
This	document	is	copyright	(C)	Stanford	Computer	Science	and	Marty	Stepp,	licensed	under	Creative	Commons	Attribution	2.5	License.		All	rights	reserved.	
Based	on	slides	created	by	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others.	

CS	106B,	Lecture	9	
Recursive	Data	

This	document	is	copyright	(C)	Stanford	Computer	Science	and	Ashley	Taylor,	licensed	under	Creative	Commons	Attribution	2.5	License.	All	rights	reserved.	
Based	on	slides	created	by	Marty	Stepp,	Chris	Gregg,	Keith	Schwarz,	Julie	Zelenski,	Jerry	Cain,	Eric	Roberts,	Mehran	Sahami,	Stuart	Reges,	Cynthia	Lee,	and	others	

2

Plan for Today
• More	recursion	practice!	
• Learning	goals	for	today	

– Understand	how	to	recognize	self-similarity	in	problems	and	use	
recursion	to	solve	these	problems.	

–  See	examples	of	recursively	structured	data.	
–  You	should	practice:	CodeStepByStep,	section	problems,	or	examples	
from	the	textbook	

3

Recap: Recursion Tips
• Look	for	self-similarity	
• Find	the	minimum	amount	of	work	
• Make	the	problem	simpler	by	doing	the	least	amount	of	work	
possible	

• Trust	the	recursion		
• Find	a	stopping	point	(base	case)	

4

power exercise
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	
– What	is	the	minimum	amount	of	work?	
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	

power	

5

power exercise
• Write	a	function	power	that	accepts	integer	parameters	for	a	base	
and	exponent	and	computes	base	^	exponent.	
	
– Write	a	recursive	version	of	this	function	(one	that	calls	itself).	
–  Solve	the	problem	without	using	any	loops.	
	
– How	is	this	problem	self-similar?	Realize	xn	=	x	*	xn-1	
– What	is	the	minimum	amount	of	work?		
– How	can	we	make	the	problem	simpler	by	doing	the	least	amount	of	
work?	

– What	is	our	stopping	point	(base	case)?	n	=	0	
• Why	not	n	=	1?	

power	

6

Initial solution
//	Returns	base	^	exp.	
//	Assumes	exp	>=	1.	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

7

The call stack
• Each	previous	call	waits	for	the	next	call	to	finish.	

– cout	<<	power(5,	3)	<<	endl;	
//	first	call:			5								3	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	second	call:		5								2	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

//	third	call:			5								1	
int	power(int	base,	int	exp)	{	
				if	(exp	==	1)	{	
								return	base;			//	5	
				}	else	{	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

8

"Recursion Zen"
• The	real,	even	simpler,	base	case	is	an	exp	of	0,	not	1:	

	

int	power(int	base,	int	exp)	{	
				if	(exp	==	0)	{	
								//	base	case;	base^0	=	1	
								return	1;	
				}	else	{	
								//	recursive	case:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	
	
–  Recursion	Zen:	The	art	of	properly	identifying	the	best	set	of	cases	for	
a	recursive	algorithm	and	expressing	them	elegantly.	
Opposite	is	arms-length	recursion	

	(our	informal	term)	

9

Preconditions
• precondition:	Something	your	code	assumes	is	true	when	called.	

– Often	documented	as	a	comment	on	the	function's	header:
	
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
	
–  Stating	a	precondition	doesn't	really	"solve"	the	problem,	but	it	at	least	
documents	our	decision	and	warns	the	client	what	not	to	do.	

– What	if	the	caller	doesn't	listen	and	passes	a	negative	power	anyway?	
What	if	we	want	to	actually	enforce	the	precondition?	

10

Throwing exceptions
	error(expression);	
	
	

–  In	Stanford	C++	lib's	"error.h"		
–  Generates	an	exception	that	will	crash	the	program,	
unless	it	has	code	to	handle	("catch")	the	exception.	

–  alternative:	throw	something	
•  something	can	be	an	int,	a	string,	etc.		

• Why	would	anyone	ever	want		a	program	to	crash?	

11

power solution 2
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	...	
								...	
}	

12

An optimization
• Notice	the	following	mathematical	property:	

312		 	=	96	
	 	=	(32)6	

	

	 	=	((32)2)3	

–  When	does	this	"trick"	work?	
–  How	can	we	incorporate	this	optimization	into	our	pow	code?	
–  Why	bother	with	this	trick	if	the	code	already	works?	

