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Plan for Today 
• Learn	a	powerful	algorithmic	technique	called	recursion	

–  Exploit	self-similarity	in	problems	
–  Learn	recursive	problem-solving	

• We	will	spend	several	days	on	recursion	–	don't	worry	if	it	doesn't	
make	sense	today	
– Goal:	do	as	many	examples	as	we	can	
–  You	should	practice:	CodeStepByStep,	section	problems,	or	examples	
from	the	textbook	
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Recursion 
•  recursion:	The	function	definition	involving	a	call	to	the	same	
function	
–  Solving	a	problem	using	recursion	depends	on	solving	
smaller	(simpler)	occurrences	of	the	same	problem	until	the	problem	is	
simple	enough	that	you	can	solve	it	directly	

–  Key	question:	"How	is	this	problem	self-similar?"	–	what	are	the	
smaller	subproblems	that	make	up	the	bigger	problem?	

• Occurs	in	many	places	in	code	and	in	real	world:	
–  Looking	up	a	word	in	dictionary	may	involve	looking	up	other	words	
– Nested	structures	(trees,	file	folders,	collections)	can	be	self-similar.	
–  Patterns	can	contain	smaller	versions	of	the	same	pattern		(fractals)	
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Recursive Programming 
•  recursive	programming:	Writing	functions	that	call	themselves	to	
solve	problems	that	are	recursive	in	nature.	

–  An	equally	powerful	substitute	for	iteration	(loops)	

–  Particularly	well-suited	to	solving	certain	types	of	problems	

–  Leads	to	elegant,	simplistic,	short	code	(when	used	well)	

– Many	programming	languages	("functional"	languages	such	as	
Scheme,	ML,	and	Haskell)	use	recursion	exclusively		(no	loops)	

–  A	key	component	of	the	rest	of	our	assignments	in	this	course	



5 

Recursive Stanford Gear 
• We	want	to	count	the	number	of	people	in	the	room	who	are	
wearing	Stanford	clothing	

• We	can't	directly	count	(there	are	a	lot	of	people	in	the	room)	
• BUT	you	all	can	help	
• You	can	ask	questions	of	the	person	behind	you	and	respond	to	
questions	from	the	person	in	front	of	you	

	
How	can	we	solve	this	recursively?	
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Recursive Stanford Gear 
• The	first	person	looks	behind	them:	

–  If	there	is	no	one	there,	the	person	responds	with	1	if	they	are	wearing	
Stanford	gear	or	0	if	they	are	not	

–  If	there	is	someone	behind	the	person,	ask	them	how	many	people	
behind	them	(including	the	answerer)	are	wearing	Stanford	gear	

– Once	the	person	receives	a	response,	they	add	1	if	they	are	wearing	
Stanford	gear,	or	0	if	they	are	not,	and	respond	to	the	person	in	front	
of	them	

•  I	just	need	to	ask	everyone	in	the	front	row	–	much	simpler!	
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Recursive Stanford Gear 
• The	first	person	looks	behind	them:	

–  If	there	is	no	one	there,	the	person	responds	with	1	if	they	are	wearing	
Stanford	gear	or	0	if	they	are	not	

–  If	there	is	someone	behind	the	person,	ask	them	how	many	people	
behind	them	(including	the	answerer)	are	wearing	Stanford	gear	

– Once	the	person	receives	a	response,	they	add	1	if	they	are	wearing	
Stanford	gear,	or	0	if	they	are	not,	and	respond	to	the	person	in	front	
of	them	

•  I	just	need	to	ask	everyone	in	the	front	row	–	much	simpler!	

Recursive	Call	
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Recursion and cases 
• Every	recursive	algorithm	involves	at	least	2	cases:	

	

–  base	case:	A	simple	occurrence	that	can	be	answered	directly	(a	single	
statement	of	code	in	the	Big	O	example)	

–  recursive	case:	A	more	complex	occurrence	of	the	problem	that	
cannot	be	directly	answered,	but	can	instead	be	described	in	terms	of	
smaller	occurrences	of	the	same	problem	(inner	loops	or	code	blocks)	

	
–  Key	idea:	In	a	recursive	piece	of	code,	you	handle	a	small	part	of	the	
overall	task	yourself	(usually	the	work	involves	modifying	the	results	of	
the	smaller	problems),	then	make	a	recursive	call	to	handle	the	rest.	

