CS 106B, Lecture 9
Recursive Data

This document is copyright (C) Stanford Computer Science and Ashley Taylor, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Chris Gregg, Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, and others

Plan for Today

e More recursion practice!
e Learning goals for today

— Understand how to recognize self-similarity in problems and use
recursion to solve these problems.

— See examples of recursively structured data.

— You should practice: CodeStepByStep, section problems, or examples
from the textbook

Recap: Recursion Tips

e Look for self-similarity
e Find the minimum amount of work

e Make the problem simpler by doing the least amount of work
possible

e Trust the recursion
e Find a stopping point (base case)

power exercise

e \Write a function power that accepts integer parameters for a base
and exponent and computes base " exponent.

— Write a recursive version of this function (one that calls itself).

— Solve the problem without using any loops.

— How is this problem self-similar?
— What is the minimum amount of work?

— How can we make the problem simpler by doing the least amount of
work?

— What is our stopping point (base case)?

power exercise

e \Write a function power that accepts integer parameters for a base
and exponent and computes base " exponent.

— Write a recursive version of this function (one that calls itself).

— Solve the problem without using any loops.

— How is this problem self-similar? Realize x" = x * x"!
— What is the minimum amount of work?

— How can we make the problem simpler by doing the least amount of
work?

— What is our stopping point (base case)? n =0
e Why notn=17

Initial solution

// Returns base ™ exp.
// Assumes exp >= 1.
int power(int base, int exp) {
if (exp == 1) {
return base;
} else {
return base * power(base, exp - 1);

¥

The call stack

e Each previous call waits for the next call to finish.
- cout << power(5, 3) << endl;

// first call: 5 3
int power(int base, int exp) {
if (exn == {
// second call: 5 2

} | int power(int base, int exp) {
if (exn == 1) {

} // third call: 5 1
} } [int power(int base, int exp) {
if (exp == 1) {
} return base; // 5
} } else {

return base * power(base, exp - 1);

}

"Recursion Zen"

e The real, even simpler, base case is an exp of 0, not 1:

int power(int base, int exp) {
if (exp == 0) {
// base case; base”™0 =1
return 1;
} else {
// recursive case: x"y = x * x"(y-1)
return base * power(base, exp - 1);

— Recursion Zen: The art of properly identifying the best set of cases for
a recursive algorithm and expressing them elegantly.
Opposite is arms-length recursion
(our informal term)

Preconditions

e precondition: Something your code assumes is true when called.
— Often documented as a comment on the function's header:

// Returns base ™ exp.
// Precondition: exp >= ©
int power(int base, int exp) {

— Stating a precondition doesn't really "solve" the problem, but it at least
documents our decision and warns the client what not to do.

— What if the caller doesn't listen and passes a negative power anyway?
What if we want to actually enforce the precondition?

Throwing exceptions

error(expression);

— In Stanford C++ lib's "error.h"

— Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

— alternative: throw something
e something can be an int, a string, etc.

e Why would anyone ever want a program to crash?

10

power solution 2

// Returns base ™ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
if (exp < 0) {
throw "illegal negative exponent”;
} else ...

11

An optimization

e Notice the following mathematical property:
312 - 96

= (32

— When does this "trick" work?
— How can we incorporate this optimization into our pow code?
— Why bother with this trick if the code already works?

12

power solution 3

// Returns base ™ exp.
// Precondition: exp >= 0
int power(int base, int exp) {
if (exp < 0) {
throw "illegal negative exponent”;
} else if (exp == 0) {
// base case; any number to O@th power is 1
return 1;
} else if (exp % 2 == 0) {
// recursive case 1l: x*y = (x"2)"(y/2)
return power(base * base, exp / 2);
} else {
// recursive case 2: x"y = x * x"(y-1)
return base * power(base, exp - 1);

13

convertFromBinary exercise

e Write a recursive function convertFromBinary that accepts an a
string of that number's representation in binary (base 2) and
returns the base 10 int equivalent.

— Example: convertFromBinary ("111") returns?7
— Example: convertFromBinary ("1100") returns 12
— Example: convertFromBinary ("101010") returns 42

place | 10| 1 32116181421

value | 4 | 2 1 0|1(0(11(0

-42=4*10+2*1=1*32+0*16+1*8+0*4+1*2+0*1

14

convertFromBinary exercise

e How is this problem self-similar?
e What is the smallest amount of work?
e When should the recursion stop?