13

power solution 3
//	Returns	base	^	exp.	
//	Precondition:	exp	>=	0	
int	power(int	base,	int	exp)	{	
				if	(exp	<	0)	{	
								throw	"illegal	negative	exponent";	
				}	else	if	(exp	==	0)	{	
								//	base	case;	any	number	to	0th	power	is	1	
								return	1;	
				}	else	if	(exp	%	2	==	0)	{	
								//	recursive	case	1:		x^y	=	(x^2)^(y/2)	
								return	power(base	*	base,	exp	/	2);	
				}	else	{	
								//	recursive	case	2:		x^y	=	x	*	x^(y-1)	
								return	base	*	power(base,	exp	-	1);	
				}	
}	

14

convertFromBinary exercise
• Write	a	recursive	function	convertFromBinary	that	accepts	an	a	
string	of	that	number's	representation	in	binary	(base	2)	and	
returns	the	base	10	int	equivalent.	

–  Example:	convertFromBinary	("111")		returns	7	
–  Example:	convertFromBinary	("1100")	returns	12	
–  Example:	convertFromBinary	("101010")	returns	42	

–  42	=	4	*	10	+	2	*	1	=	1	*	32	+	0	*	16	+	1	*	8	+	0	*	4	+	1	*	2	+	0	*	1	

place	 10	 1	 32	 16	 8	 4	 2	 1	

value	 4	 2	 1	 0	 1	 0	 1	 0	

15

convertFromBinary exercise
• How	is	this	problem	self-similar?	
• What	is	the	smallest	amount	of	work?	
• When	should	the	recursion	stop?	

Base	10	 Binary	Representation	

20	 10100	

40	 101000	

41	 101001	

16

convertFromBinary solution
//	Returns	the	given	int's	binary	representation.	
//	Precondition:	n	>=	0	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	{									
								//	base	case:	binary	is	same	as	base	10									
								return	stringToInteger(binary);	
				}	
				//	recursive	case:	break	number	apart	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	

17

convertFromBinary Trace
int	main()	{	
				cout	<<	convertFromBinary("110")	<<	endl;	
				return	0	
}	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	
int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length 	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	

int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	

int	convertFromBinary(string	binary)	{					
				int	length	=	binary.length();					
				if	(length	==	1)	return	stringToInteger(binary);	
				string	lastCharacter	=	binary.substr(length	-	1);	
				string	beginning	=	binary.substr(0,	length	-	1);	
				return	2	*	convertFromBinary(beginning)	+	
															convertFromBinary(lastCharacter);	
}	

18

Announcements

• Homework	2	due	on	Wednesday	at	5PM	
• Homework	1	grades	will	be	released	by	your	section	leader	on	or	
before	Wednesday	

• Your	partner	(if	you	choose	to	have	one)	must	be	in	your	section,	
and	you	should	submit	together	through	Paperless	

• Shreya's	OH	changeup	
–  Tuesday,	8:30-10:30AM	
– Wednesday,	9:30-10:30AM	
–  Both	open	to	SCPD	and	non-SCPD	students,	sign	up	on	QueueStatus	
(link	on	sidebar	of	website),	be	prepared	to	use	Google	Hangouts	

19

reverseLines exercise
• Write	a	recursive	function	reverseLines	that	accepts	a	file	input	
stream	and	prints	the	lines	of	that	file	in	reverse	order.	

–  Example	input	file: 	Expected	console	output:	
	

	Roses	are	red, 	Are	belong	to	you.	
	Violets	are	blue. 	All	my	base	
	All	my	base 	Violets	are	blue.	
	Are	belong	to	you. 	Roses	are	red,	
	
	
–  What	are	the	cases	to	consider?	

• How	can	we	solve	a	small	part	of	the	problem	at	a	time?	
• What	is	the	self-similarity	of	this	problem?	
• What	is	a	file	that	is	very	easy	to	reverse?	

20

Reversal pseudocode
• Reversing	the	lines	of	a	file:	

–  Read	a	line	L	from	the	file.	
–  Print	the	rest	of	the	lines	in	reverse	order.	
–  Print	the	line	L.	

•  If	only	we	had	a	way	to	reverse	the	rest	of	the	lines	of	the	file....	

21

reverseLines solution
void	reverseLines(ifstream&	input)	{	
				string	line;	
				if	(getline(input,	line))	{	
								//	recursive	case	
								reverseLines(input);	
								cout	<<	line	<<	endl;	
				}	
}	
	

– Where	is	the	base	case?	

