•  I	just	need	to	ask	everyone	in	the	front	row	–	much	simpler!	

Recursive	Call	

8

Recursion and cases
• Every	recursive	algorithm	involves	at	least	2	cases:	

	

–  base	case:	A	simple	occurrence	that	can	be	answered	directly	(a	single	
statement	of	code	in	the	Big	O	example)	

–  recursive	case:	A	more	complex	occurrence	of	the	problem	that	
cannot	be	directly	answered,	but	can	instead	be	described	in	terms	of	
smaller	occurrences	of	the	same	problem	(inner	loops	or	code	blocks)	

	
–  Key	idea:	In	a	recursive	piece	of	code,	you	handle	a	small	part	of	the	
overall	task	yourself	(usually	the	work	involves	modifying	the	results	of	
the	smaller	problems),	then	make	a	recursive	call	to	handle	the	rest.	

–  Ask	yourself,	"How	is	this	task	self-similar?"	
• "How	can	I	describe	this	algorithm	in	terms	of	a	
		smaller	or	simpler	version	of	itself?"	

9

Recursion Tips
• Look	for	self-similarity	
• Find	the	minimum	amount	of	work	
• Make	the	problem	simpler	by	doing	the	least	amount	of	work	
possible	

• Trust	the	recursion		
• Find	a	stopping	point	(base	case)	

10

Three Rules of Recursion

• Every	(valid)	input	must	have	a	case	(either	recursive	or	
base)	

• There	must	be	a	base	case	that	makes	no	recursive	calls	
(i.e.	on	some	input(s),	the	code	should	not	make	any	
recursive	calls)	

• The	recursive	case	must	make	the	problem	simpler	and	
make	forward	progress	to	the	base	case	

11

Recursive Program Structure
recursiveFunc()	{	
		if	(test	for	simple	case)	{	//	base	case	
				Compute	the	solution	without	recursion	
		}	else	{	//	recursive	case	
				Break	the	problem	into	subproblems	of	the	same	form	
				Call	recursiveFunc()	on	each	self-similar	subproblem	
				Reassamble	the	results	of	the	subproblems	
		}	
}	

12

Non-recursive factorial
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
//	Assumes	n	>=	1.	
int	factorial(int	n)	{	
				int	total	=	1;	
				for	(int	i	=	1;	i	<=	n;	i++)	{	
								total	*=	i;	
				}	
				return	total;	
}	
	

•  Important	observations:	
	0!	=	1!	=	1	
	4!	=	4	*	3	*	2	*	1	
	5!	=	5	*	4	*	3	*	2	*	1	
						=	5	*	4!	

13

Recursive factorial
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
//	Assumes	n	>=	0.	
int	factorial(int	n)	{	
				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	
	

• The	recursive	code	handles	a	small	part	of	the	overall	task	
(multiplying	by	n),	then	makes	a	recursive	call	to	handle	the	rest.	
–  The	recursive	version	is	written	without	using	any	loops.	

• Recursion	replaces	the	while	loop	
– We	separate	the	code	into	a	base	case	(a	simple	case	that	does	not	
make	any	recursive	calls),	and	a	recursive	case.	

14

Recursive stack trace
int	factorial(int	n)	{	//	4	
				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	 int	factorial(int	n)	{	//	3	

				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	 int	factorial(int	n)	{	//	2	

				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	 int	factorial(int	n)	{	//	1	

				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	

15

Recursive tracing
• Consider	the	following	recursive	function:	

	

int	mystery(int	n)	{	
				if	(n	<	10)	{	
								return	n;	
				}	else	{	
								int	a	=	n	/	10;	
								int	b	=	n	%	10;	
								return	mystery(a	+	b);	
				}	
}	
	