Base 10 Binary Representation
20 10100

40 101000

41 101001

15

convertFromBinary solution

// Returns the given int's binary representation.
// Precondition: n >= 0
int convertFromBinary(string binary) {
int length = binary.length();
if (length == 1) {
// base case: binary 1is same as base 10
return stringToInteger(binary);
}
// recursive case: break number apart
string lastCharacter = binary.substr(length - 1);
string beginning = binary.substr(@, length - 1);
return 2 * convertFromBinary(beginning) +
convertFromBinary(lastCharacter);

16

convertFromBinary Trace

int main() {
cout << convertFromBinary("110") << endl;

int convertFromBinary(string binary) {
int length = binary.length();
if (length == 1) return stringTolInteger(binary);
string lastCharacter = binary.substr(length - 1);
string beginning = binary.substr(@, length - 1);
return 2 * convertFromBinary(beginning) +

int convertFromBinarv(string binaryv) {

int convertFromBinary(string binary) {
int length = binary.length();
if (length == 1) return stringTolInteger(binary);
string lastCharacter = binary.substr(length - 1);
string beginning = binary.substr(@, length - 1);
return 2 * convertFromBinary(beginning) +
convertFromBinary(lastCharacter);

}
it (length == 1) return stringlolnteger(binary),
string lastCharacter = binary.substr(length - 1);
string beginning = binary.substr(@, length - 1);
return 2 * convertFromBinary(beginning) +

) convertFromBinary(lastCharacter);

17

Announcements

e Homework 2 due on Wednesday at 5PM

e Homework 1 grades will be released by your section leader on or
before Wednesday

e Your partner (if you choose to have one) must be in your section,
and you should submit together through Paperless

e Shreya's OH changeup
— Tuesday, 8:30-10:30AM
— Wednesday, 9:30-10:30AM

— Both open to SCPD and non-SCPD students, sign up on QueueStatus
(link on sidebar of website), be prepared to use Google Hangouts

18

reverselLines exercise

e Write a recursive function reverselLines that accepts a file input
stream and prints the lines of that file in reverse order.

Example input file: Expected console output:

Roses are red, Are belong to you.
Violets are blue. All my base

All my base Violets are blue.
Are belong to you. Roses are red,

What are the cases to consider?
e How can we solve a small part of the problem at a time?
e What is the self-similarity of this problem?
e What is a file that is very easy to reverse?

19

Reversal pseudocode

e Reversing the lines of a file:
— Read a line L from the file.
— Print the rest of the lines in reverse order.
— Print the line L.

e If only we had a way to reverse the rest of the lines of the file....

20

reverselLines solution

void reverseLines(ifstream& input) {
string line;
if (getline(input, line)) {
// recursive case
reverselLines(input);
cout << line << endl;

— Where is the base case?

21

crawl exercise

e Write a function crawl accepts a file name as a parameter and
prints information about that file.

— If the name represents a normal file, just print its name.

— If the name represents a directory, print its name and information
about every file/directory inside it, indented.

course
handouts
syllabus.doc
lecture-schedule.xls
homework
1-gameoflife
life.cpp
life.h
GameOfLife.pro

— recursive data: A directory can contain other directories.

22

Stanford C++ files

#include "filelib.h"

Function

Description

createDirectory(name)

creates a a new directory with given path name

deleteFile(name)

removes file from disk

fileExists(name)

whether this file exists on the disk

getCurrentDirectory()

returns directory the current C++ program runs in

getExtension(name) returns file's extension, e.g. "foo.cpp" — ".cpp"
getHead (name) , separate a file path into the directory and file part;
getTail (name) for"a/b/c/d.txt", headis "a/b/c", tailis "d.txt"
isDirectory(name) returns whether this file name represents a directory
isFile(name) returns whether this file name represents a regular file
listDirectory(name) returns a Vector<string> with the names of all files

contained in the given directory

readEntireFile(name, v)

reads lines of the given file into a vector of strings

renameFile(old, new)

changes a file's name

Optional parameters

e \We cannot vary the indentation without an extra parameter:

void crawl(string filename, string indent) {

e Often the parameters we need for our recursion do not match
those the client will want to pass.

One solution is to use a default parameter value:

void crawl(string filename, string indent = "") {

— The client can call crawl passing only one parameter.
— The recursive calls can pass the second parameter to indent.

24

crawl solution

// Prints information about this file,
// and (if it is a directory) any files inside it.
void crawl(string filename, string indent = "") {
cout << indent << getTail(filename) << endl;
if (isDirectory(filename)) {
// recursive case; print contained files/dirs
Vector<string> filelist;
listDirectory(filename, filelist);
for (string subfile : filelist) {
crawl(filename + "/" + subfile,
indent + " ");

25

evenDigits exercise

e Write a recursive function evenDigits that accepts an integer and
returns a new number containing only the even digits, in the same
order. If there are no even digits, return O.

— Example: evenDigits(8342116) returns 8426
— Example: evenDigits(40109) returns 400
— Example: evenDigits(8) returns 8

— Example: evenDigits(-163505) returns -60
— Example: evenDigits(35179) returns

— Write the function recursively and without using any loops.

26

evenDigits solution

// Returns a new integer containing only the even-valued
// digits from the given integer, in the same order.
// Returns © if there are no even digits.
int evenDigits(int n) {
if (n < 9) {
return -evenDigits(-n);
} else if (n == 0) {
return 0;
} else if (n % 2 == 0) {
return 10 * evenDigits(n / 10) + n % 10;
} else {
return evenDigits(n / 10);

¥

27

