
CS106B: Programming Abstractions
Practice Final #1 Ashley Taylor and Shreya Shankar

Practice Final Exam

Your name:

Sunet ID: @stanford.edu

Section leader:

Honor Code: I hereby agree to follow both the letter and the spirit of the Stanford Honor Code. I have
not received any assistance on this exam, nor will I give any. The answers I am submitting are my
own work. I agree not to talk about the exam contents to anyone until a solution key is posted by the
instructor.

Signature: ← YOU MUST SIGN HERE!

Rules: (same as posted previously to class web site)

• This exam is to be completed by each student individually, with no assistance from other students.

• You have 3 hours (180 minutes) to complete this exam.

• This test is closed-book, closed-notes. You may only have one 8.5x11” double-sided sheet of notes.

• You may not use any computing devices, including calculators, cell phones, iPads, or music players.

• Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.

• On code-writing problems, you do not need to write a complete program, prototypes, nor #include state-
ments. Write only the code (function, etc.) specified in the problem statement.

• Unless otherwise specified, you can write helper functions to implement the required behavior. When
asked to write a function, do not declare any global variables.

• Do not abbreviate code, such as writing ditto (””) or dot-dot-dot marks (...). Pseudo-code will be given no
credit.

• If you wrote your answer on a back page or attached paper, please label this clearly to the grader.

• Do NOT staple or otherwise insert new pages into the exam. Changing the order of pages in the exam
confuses our automatic scanning system.

• You should write your name at the top of every page in the exam. You will get 1 point for this.

• Tear off the last page (reference sheet) before submission. You will get 1 point for this.

• Follow the Stanford Honor Code on this exam and correct/report anyone who does not do so.

Description Earned Max
0 Names and removing last page 2
1 Heap 14
2 Linked Lists 10
3 Recursive Backtracking 18
4 Graphs 20
5 Trees 26

Total 90

1

Name:

1. Heap

We have implemented the Priority Queue ADT using a binary min-heap.

Part a (10 points)

Draw a diagram of the tree shape of the heap after enqueuing the following priorities in the
order given. 15, 10, 13, 8, 2, 9 (for this priority queue we dont have a separate value, just the
priority).

2

Name:

Part b (4 points)

Continuing from the final heap in part (a) (after inserting 9), draw a diagram of the tree shape
of the heap after calling dequeue twice.

3

Name:

2. Linked Lists

Write a function switchPairsOfPairs that rearranges a linked list of integers by switching
the order of each two neighboring pairs of elements in the sequence. Your function is passed
a reference to a pointer to the front of the list as a parameter. Suppose, for example, that a
variable named list points to the front of a list storing the following values:

{1, 2, 3, 4, 5, 6, 7, 8}

| | | | | | | |

+--+ +--+ +--+ +--+

pair pair pair pair

This list has four pairs. If we make the call of switchPairsOfPairs(front); the list’s state
should become:

{3, 4, 1, 2, 7, 8, 5, 6}

| | | | | | | |

+--+ +--+ +--+ +--+

pair pair pair pair

Notice that the pair (1, 2) has been switched with the pair (3, 4) and that the pair (5, 6) has
been switched with the pair (7, 8). This example purposely used sequential integers to make
the rearrangement clear, but you should not expect that the list will store sequential integers.
It also might have extra values at the end that are not part of a group of four. Such values
should not be moved. For example, if the list had stored this sequence of values:

{3, 8, 19, 42, 7, 26, 19, -8, 193, 204, 6, -4, 99, 2, 7}
Then a call on the function should modify the list to store the following. Note that 99, 2, 7

at the end are not switched:

{19, 42, 3, 8, 19, -8, 7, 26, 6, -4, 193, 204, 99, 2, 7}
Your function should work properly for a list of any size. Note: The goal of this problem

is to modify the list by modifying pointers. It might be easier to solve it in other ways, such
as by changing nodes’ data values or by rebuilding an entirely new list, but such tactics are
forbidden.

Constraints: For full credit, obey the following restrictions in your solution. A violating
solution can get partial credit.

• Do not modify the data field of any existing nodes.

• Do not create any new nodes by calling new ListNode(...). You may create as many
ListNode* pointers as you like, though.

• Do not use any auxiliary data structures such as arrays, vectors, queues, maps, sets,
strings, etc.

4

Name:

• Your code must make a single pass over the list (not multiple passes) and must run in
no worse than O(N) time, where N is the length of the list.