22

crawl exercise
• Write	a	function	crawl	accepts	a	file	name	as	a	parameter	and	
prints	information	about	that	file.	
–  If	the	name	represents	a	normal	file,	just	print	its	name.	
–  If	the	name	represents	a	directory,	print	its	name	and	information	
about	every	file/directory	inside	it,	indented.	

	
	course	
					handouts	
									syllabus.doc	
									lecture-schedule.xls	
					homework	
									1-gameoflife	
													life.cpp	
													life.h	
													GameOfLife.pro	
	

–  recursive	data:	A	directory	can	contain	other	directories.	

23

Stanford C++ files
#include	"filelib.h"	

Function	 Description	

createDirectory(name)	 creates	a	a	new	directory	with	given	path	name	

deleteFile(name)	 removes	file	from	disk	

fileExists(name)	 whether	this	file	exists	on	the	disk	

getCurrentDirectory()	 returns	directory	the	current	C++	program	runs	in	

getExtension(name)	 returns	file's	extension,	e.g.	"foo.cpp"	→	".cpp"	

getHead(name),	
getTail(name)	

separate	a	file	path	into	the	directory	and	file	part;	
for	"a/b/c/d.txt",	head	is	"a/b/c",	tail	is	"d.txt"	

isDirectory(name)	 returns	whether	this	file	name	represents	a	directory	

isFile(name)	 returns	whether	this	file	name	represents	a	regular	file	

listDirectory(name)	 returns	a	Vector<string>	with	the	names	of	all	files	
contained	in	the	given	directory	

readEntireFile(name,	v)	 reads	lines	of	the	given	file	into	a	vector	of	strings	

renameFile(old,	new)	 changes	a	file's	name	

24

Optional parameters
• We	cannot	vary	the	indentation	without	an	extra	parameter:	

	

void	crawl(string	filename,	string	indent)	{	
	

• Often	the	parameters	we	need	for	our	recursion	do	not	match	
those	the	client	will	want	to	pass.	

	

One	solution	is	to	use	a	default	parameter	value:	
	

void	crawl(string	filename,	string	indent	=	"")	{	
	
–  The	client	can	call	crawl	passing	only	one	parameter.	
–  The	recursive	calls	can	pass	the	second	parameter	to	indent.	

25

crawl solution
//	Prints	information	about	this	file,	
//	and	(if	it	is	a	directory)	any	files	inside	it.	
void	crawl(string	filename,	string	indent	=	"")	{	
				cout	<<	indent	<<	getTail(filename)	<<	endl;	
				if	(isDirectory(filename))	{	
								//	recursive	case;	print	contained	files/dirs	
								Vector<string>	filelist;	
								listDirectory(filename,	filelist);	
								for	(string	subfile	:	filelist)	{	
												crawl(filename	+	"/"	+	subfile,	
																		indent	+	"				");	
								}	
				}	
}	

26

evenDigits exercise
• Write	a	recursive	function	evenDigits	that	accepts	an	integer	and	
returns	a	new	number	containing	only	the	even	digits,	in	the	same	
order.		If	there	are	no	even	digits,	return	0.	

–  Example:	evenDigits(8342116)		returns	8426	
–  Example:	evenDigits(40109)	 	returns	400	
–  Example:	evenDigits(8)	 	returns	8	
–  Example:	evenDigits(-163505)		returns	-60	
–  Example:	evenDigits(35179)	 	returns	0	

– Write	the	function	recursively	and	without	using	any	loops.	

• Write	a	recursive	function	evenDigits	that	accepts	an	integer	and	
returns	a	new	number	containing	only	the	even	digits,	in	the	same	
order.		If	there	are	no	even	digits,	return	0.	

–  Example:	evenDigits(8342116)		returns	8426	
–  Example:	evenDigits(40109)	 	returns	400	
–  Example:	evenDigits(8)	 	returns	8	
–  Example:	evenDigits(-163505)		returns	-60	
–  Example:	evenDigits(35179)	 	returns	0	

– Write	the	function	recursively	and	without	using	any	loops.	

27

evenDigits solution
//	Returns	a	new	integer	containing	only	the	even-valued	
//	digits	from	the	given	integer,	in	the	same	order.	
//	Returns	0	if	there	are	no	even	digits.	
int	evenDigits(int	n)	{	
				if	(n	<	0)	{	
								return	-evenDigits(-n);	
				}	else	if	(n	==	0)	{	
								return	0;	
				}	else	if	(n	%	2	==	0)	{	
								return	10	*	evenDigits(n	/	10)	+	n	%	10;	
				}	else	{	
								return	evenDigits(n	/	10);	
				}	
}	
	

