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Plan for Today 
• More	recursion	practice!	
• Learning	goals	for	today	

– Understand	how	to	recognize	self-similarity	in	problems	and	use	
recursion	to	solve	these	problems.	

–  See	examples	of	recursively	structured	data.	
–  You	should	practice:	CodeStepByStep,	section	problems,	or	examples	
from	the	textbook	
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Recap: Recursion Tips 
• Look	for	self-similarity	
• Find	the	minimum	amount	of	work	
• Make	the	problem	simpler	by	doing	the	least	amount	of	work	
possible	

• Trust	the	recursion		
• Find	a	stopping	point	(base	case)	
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power exercise 
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	
– What	is	the	minimum	amount	of	work?	
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	

power	
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power exercise 
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	Realize	xn	=	x	*	xn-1	
– What	is	the	minimum	amount	of	work?		
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	n	=	0	
• Why	not	n	=	1?	

power	
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Initial solution 
//	Returns	base	^	exp.	
//	Assumes	exp	>=	1.	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
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The call stack 
• Each	previous	call	waits	for	the	next	call	to	finish.	

– cout	<<	power(5,	3)	<<	endl;	
//	first	call:			5								3	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	second	call:		5								2	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	third	call:			5								1	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;			//	5	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
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"Recursion Zen" 
• The	real,	even	simpler,	base	case	is	an	exp	of	0,	not	1:	

	

int	power(int	base,	int	exp)	{	
				if	(exp	==	0)	{	
								//	base	case;	base^0	=	1	
								return	1;	
				}	else	{	
								//	recursive	case:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
	
–  Recursion	Zen:	The	art	of	properly	identifying	the	best	set	of	cases	for	
a	recursive	algorithm	and	expressing	them	elegantly.	
Opposite	is	arms-length	recursion	

	(our	informal	term)	
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Preconditions 
• precondition:	Something	your	code	assumes	is	true	when	called.	

– Often	documented	as	a	comment	on	the	function's	header:  
	
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
	
–  Stating	a	precondition	doesn't	really	"solve"	the	problem,	but	it	at	least	
documents	our	decision	and	warns	the	client	what	not	to	do.	

– What	if	the	caller	doesn't	listen	and	passes	a	negative	power	anyway?	
What	if	we	want	to	actually	enforce	the	precondition?	
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Throwing exceptions 
	error(expression);	
	
	

–  In	Stanford	C++	lib's	"error.h"		
–  Generates	an	exception	that	will	crash	the	program,	
unless	it	has	code	to	handle	("catch")	the	exception.	

–  alternative:	throw	something	
•  something	can	be	an	int,	a	string,	etc.		

• Why	would	anyone	ever	want		a	program	to	crash?	
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power solution 2 
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	...	
								...	
}	
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An optimization 
• Notice	the	following	mathematical	property:	

312		 	=	96	
	 	=	(32)6	

	

	 	=	((32)2)3	

–  When	does	this	"trick"	work?	
–  How	can	we	incorporate	this	optimization	into	our	pow	code?	
–  Why	bother	with	this	trick	if	the	code	already	works?	
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power solution 3 
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	if	(exp	==	0)	{	
								//	base	case;	any	number	to	0th	power	is	1	
								return	1;	
				}	else	if	(exp	%	2	==	0)	{	
								//	recursive	case	1:		x^y	=	(x^2)^(y/2)	
								return	power(base	*	base,	exp	/	2);	
				}	else	{	
								//	recursive	case	2:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
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convertFromBinary exercise 
• Write	a	recursive	function	convertFromBinary	that	accepts	an	a	
string	of	that	number's	representation	in	binary	(base	2)	and	
returns	the	base	10	int	equivalent.	

–  Example:	convertFromBinary	("111")		returns	7	
–  Example:	convertFromBinary	("1100")	returns	12	
–  Example:	convertFromBinary	("101010")	returns	42	

–  42	=	4	*	10	+	2	*	1	=	1	*	32	+	0	*	16	+	1	*	8	+	0	*	4	+	1	*	2	+	0	*	1	

place	 10	 1	 32	 16	 8	 4	 2	 1	

value	 4	 2	 1	 0	 1	 0	 1	 0	
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convertFromBinary exercise 
• How	is	this	problem	self-similar?	
• What	is	the	smallest	amount	of	work?	
• When	should	the	recursion	stop?	

Base	10	 Binary	Representation	

20	 10100	

40	 101000	

41	 101001	
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convertFromBinary solution 
//	Returns	the	given	int's	binary	representation.	
//	Precondition:	n	>=	0	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	{									
								//	base	case:	binary	is	same	as	base	10									
								return	stringToInteger(binary);	
				}	
				//	recursive	case:	break	number	apart	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	
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convertFromBinary Trace 
int	main()	{	
				cout	<<	convertFromBinary("110")	<<	endl;	
				return	0	
}	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length 	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	

int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	

int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	
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Announcements 

• Homework	2	due	on	Wednesday	at	5PM	
• Homework	1	grades	will	be	released	by	your	section	leader	on	or	
before	Wednesday	

• Your	partner	(if	you	choose	to	have	one)	must	be	in	your	section,	
and	you	should	submit	together	through	Paperless	

• Shreya's	OH	changeup	
–  Tuesday,	8:30-10:30AM	
– Wednesday,	9:30-10:30AM	
–  Both	open	to	SCPD	and	non-SCPD	students,	sign	up	on	QueueStatus	
(link	on	sidebar	of	website),	be	prepared	to	use	Google	Hangouts	
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reverseLines exercise 
• Write	a	recursive	function	reverseLines	that	accepts	a	file	input	
stream	and	prints	the	lines	of	that	file	in	reverse	order.	

