CS106B: Programming Abstractions

Practice Midterm #1 Ashley Taylor and Shreya Shankar

Practice Midterm Exam: Solutions

Name:

1. ADTs (read)

e {4,7,3,2,6,5)
e {1,5,9,13,11,7,3}

Name:

2. Big-Oh (read)

Name:

3. Collections and File IO

// solution 1 - works for > 2 people in a conversation (not required)
void chatBuddies(string filename) {
ifstream file;
file.open(filename) ;
if (file.fail()) {
throw "File cannot be read!";

Map<Vector<string>, int> convoCounts;
Set<string> peoplelnConvo;
string line;
int largest = O;
while (getline(file, line)) {
if (line != "---") {
int nameDelim = line.find(":");
string name = line.substr(0, nameDelim);
peoplelInConvo.add(name) ;
} else {
Set<string> others = peoplelInConvo;
for (string person : peopleInConvo) {
for (string partner : others) {
if (person != partner) {
Vector<string> pair { person, partner };
convoCounts [pair] ++;
largest = max(largest, convoCounts[pair]);

3

others.remove (person) ;

}

peopleInConvo.clear();

for (Vector<string> pair : convoCounts.keys()) {
if (convoCounts[pair] == largest) {
cout << pair[0] << " and " << pair[1] << endl;

}

Name:

// solution 2 - assumes <= 2 people in every conversation

// read a single conversation (until ---) and extract a string
// representing who was in the conversation (e.g. "Bert and Ernie")
string readConversation(ifstream& file);

void chatBuddies(string filename) {
// open file
ifstream file;
if (lopenFile(file, filename)) {
throw "File cannot be read!";

}

// read file into map of pair => count (e.g. "Bert and Ernie" => 2)
Map<string, int> counts;
while (!file.eof()) {
string people = readConversation(file); // e.g. "Bert and Ernie"
if (people != "") {
counts [people] ++;

}

// figure out which pair has the highest count
int largest = 0;
for (string people : counts.keys()) {
if (counts[people] > largest) {
largest = counts[peoplel;

}

// print all pairs that have the highest count
for (string people : counts.keys()) {
if (counts[people] == largest) {
cout << people << endl;

by

string readConversation(ifstream& file) {

Vector<string> people;

string line;

while (getline(file, line)) {
if (line == "---") break;
string name = line.substr(0, line.find(":"));
if (!people.contains(name)) {

people.add(name) ;

Name:

if (people.size() == 2) {
break;

}
}

if (people.size() == 2) {

people.sort();

return people[0] + " and " + people[l];
} else {

return "";

}

Name:

4. Recursion (read)

a. 17 C [8] , [11)
b. 31 (15 C [7] , [11) , [11)
c. 62 (31 (15 C [71 , (11) , [11 > , [0l)

Name:

5. Recursion (write)

int countDuplicates(Stack<int>& stack, int prev = -1) {
if (stack.isEmpty()) {
return O;
} else {
int dupes = O;
if (prev >= 0 && stack.peek() == prev) {
dupes++;
}
prev = stack.popQ);
dupes += countDuplicates(stack, prev);
stack.push(prev) ;
return dupes;

Name:

6. Backtracking (write)

bool knightsTourHelper(Grid<int>& board, const Location& loc, int knights) {

if (knights > board.size()) {
// base case: stop if we fill the whole board with knights
printBoard(board) ;
return true;

} else if (!board.inBounds(loc.row, loc.col) || board[loc.row] [loc.col] != 0) {
// base case: don’t go out of bounds or revisit the same square twice
return false;

} else {
// recursive case: mark this square and explore future moves
board[loc.row] [loc.col] = knights; // choose

for (Location neighbor : getMoves(loc)) { // explore
if (knightsTourHelper (board, neighbor, knights + 1)) {
return true;
}
}
board[loc.row] [loc.col] = O; // unchoose
return false;

void knightsTour(Grid<int>& board, Location startLoc) {
knightsTourHelper (board, startLoc, 1);

}