	Q:	What	is	the	result	of:				mystery(648)	?	
	A.		8 	B.		9 	C.		54 	D.		72 	E.		648	

recursionMystery648	

16

Recursive stack trace

int	mystery(int	n)	{												//	n	=	648					
				if	(n	<	10)	{	
								return	n;	
				}	else	{	
								int	a	=	n	/	10;									//	a	=	64	
								int	b	=	n	%	10;									//	b	=			8	
								return	mystery(a	+	b);		//	mystery(72);		
				}	
}	

int	mystery(int	n)	{												//	n	=	72					
				if	(n	<	10)	{	
								return	n;	
				}	else	{	
								int	a	=	n	/	10;									//	a	=	7	
								int	b	=	n	%	10;									//	b	=		2	
								return	mystery(a	+	b);		//	mystery(9);		
				}	
}	

int	mystery(int	n)	{												//	n	=	9					
				if	(n	<	10)	{	
								return	n;															//	return	9	
				}	else	{	
								int	a	=	n	/	10;	
								int	b	=	n	%	10;	
								return	mystery(a	+	b);																		
				}	
}	

17

isPalindrome exercise

• Write	a	recursive	function	isPalindrome	accepts	a	string	and	
returns	true	if	it	reads	the	same	forwards	as	backwards.	

isPalindrome("madam") 	→	true	
isPalindrome("racecar") 	→	true	
isPalindrome("step	on	no	pets") 	→	true	
isPalindrome("able	was	I	ere	I	saw	elba") 	→	true		
isPalindrome("Q") 	→	true	
isPalindrome("Java") 	→	false	
isPalindrome("rotater") 	→	false	
isPalindrome("byebye") 	→	false	
isPalindrome("notion") 	→	false	
	
	
–  What	is	a	good	base	case?	

isPalindrome	

18

isPalindrome
• How	is	this	problem	self-similar?	
• What	is	the	minimum	amount	of	work?	
• How	can	we	make	the	problem	simpler	by	doing	the	least	amount	
of	work?	

• What	is	our	stopping	point	(base	case)?	

19

isPalindrome
• How	is	this	problem	self-similar?	

–  Palindromes	can	be	written	as:	x[SMALLER_PALINDROME]x,	where	x	
stands	for	some	letter	

• What	is	the	minimum	amount	of	work?	
–  Testing	the	equality	of	outside	characters	

• How	can	we	make	the	problem	simpler	by	doing	the	least	amount	
of	work?	
–  Peel	off	the	outside	characters	and	test	if	the	middle	is	a	palindrome	

• What	is	our	stopping	point	(base	case)?	
–  Empty	string	or	string	of	length	1	

20

isPalindrome solution
//	Returns	true	if	the	given	string	reads	the	same	
//	forwards	as	backwards.	
//	Trivially	true	for	empty	or	1-letter	strings.	
bool	isPalindrome(string	s)	{	
				if	(s.length()	<	2)	{			//	base	case	
								return	true;	
				}	else	{																//	recursive	case	
								if	(s[0]	!=	s[s.length()	-	1])	{	
												return	false;	
								}	
								string	middle	=	s.substr(1,	s.length()	-	2);	
								return	isPalindrome(middle);	
				}	
}	

21

Announcements

• Homework	2	due	on	Wednesday	at	5PM	
• Homework	1	grades	will	be	released	by	your	section	leader	on	or	
before	Wednesday	

• Your	partner	(if	you	choose	to	have	one)	must	be	in	your	section,	
and	you	should	submit	together	through	Paperless	

• Alternate	exams	have	been	scheduled	–	should	have	received	an	
email	

• Shreya's	OH	changeup	
–  Tuesday,	8:30-10:30AM	
– Wednesday,	9:30-10:30AM	
–  Both	open	to	SCPD	and	non-SCPD	students,	sign	up	on	QueueStatus	
(link	on	sidebar	of	website),	be	prepared	to	use	Google	Hangouts	

22

Multiple calls tracing
int	mystery(int	n)	{	
				if	(n	<	10)	{	
								return	(10	*	n)	+	n;	
				}	else	{	
								int	a	=	mystery(n	/	10);	
								int	b	=	mystery(n	%	10);	
								return	(100	*	a)	+	b;	
				}	
}	
	

