CS 106B, Lecture 8
Recursion

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e Learn a powerful algorithmic technique called recursion
— Exploit self-similarity in problems
— Learn recursive problem-solving

e We will spend several days on recursion — don't worry if it doesn't
make sense today
— Goal: do as many examples as we can

— You should practice: CodeStepByStep, section problems, or examples
from the textbook

e recursion: The function definition involving a call to the same
function

— Solving a problem using recursion depends on solving
smaller (simpler) occurrences of the same problem until the problem is
simple enough that you can solve it directly

— Key question: "How is this problem self-similar?" — what are the
smaller subproblems that make up the bigger problem?

e Occurs in many places in code and in real world:
— Looking up a word in dictionary may involve looking up other words
— Nested structures (trees, file folders, collections) can be self-similar.
— Patterns can contain smaller versions of the same pattern (fractals)

Recursive Programming

e recursive programming: Writing functions that call themselves to
solve problems that are recursive in nature.

— An equally powerful substitute for iteration (loops)
— Particularly well-suited to solving certain types of problems
— Leads to elegant, simplistic, short code (when used well)

— Many programming languages ("functional” languages such as
Scheme, ML, and Haskell) use recursion exclusively (no loops)

— A key component of the rest of our assignments in this course

Recursive Stanford Gear

e \We want to count the number of people in the room who are
wearing Stanford clothing

e We can't directly count (there are a lot of people in the room)
e BUT you all can help

e You can ask questions of the person behind you and respond to
qguestions from the person in front of you

How can we solve this recursively?

Recursive Stanford Gear

e The first person looks behind them:

— If there is no one there, the person responds with 1 if they are wearing
Stanford gear or O if they are not

— If there is someone behind the person, ask them how many people
behind them (including the answerer) are wearing Stanford gear

— Once the person receives a response, they add 1 if they are wearing
Stanford gear, or O if they are not, and respond to the person in front
of them

e | just need to ask everyone in the front row — much simpler!

Recursive Stanford Gear

e The first person looks behind them:

— If there is no one there, the person responds with 1 if they are wearing
Stanford gear or O if they are not

— If there is someone behind the person, ask them how many people
behind them (including the answerer) are wearing Stanford gear

— Once the person receives a response, they add 1 if they are wearing
Stanford gear, or O if they are not, and respond to the person in front
of them

e | just need to ask everyone in the front row — much simpler!

Recursive Call

Recursion and cases

e Every recursive algorithm involves at least 2 cases:

— base case: A simple occurrence that can be answered directly (a single
statement of code in the Big O example)

— recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in terms of
smaller occurrences of the same problem (inner loops or code blocks)

— Key idea: In a recursive piece of code, you handle a small part of the
overall task yourself (usually the work involves modifying the results of
the smaller problems), then make a recursive call to handle the rest.

— Ask yourself, "How is this task self-similar?"

e "How can | describe this algorithm in terms of a
smaller or simpler version of itself?"

Recursion Tips

e Look for self-similarity
e Find the minimum amount of work

e Make the problem simpler by doing the least amount of work
possible

e Trust the recursion
e Find a stopping point (base case)

Three Rules of Recursion

e Every (valid) input must have a case (either recursive or
base)

e There must be a base case that makes no recursive calls
(i.e. on some input(s), the code should not make any
recursive calls)

e The recursive case must make the problem simpler and
make forward progress to the base case

10

Recursive Program Structure

recursiveFunc() {
if (test for simple case) { // base case
Compute the solution without recursion
} else { // recursive case
Break the problem into subproblems of the same form
Call recursiveFunc() on each self-similar subproblem
Reassamble the results of the subproblems

11

Non-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * [. * n,
// Assumes n >= 1.
int factorial(int n) {
int total = 1;
for (int 1 = 1; 1 <= n; i++) {
total *= 1i;

¥

return total;

e Important observations:
ol=11=1
41=4%3*2%1
S5l=5*4*3*2*1]

=5 * 4]

12

Recursive factorial

// Returns n!, or 1 * 2 * 3 *x 4 * [, * n,
// Assumes n >= 0.
int factorial(int n) {

if (n <= 1) { // base case
return 1;
} else {

return n * factorial(n - 1); // recursive case

¥

e The recursive code handles a small part of the overall task

(multiplying by n), then makes a recursive call to handle the rest.

— The recursive version is written without using any loops.
e Recursion replaces the while loop

— We separate the code into a base case (a simple case that does not
make any recursive calls), and a recursive case.

