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Plan for Today

e Learn a powerful algorithmic technique called recursion
— Exploit self-similarity in problems
— Learn recursive problem-solving

e We will spend several days on recursion — don't worry if it doesn't
make sense today
— Goal: do as many examples as we can

— You should practice: CodeStepByStep, section problems, or examples
from the textbook




e recursion: The function definition involving a call to the same
function

— Solving a problem using recursion depends on solving
smaller (simpler) occurrences of the same problem until the problem is
simple enough that you can solve it directly

— Key question: "How is this problem self-similar?" — what are the
smaller subproblems that make up the bigger problem?

e Occurs in many places in code and in real world:
— Looking up a word in dictionary may involve looking up other words
— Nested structures (trees, file folders, collections) can be self-similar.
— Patterns can contain smaller versions of the same pattern (fractals)



Recursive Programming

e recursive programming: Writing functions that call themselves to
solve problems that are recursive in nature.

— An equally powerful substitute for iteration (loops)
— Particularly well-suited to solving certain types of problems
— Leads to elegant, simplistic, short code (when used well)

— Many programming languages ("functional” languages such as
Scheme, ML, and Haskell) use recursion exclusively (no loops)

— A key component of the rest of our assignments in this course



Recursive Stanford Gear

e \We want to count the number of people in the room who are
wearing Stanford clothing

e We can't directly count (there are a lot of people in the room)
e BUT you all can help

e You can ask questions of the person behind you and respond to
qguestions from the person in front of you

How can we solve this recursively?



Recursive Stanford Gear

e The first person looks behind them:

— If there is no one there, the person responds with 1 if they are wearing
Stanford gear or O if they are not

— If there is someone behind the person, ask them how many people
behind them (including the answerer) are wearing Stanford gear

— Once the person receives a response, they add 1 if they are wearing
Stanford gear, or O if they are not, and respond to the person in front
of them

e | just need to ask everyone in the front row — much simpler!
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Recursion and cases

e Every recursive algorithm involves at least 2 cases:

— base case: A simple occurrence that can be answered directly (a single
statement of code in the Big O example)

— recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in terms of
smaller occurrences of the same problem (inner loops or code blocks)

— Key idea: In a recursive piece of code, you handle a small part of the
overall task yourself (usually the work involves modifying the results of
the smaller problems), then make a recursive call to handle the rest.

— Ask yourself, "How is this task self-similar?"

e "How can | describe this algorithm in terms of a
smaller or simpler version of itself?"



Recursion Tips

e Look for self-similarity
e Find the minimum amount of work

e Make the problem simpler by doing the least amount of work
possible

e Trust the recursion
e Find a stopping point (base case)



Three Rules of Recursion

e Every (valid) input must have a case (either recursive or
base)

e There must be a base case that makes no recursive calls
(i.e. on some input(s), the code should not make any
recursive calls)

e The recursive case must make the problem simpler and
make forward progress to the base case

10



Recursive Program Structure

recursiveFunc() {
if (test for simple case) { // base case
Compute the solution without recursion
} else { // recursive case
Break the problem into subproblems of the same form
Call recursiveFunc() on each self-similar subproblem
Reassamble the results of the subproblems
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Non-recursive factorial

// Returns n!, or 1 * 2 * 3 * 4 * [ . * n,
// Assumes n >= 1.
int factorial(int n) {
int total = 1;
for (int 1 = 1; 1 <= n; i++) {
total *= 1i;

¥

return total;

e Important observations:
ol=11=1
41=4%3*2%1
S5l=5*4*3*2*1]

=5 * 4]
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Recursive factorial

// Returns n!, or 1 * 2 * 3 *x 4 * [ , * n,
// Assumes n >= 0.
int factorial(int n) {

if (n <= 1) { // base case
return 1;
} else {

return n * factorial(n - 1); // recursive case

¥

e The recursive code handles a small part of the overall task

(multiplying by n), then makes a recursive call to handle the rest.