• Note that the list has no ”size” function, nor are you allowed to loop over the whole list
to count its size.

Recall the ListNode structure:

struct ListNode {

int data;

ListNode* next;

};

5

Name:

2. Linked Lists (Writing Space)

6

Name:

2. Linked Lists (Writing Space)

7

Name:

3. Recursive Backtracking (18 points)

The game of Battleship is a time-honored competition amongst friends. Each person has a
board (which well represent with a Grid) where they secretly place several ships (1xN rect-
angles) so that they do not overlap other ships or go off the board. The picture to the right
is an example of a Grid with 4 ships placed on it: size 3 (placed horizontally), size 2 (placed
vertically), and two of size 1. Each cell with B represents part of a ship, and complete ships
are outlined in black.

To win, you try to sink your friends ship by naming a row/col location to target with
a cannon. Your friend self-reports whether you hit on a part of one of their ships or not
(miss). If the locations you name result in many consecutive misses, you might begin to
wonder whether your opponent is cheating in their self-reporting! So you decide to write a
backtracking recursion program to determine whether theres any legal way to place the ships
that avoids all the locations youve targeted so far.

Part a (6 points)

First, youll need a (non-recursive) helper function placeHoriz that attempts to place one ship
on the board in a specified location. We represent your friends board (from your perspective)
as a Grid<char>, where ? represents a spot you know nothing about and M represents a loca-
tion you have already targeted (and that your friend said was a miss). The function takes the
current Grid, the length of the ship, and a row-col where you should place the ship. As the
functions name suggests, you should try to place the ship horizontally on the board with the
leftmost part of the ship at row and col. If the ship fits (does not overlap any M or B cells, and
stays in bounds of the board), fill in the designated cells with B (to indicate a tentative guess
at a possible ship placement) and return true. Otherwise return false. If your function returns
false, no changes should be made to the board. You may assume that the provided row and
col are in bounds of the Grid (though the ship might go out of bounds from there).

Write your answer on the following page.

8

Name:

3. Part a (Writing Space)

bool placeHoriz (Grid<char>& board, int size, int row, int col) {

}

9

Name:

3. Part b (12 points)

Now write a recursive backtracking function canPlaceShips that checks if a collection of
ships can all be placed on the board such that they do not overlap each other or any cell
marked M. The collection of ships is provided as a Vector<int> of sizes, where each int rep-
resents one ships size. The function returns true if its possible to place all the ships on the
board, and false otherwise.

• Example: It would be impossible to place four ships of sizes 3, 2, 1, and 1 in any con-
figuration on the before example board in part (a)something fishy (ha) is going on with
your friends self-reporting!so you would return false in that case.

• Youll want to use your placeHoriz helper function, and you may assume a correspond-
ing placeVert also exists, which does the same except that it places the ship vertically.

• You may also assume you have helpers and unplaceHoriz and unplaceVert, which re-
move a ship of size size from the specified location by writing ? in all its cells (the
unplace functions have the same input parameter list as the place functions, but void
return type).

• Your function should use backtracking recursion. Your code is not required to have any
particular Big-O cost, but you may lose points if your code is extremely inefficient, such
as exploring obviously invalid paths rather than stopping and backtracking.

Write your answer on the following page.

10

Name:

3. Part b (Writing Space)

bool canPlaceShips(Grid<char>& board, Vector<int> shipSizes) {

}

11

Name:

4. Graphs (20 points)

Noticing the popularity of the Stanford Marriage Pact, Stanfords housing office has decided to
use a similar algorithm to match roommates next year. They want to force students currently
in Roble and Wilbur to mix next year, so each roommate pair must include one student from
each. Based on a proprietary deep learning algorithm that examines your social media and
grades (serious privacy issues in this hypothetical!), ResEd has created a weighted, directed
graph of all students in R[oble] and W[ilbur], where an en edge exists from each student in R
to each student in W, with weight indicating how much the R student should want to match
with the W student. Corresponding reverse edges and weights exist from W students to R
students. Smaller weights indicate more favorable pairing. You will write a function to help
ResEd create roommate matches!

Part a (5 points)

Before we tackle the main algorithm, write a helper function that takes a Vector of the room-
mate ratings and returns a Map from Wilbur students to a PriorityQueue of Roble students,
where the priority is the weight of the edge from the W student to that R student. To do so,
you have will need the following structs (you may assume that comparison operators exist
for both):

struct Student {

string name;

string dorm; // either Wilbur or Roble

};

struct Preference {

Student *start;

Student *end;

int ranking;

};

Write your answer on the following page.