13

Recursive stack trace

int factorial(int n) { // 4
if (n <= 1) {
return 1;
} else {

return n * factorial(n - 1);

// base case

// recursive case

} int factorial(int n) { // 3

if (n <=1) {
return 1;
} else {

return n * factorial(n - 1);

// base case

// recursive case

} int factorial(int n) { // 2
if (n <= 1) {
return 1;
} else {

return n * factorial(n -

1

// base case

1); // recursive case

} |int factorial(int n) { // 1
if (n <= 1) {

return 1;
} else {

}

return n * factorial(n - 1);

// base case

// recursive case

14

RILs
& 2,

[] = 3 4
Recursive tracmg

e Consider the following recursive function:

int mystery(int n) {

if (n < 10) {
return n;
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

Q: What is the result of: mystery(648) ?
A. 8 B. 9 C. 54 D. /72 E. 648

15

Recursive stack trace

int mystery(int n) { // n = 648
int mxstery(int q) { // n =72
int mystery(int n) { // n =9
if (n < 10) {
return n; // return 9
} else {
int a = n / 10;
} int b = n % 10;
return mystery(a + b);
) }
}

16

isPalindrome exercise ..

e Write a recursive function isPalindrome accepts a string and
returns true if it reads the same forwards as backwards.

isPalindrome("madam") — true
isPalindrome("racecar" — true
isPalindrome("step on no pets") — true
isPalindrome("able was I ere I saw elba") — true
isPalindrome("Q") — true
isPalindrome("Java") — false
isPalindrome("rotater") — false
isPalindrome("byebye") — false
isPalindrome("notion") — false

— What is a good base case?

17

iIsPalindrome

e How is this problem self-similar?
e What is the minimum amount of work?

e How can we make the problem simpler by doing the least amount
of work?

e What is our stopping point (base case)?

18

iIsPalindrome

e How is this problem self-similar?

— Palindromes can be written as: x[SMALLER_PALINDROME]x, where x
stands for some letter

e What is the minimum amount of work?
— Testing the equality of outside characters

e How can we make the problem simpler by doing the least amount
of work?

— Peel off the outside characters and test if the middle is a palindrome

e What is our stopping point (base case)?
— Empty string or string of length 1

19

iIsPalindrome solution

// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1l-letter strings.
bool isPalindrome(string s) {
if (s.length() < 2) { // base case
return true;
} else { // recursive case
if (s[@] !'= s[s.length() - 1]) {
return false;
}
string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);

20

Announcements

e Homework 2 due on Wednesday at 5PM

e Homework 1 grades will be released by your section leader on or
before Wednesday

e Your partner (if you choose to have one) must be in your section,
and you should submit together through Paperless

e Alternate exams have been scheduled — should have received an
email

e Shreya's OH changeup
— Tuesday, 8:30-10:30AM
— Wednesday, 9:30-10:30AM

— Both open to SCPD and non-SCPD students, sign up on QueueStatus
(link on sidebar of website), be prepared to use Google Hangouts

21

b
- = 7 4
M u tl p e Ca S I a CI n g recursionMystery348

int mystery(int n) {
if (n < 10) {
return (10 * n) + n;
} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

¥

Q: What is the result of: mystery(348) ?
A. 3828 B. 348348 C. 334488 D. 80403 E. none

22

Multiple calls tracing

// call 1: 348
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;
} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
_ return (100 * a) + b;
// call 2a: 34 // call 2b: 8
int mystery(int n) { int mystery(int n) {
if (n < 10) { if (n < 10) {
return (10 * n) + n; return (10 * n) + n;
} else { } else {
int a = mystery(n / 10); int a = mystery(n / 10);
int b = mystery(n % 10); int b = mystery(n % 10);
. return (160 * a) + b; . return (160 * a) + b;
// call 3a: 3 // call 3b: 4
int mystery(int n) { int mystery(int n) {
if (n < 10) { if (n < 10) {
return (10 * n) + n; return (10 * n) + n;
} else { } else {
int a = mystery(n / 10); int a = mystery(n / 10);
int b = mystery(n % 10); int b = mystery(n % 10);
return (100 * a) + b; return (100 * a) + b;
} }
} }

23

Recursive Big O

e Below is the "pseudocode" for finding Big O of a function
— Note that this is not real code; this is to show the recursive nature of
finding Big O
— Self-similarity: find Big O of smaller code blocks and combine them