–  Ask	yourself,	"How	is	this	task	self-similar?"	
• "How	can	I	describe	this	algorithm	in	terms	of	a	
		smaller	or	simpler	version	of	itself?"	
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Recursion Tips 
• Look	for	self-similarity	
• Find	the	minimum	amount	of	work	
• Make	the	problem	simpler	by	doing	the	least	amount	of	work	
possible	

• Trust	the	recursion		
• Find	a	stopping	point	(base	case)	
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Three Rules of Recursion 

• Every	(valid)	input	must	have	a	case	(either	recursive	or	
base)	

• There	must	be	a	base	case	that	makes	no	recursive	calls	
(i.e.	on	some	input(s),	the	code	should	not	make	any	
recursive	calls)	

• The	recursive	case	must	make	the	problem	simpler	and	
make	forward	progress	to	the	base	case	



11 

Recursive Program Structure 
recursiveFunc()	{	
		if	(test	for	simple	case)	{	//	base	case	
				Compute	the	solution	without	recursion	
		}	else	{	//	recursive	case	
				Break	the	problem	into	subproblems	of	the	same	form	
				Call	recursiveFunc()	on	each	self-similar	subproblem	
				Reassamble	the	results	of	the	subproblems	
		}	
}	
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Non-recursive factorial 
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
//	Assumes	n	>=	1.	
int	factorial(int	n)	{	
				int	total	=	1;	
				for	(int	i	=	1;	i	<=	n;	i++)	{	
								total	*=	i;	
				}	
				return	total;	
}	
	

•  Important	observations:	
	0!	=	1!	=	1	
	4!	=	4	*	3	*	2	*	1	
	5!	=	5	*	4	*	3	*	2	*	1	
						=	5	*	4!	
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Recursive factorial 
//	Returns	n!,	or	1	*	2	*	3	*	4	*	...	*	n.	
//	Assumes	n	>=	0.	
int	factorial(int	n)	{	
				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	
	

• The	recursive	code	handles	a	small	part	of	the	overall	task	
(multiplying	by	n),	then	makes	a	recursive	call	to	handle	the	rest.	
–  The	recursive	version	is	written	without	using	any	loops.	

• Recursion	replaces	the	while	loop	
– We	separate	the	code	into	a	base	case	(a	simple	case	that	does	not	
make	any	recursive	calls),	and	a	recursive	case.	
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Recursive stack trace 
int	factorial(int	n)	{	//	4	
				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	 int	factorial(int	n)	{	//	3	

				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	 int	factorial(int	n)	{	//	2	

				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	 int	factorial(int	n)	{	//	1	

				if	(n	<=	1)	{																						//	base	case	
								return	1;	
				}	else	{	
								return	n	*	factorial(n	-	1);			//	recursive	case	
				}	
}	
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Recursive tracing 
• Consider	the	following	recursive	function:	

	

int	mystery(int	n)	{	
				if	(n	<	10)	{	
								return	n;	
				}	else	{	
								int	a	=	n	/	10;	
								int	b	=	n	%	10;	
								return	mystery(a	+	b);	
				}	
}	
	

	Q:	What	is	the	result	of:				mystery(648)	?	
	A.		8 	B.		9 	C.		54 	D.		72 	E.		648	

recursionMystery648	
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Recursive stack trace 

int	mystery(int	n)	{												//	n	=	648					
				if	(n	<	10)	{	
								return	n;	
				}	else	{	
								int	a	=	n	/	10;									//	a	=	64	
								int	b	=	n	%	10;									//	b	=			8	
								return	mystery(a	+	b);		//	mystery(72);		
				}	
}	

int	mystery(int	n)	{												//	n	=	72					
				if	(n	<	10)	{	
								return	n;	
				}	else	{	
								int	a	=	n	/	10;									//	a	=	7	
								int	b	=	n	%	10;									//	b	=		2	
								return	mystery(a	+	b);		//	mystery(9);		
				}	
}	

int	mystery(int	n)	{												//	n	=	9					
				if	(n	<	10)	{	
								return	n;															//	return	9	
				}	else	{	
								int	a	=	n	/	10;	
								int	b	=	n	%	10;	
								return	mystery(a	+	b);																		
				}	
}	
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isPalindrome exercise 