12

Name:

4. Part a (Writing Space)

Map<Student*, PriorityQueue<Student*>> getWPrefs(Vector<Preference *> &preferences) {

}

13

Name:

4. Part b (15 points)

Now we will write the main SMP algorithm. First, call the helper from (a) to get a Map
wPrefs. Also create an empty Set<Student*> isMatched to track which W students already
have matches, and an empty Map<Student*, Student*> matches to map each R student to
their current W student match.

The algorithm repeats the following actions in a loop until all students have a match (i.e.,
all wPrefs keys are also in isMatched):

• Loop over wPrefs keys and, for each W student that is not already matched, attempt
to match them with the next highest-priority roommate for them (next in Ws Priori-
tyQueue).

• A match attempt will succeed if the R student is currently not matched to anyone.

• A match attempt will also succeed if the R student is currently matched to someone else,
but the R student would prefer this new W student to their current match (the weight
of the edge R-¿W is less than the weight of the edge R-¿[current match]).

• To perform a match, update isMatched and matches accordingly, including breaking the
previous match if the R student had one.

• If the first match attempt for W fails, W stays unmatched this round. Continue the loop
to the next W student in wPrefs.

• Return the matches.

Write your answer on the following page.

14

Name:

4. Part b (Writing Space)

Map<Student*, Student*> matchRoommates(Vector<Preference *> preferences) {

Map<Student*, PriorityQueue<Vertex*>> wPrefs = getWPrefs(preferences);

Set<Student *> isMatched; // W vertices that are currently matched

Map<Student *, Student*> matches; // from R to W

}

15

Name:

5. Trees (26 points)

A k-ordered statistic tree is a Binary Search Tree where each node has an additional field
that stores the number of nodes in its left subtree. The k-ordered statistic tree can use this
information to quickly locate the kth element in the tree (kth if all elements were listed in
ascending sorted order). We will use this to implement a Set ADT, so keys in the tree are
all unique. Below is a valid k-ordered statistic tree. Notice the keys follow the usual BST
ordering.

The file korder.h is as follows (do not edit this code):

struct Node {

Node(int key) { this->key = key; count = 0; left = right = NULL; }

int key; // the usual BST key

int count; // count of nodes in left subtree

Node* left; // left child

Node* right; // right child

};

class KTree {

public:

KTree();

~KTree();

void addKey(int key);

int getKthKey(int k);

private:

Node* root;

};

16

Name:

Functions in the korder.cpp file are shown below and on the following 2 pages. Complete
the code for them. You are welcome to add additional helper function(s) if you want (do not
add them to the class in .h file, just add them below).

// Constructor (2pts)

KTree::KTree()

{

}

// Destructor (6pts)

KTree::~KTree()

{

}

// Inserts key into the tree in the proper place, and updates all tree

// counts appropriately. Your solution must be recursive, using the

// provided helper. (7pts)

void KTree::addKey(int key)

{

}

// Recursive helper function for addKey. Returns true if node was added, false

// if key was duplicate so no add was done. The code for a standard BST insert

// is already provided here for you. You should edit this code to make it

// work for k-ordered tree. Write your additional line(s) of code to the right

// and use arrows to indicate where to insert your addition(s). Cross out any

// code you want to delete.

17

Name:

bool addKeyHelper(int key, Node* curr)

{

if (key < curr->key) {

if (curr->left == NULL) {

curr->left = new Node(key);

return true;

} else {

return addKeyHelper(curr->left);

}

} else if (key > curr->key) {

if (curr->right == NULL) {

curr->right = new Node(key);

return true;

} else {

return addKeyHelper(curr->right);

}

} else {

return false;

}

}

// Returns the kth smallest key in the tree (numbered starting with 0). So for

// the example tree above, for k=0 return 2; for k=3 return 11; for k=5 return

// 20. You may assume that is valid (0 <= k < N for tree with N nodes). Your

// solution must be recursive (see recursive helper below). For full credit,

// your solution must be O(logN). As a fallback option, O(N) solutions that do

// not use auxiliary data structures will incur a small 2pt deduction. (11pts)

int KTree::getKthKey(int k)

{

}

// Recursive helper for getKthKey(). For the O(N) solution, you may add

// argument(s) and change the return value if you like. For the O(logN)

// solution, this is the best header.

int kthKeyHelper(int k, Node* curr)

{

18

Name:

}

19