— This Big O pseudocode doesn't cover function calls and some other cases
(for pedagogical purposes) — thought experiment to expand this

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:

return the sum of findBigO(codeBlock)
24

Finding Big O: Base Case

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

25

Finding Big O: Subproblems

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop 1inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBLlocR)

26

Finding Big O: Do Work

findBigO(codeSnippet):

if codeSnippet is a single statement:

return 0(1)
if codeSnippet is loop:

return number of times Loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:

return the sum of findBigO(codeBlock)

27

Finding Big O: Recursive Call

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

28

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 29

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i += 3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Life!" << endl; 30

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
. . . , [on?) |
if codeSnippet is loop: ¢—
return number of times loop runs * findBigO(loop inside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 31

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)

if codeSnippet is loop: ¢—
return number of times loop runs * findBigO(loop inside)

o(1)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 32

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 33

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop: v/_ v/_

return number of times loop runs * f£indBigo{teop—imside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 34

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop: v/_ v/_

return number of times loop runs * f£indBigo{teop—imside)

for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 35

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock) +

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Life!" << endl; 36

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Life!" << endl; 37

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock) IOUW§|+|O(U I

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Life!" << endl; 38

Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

;) >
for (int 1 =0; 1 < N * N; i +=3) { IﬂnaHesuW(D@d) I

for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 39

power exercise

e \Write a function power that accepts integer parameters for a base
and exponent and computes base " exponent.

— Write a recursive version of this function (one that calls itself).

— Solve the problem without using any loops.

— How is this problem self-similar?
— What is the minimum amount of work?

— How can we make the problem simpler by doing the least amount of
work?

— What is our stopping point (base case)?

40

power exercise

e \Write a function power that accepts integer parameters for a base
and exponent and computes base " exponent.

— Write a recursive version of this function (one that calls itself).

— Solve the problem without using any loops.

— How is this problem self-similar? Realize x" = x * x"!
— What is the minimum amount of work?

— How can we make the problem simpler by doing the least amount of
work?

— What is our stopping point (base case)? n =0
e Why notn=17

41

Initial solution

// Returns base ™ exp.
// Assumes exp >= 1.
int power(int base, int exp) {
if (exp == 1) {
return base;
} else {
return base * power(base, exp - 1);

¥

42

The call stack

e Each previous call waits for the next call to finish.
- cout << power(5, 3) << endl;

// first call: 5 3
int power(int base, int exp) {
if (exn == {
// second call: 5 2

} | int power(int base, int exp) {
if (exn == 1) {

} // third call: 5 1
} } [int power(int base, int exp) {
if (exp == 1) {
} return base; // 5
} } else {

return base * power(base, exp - 1);

}

43

"Recursion Zen"

e The real, even simpler, base case is an exp of 0, not 1:

int power(int base, int exp) {
if (exp == 0) {
// base case; base”™0 =1
return 1;
} else {
// recursive case: x"y = x * x"(y-1)
return base * power(base, exp - 1);

— Recursion Zen: The art of properly identifying the best set of cases for
a recursive algorithm and expressing them elegantly.
Opposite is arms-length recursion
(our informal term)

44

Preconditions

e precondition: Something your code assumes is true when called.
— Often documented as a comment on the function's header:

// Returns base ™ exp.

// Precondition: exp >= 0@
int power(int base, int exp) {

— Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

— What if the caller doesn't listen and passes a negative power anyway?
What if we want to actually enforce the precondition?

45

Throwing exceptions

error(expression);

— In Stanford C++ lib's "error.h"

— Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

— alternative: throw something
e something can be an int, a string, etc.

e Why would anyone ever want a program to crash?

46

power solution 2

// Returns base ™ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
if (exp < 0) {
throw "illegal negative exponent”;
} else ...

47

An optimization

e Notice the following mathematical property:
312 - 96

= (32

— When does this "trick" work?
— How can we incorporate this optimization into our pow code?
— Why bother with this trick if the code already works?

48

power solution 3

// Returns base ™ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
if (exp < 0) {
throw "illegal negative exponent”;
} else if (exp == 0) {
// base case; any number to O@th power is 1
return 1;
} else if (exp % 2 == 0) {
// recursive case 1l: x*y = (x"2)"(y/2)
return power(base * base, exp / 2);
} else {
// recursive case 2: x"y = x * x"(y-1)
return base * power(base, exp - 1);

49