–  Example	input	file: 	Expected	console	output:	
	

	Roses	are	red, 	Are	belong	to	you.	
	Violets	are	blue. 	All	my	base	
	All	my	base 	Violets	are	blue.	
	Are	belong	to	you. 	Roses	are	red,	
	
	
–  What	are	the	cases	to	consider?	

• How	can	we	solve	a	small	part	of	the	problem	at	a	time?	
• What	is	the	self-similarity	of	this	problem?	
• What	is	a	file	that	is	very	easy	to	reverse?	
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Reversal pseudocode 
• Reversing	the	lines	of	a	file:	

–  Read	a	line	L	from	the	file.	
–  Print	the	rest	of	the	lines	in	reverse	order.	
–  Print	the	line	L.	

•  If	only	we	had	a	way	to	reverse	the	rest	of	the	lines	of	the	file....	
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reverseLines solution 
void	reverseLines(ifstream&	input)	{	
				string	line;	
				if	(getline(input,	line))	{	
								//	recursive	case	
								reverseLines(input);	
								cout	<<	line	<<	endl;	
				}	
}	
	

– Where	is	the	base	case?	
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crawl exercise 
• Write	a	function	crawl	accepts	a	file	name	as	a	parameter	and	
prints	information	about	that	file.	
–  If	the	name	represents	a	normal	file,	just	print	its	name.	
–  If	the	name	represents	a	directory,	print	its	name	and	information	
about	every	file/directory	inside	it,	indented.	

	
	course	
					handouts	
									syllabus.doc	
									lecture-schedule.xls	
					homework	
									1-gameoflife	
													life.cpp	
													life.h	
													GameOfLife.pro	
	

–  recursive	data:	A	directory	can	contain	other	directories.	
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Stanford C++ files 
#include	"filelib.h"	

Function	 Description	

createDirectory(name)	 creates	a	a	new	directory	with	given	path	name	

deleteFile(name)	 removes	file	from	disk	

fileExists(name)	 whether	this	file	exists	on	the	disk	

getCurrentDirectory()	 returns	directory	the	current	C++	program	runs	in	

getExtension(name)	 returns	file's	extension,	e.g.	"foo.cpp"	→	".cpp"	

getHead(name),	
getTail(name)	

separate	a	file	path	into	the	directory	and	file	part;	
for	"a/b/c/d.txt",	head	is	"a/b/c",	tail	is	"d.txt"	

isDirectory(name)	 returns	whether	this	file	name	represents	a	directory	

isFile(name)	 returns	whether	this	file	name	represents	a	regular	file	

listDirectory(name)	 returns	a	Vector<string>	with	the	names	of	all	files	
contained	in	the	given	directory	

readEntireFile(name,	v)	 reads	lines	of	the	given	file	into	a	vector	of	strings	

renameFile(old,	new)	 changes	a	file's	name	
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Optional parameters 
• We	cannot	vary	the	indentation	without	an	extra	parameter:	

	

void	crawl(string	filename,	string	indent)	{	
	

• Often	the	parameters	we	need	for	our	recursion	do	not	match	
those	the	client	will	want	to	pass.	

	

One	solution	is	to	use	a	default	parameter	value:	
	

void	crawl(string	filename,	string	indent	=	"")	{	
	
–  The	client	can	call	crawl	passing	only	one	parameter.	
–  The	recursive	calls	can	pass	the	second	parameter	to	indent.	
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crawl solution 
//	Prints	information	about	this	file,	
//	and	(if	it	is	a	directory)	any	files	inside	it.	
void	crawl(string	filename,	string	indent	=	"")	{	
				cout	<<	indent	<<	getTail(filename)	<<	endl;	
				if	(isDirectory(filename))	{	
								//	recursive	case;	print	contained	files/dirs	
								Vector<string>	filelist;	
								listDirectory(filename,	filelist);	
								for	(string	subfile	:	filelist)	{	
												crawl(filename	+	"/"	+	subfile,	
																		indent	+	"				");	
								}	
				}	
}	
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evenDigits exercise 
• Write	a	recursive	function	evenDigits	that	accepts	an	integer	and	
returns	a	new	number	containing	only	the	even	digits,	in	the	same	
order.		If	there	are	no	even	digits,	return	0.	

–  Example:	evenDigits(8342116)		returns	8426	
–  Example:	evenDigits(40109)	 	returns	400	
–  Example:	evenDigits(8)	 	returns	8	
–  Example:	evenDigits(-163505)		returns	-60	
–  Example:	evenDigits(35179)	 	returns	0	

– Write	the	function	recursively	and	without	using	any	loops.	

• Write	a	recursive	function	evenDigits	that	accepts	an	integer	and	
returns	a	new	number	containing	only	the	even	digits,	in	the	same	
order.		If	there	are	no	even	digits,	return	0.	

–  Example:	evenDigits(8342116)		returns	8426	
–  Example:	evenDigits(40109)	 	returns	400	
–  Example:	evenDigits(8)	 	returns	8	
–  Example:	evenDigits(-163505)		returns	-60	
–  Example:	evenDigits(35179)	 	returns	0	

– Write	the	function	recursively	and	without	using	any	loops.	
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evenDigits solution 
//	Returns	a	new	integer	containing	only	the	even-valued	
//	digits	from	the	given	integer,	in	the	same	order.	
//	Returns	0	if	there	are	no	even	digits.	
int	evenDigits(int	n)	{	
				if	(n	<	0)	{	
								return	-evenDigits(-n);	
				}	else	if	(n	==	0)	{	
								return	0;	
				}	else	if	(n	%	2	==	0)	{	
								return	10	*	evenDigits(n	/	10)	+	n	%	10;	
				}	else	{	
								return	evenDigits(n	/	10);	
				}	
}	
	