— The recursive version is written without using any loops.
e Recursion replaces the while loop

— We separate the code into a base case (a simple case that does not
make any recursive calls), and a recursive case.
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Recursive stack trace

int factorial(int n) { // 4
if (n <= 1) {
return 1;
} else {

return n * factorial(n - 1);

// base case

// recursive case

} int factorial(int n) { // 3

if (n <=1) {
return 1;
} else {

return n * factorial(n - 1);

// base case

// recursive case

} int factorial(int n) { // 2
if (n <= 1) {
return 1;
} else {

return n * factorial(n -

1

// base case

1); // recursive case

} |int factorial(int n) { // 1
if (n <= 1) {

return 1;
} else {

}

return n * factorial(n - 1);

// base case

// recursive case
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RILs
& 2,

[ ] = 3 4
Recursive tracmg

e Consider the following recursive function:

int mystery(int n) {

if (n < 10) {
return n;
} else {

int a = n / 10;
int b = n % 10;
return mystery(a + b);

Q: What is the result of: mystery(648) ?
A. 8 B. 9 C. 54 D. /72 E. 648
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Recursive stack trace

int mystery(int n) { // n = 648
int mxstery(int q) { // n =72
int mystery(int n) { // n =9
if (n < 10) {
return n; // return 9
} else {
int a = n / 10;
} int b = n % 10;
return mystery(a + b);
) }
}
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isPalindrome exercise ..

e Write a recursive function isPalindrome accepts a string and
returns true if it reads the same forwards as backwards.

isPalindrome("madam") — true
isPalindrome("racecar" — true
isPalindrome("step on no pets") — true
isPalindrome("able was I ere I saw elba") — true
isPalindrome("Q") — true
isPalindrome("Java") — false
isPalindrome("rotater") — false
isPalindrome("byebye") — false
isPalindrome("notion") — false

— What is a good base case?
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iIsPalindrome

e How is this problem self-similar?
e What is the minimum amount of work?

e How can we make the problem simpler by doing the least amount
of work?

e What is our stopping point (base case)?
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iIsPalindrome

e How is this problem self-similar?

— Palindromes can be written as: x[SMALLER_PALINDROME]x, where x
stands for some letter

e What is the minimum amount of work?
— Testing the equality of outside characters

e How can we make the problem simpler by doing the least amount
of work?

— Peel off the outside characters and test if the middle is a palindrome

e What is our stopping point (base case)?
— Empty string or string of length 1
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iIsPalindrome solution

// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1l-letter strings.
bool isPalindrome(string s) {
if (s.length() < 2) { // base case
return true;
} else { // recursive case
if (s[@] !'= s[s.length() - 1]) {
return false;
}
string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);
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Announcements

e Homework 2 due on Wednesday at 5PM

e Homework 1 grades will be released by your section leader on or
before Wednesday

e Your partner (if you choose to have one) must be in your section,
and you should submit together through Paperless

e Alternate exams have been scheduled — should have received an
email

e Shreya's OH changeup
— Tuesday, 8:30-10:30AM
— Wednesday, 9:30-10:30AM

— Both open to SCPD and non-SCPD students, sign up on QueueStatus
(link on sidebar of website), be prepared to use Google Hangouts
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b
- = 7 4
M u tl p e Ca S I a CI n g recursionMystery348

int mystery(int n) {
if (n < 10) {
return (10 * n) + n;
} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
return (100 * a) + b;

¥

Q: What is the result of: mystery(348) ?
A. 3828 B. 348348 C. 334488 D. 80403 E. none
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Multiple calls tracing

// call 1: 348
int mystery(int n) {
if (n < 10) {
return (10 * n) + n;
} else {
int a = mystery(n / 10);
int b = mystery(n % 10);
_ return (100 * a) + b;
// call 2a: 34 // call 2b: 8
int mystery(int n) { int mystery(int n) {
if (n < 10) { if (n < 10) {
return (10 * n) + n; return (10 * n) + n;
} else { } else {
int a = mystery(n / 10); int a = mystery(n / 10);
int b = mystery(n % 10); int b = mystery(n % 10);
. return (160 * a) + b; . return (160 * a) + b;
// call 3a: 3 // call 3b: 4
int mystery(int n) { int mystery(int n) {
if (n < 10) { if (n < 10) {
return (10 * n) + n; return (10 * n) + n;
} else { } else {
int a = mystery(n / 10); int a = mystery(n / 10);
int b = mystery(n % 10); int b = mystery(n % 10);
return (100 * a) + b; return (100 * a) + b;
} }
} }
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Recursive Big O

e Below is the "pseudocode" for finding Big O of a function
— Note that this is not real code; this is to show the recursive nature of
finding Big O
— Self-similarity: find Big O of smaller code blocks and combine them