• Write	a	recursive	function	isPalindrome	accepts	a	string	and	
returns	true	if	it	reads	the	same	forwards	as	backwards.	

isPalindrome("madam") 	→	true	
isPalindrome("racecar") 	→	true	
isPalindrome("step	on	no	pets") 	→	true	
isPalindrome("able	was	I	ere	I	saw	elba") 	→	true		
isPalindrome("Q") 	→	true	
isPalindrome("Java") 	→	false	
isPalindrome("rotater") 	→	false	
isPalindrome("byebye") 	→	false	
isPalindrome("notion") 	→	false	
	
	
–  What	is	a	good	base	case?	

isPalindrome	
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isPalindrome 
• How	is	this	problem	self-similar?	
• What	is	the	minimum	amount	of	work?	
• How	can	we	make	the	problem	simpler	by	doing	the	least	amount	
of	work?	

• What	is	our	stopping	point	(base	case)?	
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isPalindrome 
• How	is	this	problem	self-similar?	

–  Palindromes	can	be	written	as:	x[SMALLER_PALINDROME]x,	where	x	
stands	for	some	letter	

• What	is	the	minimum	amount	of	work?	
–  Testing	the	equality	of	outside	characters	

• How	can	we	make	the	problem	simpler	by	doing	the	least	amount	
of	work?	
–  Peel	off	the	outside	characters	and	test	if	the	middle	is	a	palindrome	

• What	is	our	stopping	point	(base	case)?	
–  Empty	string	or	string	of	length	1	
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isPalindrome solution 
//	Returns	true	if	the	given	string	reads	the	same	
//	forwards	as	backwards.	
//	Trivially	true	for	empty	or	1-letter	strings.	
bool	isPalindrome(string	s)	{	
				if	(s.length()	<	2)	{			//	base	case	
								return	true;	
				}	else	{																//	recursive	case	
								if	(s[0]	!=	s[s.length()	-	1])	{	
												return	false;	
								}	
								string	middle	=	s.substr(1,	s.length()	-	2);	
								return	isPalindrome(middle);	
				}	
}	
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Announcements 

• Homework	2	due	on	Wednesday	at	5PM	
• Homework	1	grades	will	be	released	by	your	section	leader	on	or	
before	Wednesday	

• Your	partner	(if	you	choose	to	have	one)	must	be	in	your	section,	
and	you	should	submit	together	through	Paperless	

• Alternate	exams	have	been	scheduled	–	should	have	received	an	
email	

• Shreya's	OH	changeup	
–  Tuesday,	8:30-10:30AM	
– Wednesday,	9:30-10:30AM	
–  Both	open	to	SCPD	and	non-SCPD	students,	sign	up	on	QueueStatus	
(link	on	sidebar	of	website),	be	prepared	to	use	Google	Hangouts	
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Multiple calls tracing 
int	mystery(int	n)	{	
				if	(n	<	10)	{	
								return	(10	*	n)	+	n;	
				}	else	{	
								int	a	=	mystery(n	/	10);	
								int	b	=	mystery(n	%	10);	
								return	(100	*	a)	+	b;	
				}	
}	
	

	Q:	What	is	the	result	of:		mystery(348)	?	
	A.	3828 	B.	348348 	C.	334488 	D.	80403									E.	none	

recursionMystery348	
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Multiple calls tracing 
//	call	1:				348	
int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	//	call	2a:				34	

int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	

//	call	2b:					8	
int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	//	call	3a:					3	

int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	

//	call	3b:					4	
int	mystery(int	n)	{	
		if	(n	<	10)	{	
				return	(10	*	n)	+	n;	
		}	else	{	
				int	a	=	mystery(n	/	10);	
				int	b	=	mystery(n	%	10);	
				return	(100	*	a)	+	b;	
		}	
}	
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Recursive Big O 
• Below	is	the	"pseudocode"	for	finding	Big	O	of	a	function	

– Note	that	this	is	not	real	code;	this	is	to	show	the	recursive	nature	of	
finding	Big	O	