	Q:	What	is	the	result	of:		mystery(348)	?	
	A.	3828 	B.	348348 	C.	334488 	D.	80403									E.	none	

recursionMystery348	

23

Multiple calls tracing
//	call	1:				348	
int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	//	call	2a:				34	

int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	

//	call	2b:					8	
int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	//	call	3a:					3	

int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	

//	call	3b:					4	
int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	

24

Recursive Big O
• Below	is	the	"pseudocode"	for	finding	Big	O	of	a	function	

– Note	that	this	is	not	real	code;	this	is	to	show	the	recursive	nature	of	
finding	Big	O	

–  Self-similarity:	find	Big	O	of	smaller	code	blocks	and	combine	them	
–  This	Big	O	pseudocode	doesn't	cover	function	calls	and	some	other	cases	
(for	pedagogical	purposes)	–	thought	experiment	to	expand	this	

findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	

25

Finding Big O: Base Case
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	

26

Finding Big O: Subproblems
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	

27

Finding Big O: Do Work
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	

28

Finding Big O: Recursive Call
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	

29

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

30

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

31

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2)

32

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(1)

33

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

34

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(1) O(1)

35

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2) O(1)

36

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)							+	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2)

37

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

38

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)							+	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2) O(1)

39

Finding Big O Recursively
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

final result: O(N2)

40

power exercise
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	
– What	is	the	minimum	amount	of	work?	
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	

power	

41

power exercise
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	Realize	xn	=	x	*	xn-1	
– What	is	the	minimum	amount	of	work?		
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	n	=	0	
• Why	not	n	=	1?	

power	

42

Initial solution
//	Returns	base	^	exp.	
//	Assumes	exp	>=	1.	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

43

The call stack
• Each	previous	call	waits	for	the	next	call	to	finish.	

– cout	<<	power(5,	3)	<<	endl;	
//	first	call:			5								3	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	second	call:		5								2	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	third	call:			5								1	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;			//	5	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

44

"Recursion Zen"
• The	real,	even	simpler,	base	case	is	an	exp	of	0,	not	1:	

	

int	power(int	base,	int	exp)	{	
				if	(exp	==	0)	{	
								//	base	case;	base^0	=	1	
								return	1;	
				}	else	{	
								//	recursive	case:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
	
–  Recursion	Zen:	The	art	of	properly	identifying	the	best	set	of	cases	for	
a	recursive	algorithm	and	expressing	them	elegantly.	
Opposite	is	arms-length	recursion	

	(our	informal	term)	

45

Preconditions
• precondition:	Something	your	code	assumes	is	true	when	called.	

– Often	documented	as	a	comment	on	the	function's	header:
	
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
	
–  Stating	a	precondition	doesn't	really	"solve"	the	problem,	but	it	at	least	
documents	our	decision	and	warns	the	client	what	not	to	do.	

– What	if	the	caller	doesn't	listen	and	passes	a	negative	power	anyway?	
What	if	we	want	to	actually	enforce	the	precondition?	

46

Throwing exceptions
	error(expression);	
	
	

–  In	Stanford	C++	lib's	"error.h"		
–  Generates	an	exception	that	will	crash	the	program,	
unless	it	has	code	to	handle	("catch")	the	exception.	

–  alternative:	throw	something	
•  something	can	be	an	int,	a	string,	etc.		

• Why	would	anyone	ever	want		a	program	to	crash?	

47

power solution 2
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	...	
								...	
}	

48

An optimization
• Notice	the	following	mathematical	property:	

312		 	=	96	
	 	=	(32)6	

	

	 	=	((32)2)3	

–  When	does	this	"trick"	work?	
–  How	can	we	incorporate	this	optimization	into	our	pow	code?	
–  Why	bother	with	this	trick	if	the	code	already	works?	

49

power solution 3
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	if	(exp	==	0)	{	
								//	base	case;	any	number	to	0th	power	is	1	
								return	1;	
				}	else	if	(exp	%	2	==	0)	{	
								//	recursive	case	1:		x^y	=	(x^2)^(y/2)	
								return	power(base	*	base,	exp	/	2);	
				}	else	{	
								//	recursive	case	2:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