— This Big O pseudocode doesn't cover function calls and some other cases
(for pedagogical purposes) — thought experiment to expand this

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:

return the sum of findBigO(codeBlock)
24



Finding Big O: Base Case

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)
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Finding Big O: Subproblems

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop 1inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBLlocR)
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Finding Big O: Do Work

findBigO(codeSnippet):

if codeSnippet is a single statement:

return 0(1)
if codeSnippet is loop:

return number of times Loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:

return the sum of findBigO(codeBlock)
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Finding Big O: Recursive Call

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)
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Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

for (int 1 =0; 1 < N * N; i +=3) {
for (int j = 3; j <= 219; j++) {

cout << "sum: << 1 + j << endl;

cout << "Have a nice Lifel" << endl; 29
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Finding Big O Recursively
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. . . , [on?) |
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Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
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Finding Big O Recursively

findBigO(codeSnippet):
if codeSnippet is a single statement:
return 0(1)
if codeSnippet is loop:
return number of times loop runs * findBigO(loop inside)
for codeBlock in codeSnippet:
return the sum of findBigO(codeBlock)

; ) >
for (int 1 =0; 1 < N * N; i +=3) { IﬂnaHesuW(D@d) I

for (int j = 3; j <= 219; j++) {
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power exercise

e \Write a function power that accepts integer parameters for a base
and exponent and computes base " exponent.

— Write a recursive version of this function (one that calls itself).

— Solve the problem without using any loops.

— How is this problem self-similar?
— What is the minimum amount of work?

— How can we make the problem simpler by doing the least amount of
work?

— What is our stopping point (base case)?
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power exercise

e \Write a function power that accepts integer parameters for a base
and exponent and computes base " exponent.

— Write a recursive version of this function (one that calls itself).

— Solve the problem without using any loops.

— How is this problem self-similar? Realize x" = x * x"!
— What is the minimum amount of work?

— How can we make the problem simpler by doing the least amount of
work?

— What is our stopping point (base case)? n =0
e Why notn=17
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Initial solution

// Returns base ™ exp.
// Assumes exp >= 1.
int power(int base, int exp) {
if (exp == 1) {
return base;
} else {
return base * power(base, exp - 1);

¥
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The call stack

e Each previous call waits for the next call to finish.
- cout << power(5, 3) << endl;

// first call: 5 3
int power(int base, int exp) {
if (exn == {
// second call: 5 2

} | int power(int base, int exp) {
if (exn == 1) {

} // third call: 5 1
} } [int power(int base, int exp) {
if (exp == 1) {
} return base; // 5
} } else {

return base * power(base, exp - 1);

}
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"Recursion Zen"

e The real, even simpler, base case is an exp of 0, not 1:

int power(int base, int exp) {
if (exp == 0) {
// base case; base”™0 =1
return 1;
} else {
// recursive case: x"y = x * x"(y-1)
return base * power(base, exp - 1);

— Recursion Zen: The art of properly identifying the best set of cases for
a recursive algorithm and expressing them elegantly.
Opposite is arms-length recursion
(our informal term)
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Preconditions

e precondition: Something your code assumes is true when called.
— Often documented as a comment on the function's header:

// Returns base ™ exp.

// Precondition: exp >= 0@
int power(int base, int exp) {

— Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

— What if the caller doesn't listen and passes a negative power anyway?
What if we want to actually enforce the precondition?
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Throwing exceptions

error(expression);

— In Stanford C++ lib's "error.h"

— Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

— alternative: throw something
e something can be an int, a string, etc.

e Why would anyone ever want a program to crash?
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power solution 2

// Returns base ™ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
if (exp < 0) {
throw "illegal negative exponent”;
} else ...
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An optimization

e Notice the following mathematical property:
312 - 96

= (32

— When does this "trick" work?
— How can we incorporate this optimization into our pow code?
— Why bother with this trick if the code already works?
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power solution 3

// Returns base ™ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
if (exp < 0) {
throw "illegal negative exponent”;
} else if (exp == 0) {
// base case; any number to O@th power is 1
return 1;
} else if (exp % 2 == 0) {
// recursive case 1l: x*y = (x"2)"(y/2)
return power(base * base, exp / 2);
} else {
// recursive case 2: x"y = x * x"(y-1)
return base * power(base, exp - 1);
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