–  Self-similarity:	find	Big	O	of	smaller	code	blocks	and	combine	them	
–  This	Big	O	pseudocode	doesn't	cover	function	calls	and	some	other	cases	
(for	pedagogical	purposes)	–	thought	experiment	to	expand	this	

findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
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Finding Big O: Base Case 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
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Finding Big O: Subproblems 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
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Finding Big O: Do Work 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
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Finding Big O: Recursive Call 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2) 
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(1) 
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(1) O(1) 



35 

Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2) O(1) 
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)							+	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

O(N2) 
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
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O(N2) O(1) 
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Finding Big O Recursively 
findBigO(codeSnippet):	
			if	codeSnippet	is	a	single	statement:	
							return	O(1)	
			if	codeSnippet	is	loop:	
							return	number	of	times	loop	runs	*	findBigO(loop	inside)	
			for	codeBlock	in	codeSnippet:	
							return	the	sum	of	findBigO(codeBlock)	
	
for	(int	i	=	0;	i	<	N	*	N;	i	+=	3)	{	
				for	(int	j	=	3;	j	<=	219;	j++)	{	
								cout	<<	"sum:	"	<<	i	+	j	<<	endl;	
				}	
}	
	
cout	<<	"Have	a	nice	Life!"	<<	endl;	

final result: O(N2) 
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power exercise 
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	
– What	is	the	minimum	amount	of	work?	
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	

power	
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power exercise 
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	Realize	xn	=	x	*	xn-1	
– What	is	the	minimum	amount	of	work?		
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	n	=	0	
• Why	not	n	=	1?	

power	
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Initial solution 
//	Returns	base	^	exp.	
//	Assumes	exp	>=	1.	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
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The call stack 
• Each	previous	call	waits	for	the	next	call	to	finish.	

– cout	<<	power(5,	3)	<<	endl;	
//	first	call:			5								3	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	second	call:		5								2	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	third	call:			5								1	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;			//	5	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
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"Recursion Zen" 
• The	real,	even	simpler,	base	case	is	an	exp	of	0,	not	1:	

	

int	power(int	base,	int	exp)	{	
				if	(exp	==	0)	{	
								//	base	case;	base^0	=	1	
								return	1;	
				}	else	{	
								//	recursive	case:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
	
–  Recursion	Zen:	The	art	of	properly	identifying	the	best	set	of	cases	for	
a	recursive	algorithm	and	expressing	them	elegantly.	
Opposite	is	arms-length	recursion	

	(our	informal	term)	
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Preconditions 
• precondition:	Something	your	code	assumes	is	true	when	called.	

– Often	documented	as	a	comment	on	the	function's	header:  
	
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
	
–  Stating	a	precondition	doesn't	really	"solve"	the	problem,	but	it	at	least	
documents	our	decision	and	warns	the	client	what	not	to	do.	

– What	if	the	caller	doesn't	listen	and	passes	a	negative	power	anyway?	
What	if	we	want	to	actually	enforce	the	precondition?	
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Throwing exceptions 
	error(expression);	
	
	

–  In	Stanford	C++	lib's	"error.h"		
–  Generates	an	exception	that	will	crash	the	program,	
unless	it	has	code	to	handle	("catch")	the	exception.	

–  alternative:	throw	something	
•  something	can	be	an	int,	a	string,	etc.		

• Why	would	anyone	ever	want		a	program	to	crash?	
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power solution 2 
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	...	
								...	
}	
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An optimization 
• Notice	the	following	mathematical	property:	

312		 	=	96	
	 	=	(32)6	

	

	 	=	((32)2)3	

–  When	does	this	"trick"	work?	
–  How	can	we	incorporate	this	optimization	into	our	pow	code?	
–  Why	bother	with	this	trick	if	the	code	already	works?	
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power solution 3 
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	if	(exp	==	0)	{	
								//	base	case;	any	number	to	0th	power	is	1	
								return	1;	
				}	else	if	(exp	%	2	==	0)	{	
								//	recursive	case	1:		x^y	=	(x^2)^(y/2)	
								return	power(base	*	base,	exp	/	2);	
				}	else	{	
								//	recursive	case	2:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	


