
CS106B: Programming Abstractions
Practice Midterm #1 Ashley Taylor and Shreya Shankar

Practice Midterm Exam: Solutions

1



Name:

1. ADTs (read)

• {4, 7, 3, 2, 6, 5}

• {1, 5, 9, 13, 11, 7, 3}

2



Name:

2. Big-Oh (read)

a. O(N)

b. O(N3)

c. O(NlogN)

3



Name:

3. Collections and File IO

// solution 1 - works for > 2 people in a conversation (not required)

void chatBuddies(string filename) {

ifstream file;

file.open(filename);

if (file.fail()) {

throw "File cannot be read!";

}

Map<Vector<string>, int> convoCounts;

Set<string> peopleInConvo;

string line;

int largest = 0;

while (getline(file, line)) {

if (line != "---") {

int nameDelim = line.find(":");

string name = line.substr(0, nameDelim);

peopleInConvo.add(name);

} else {

Set<string> others = peopleInConvo;

for (string person : peopleInConvo) {

for (string partner : others) {

if (person != partner) {

Vector<string> pair { person, partner };

convoCounts[pair]++;

largest = max(largest, convoCounts[pair]);

}

}

others.remove(person);

}

peopleInConvo.clear();

}

}

for (Vector<string> pair : convoCounts.keys()) {

if (convoCounts[pair] == largest) {

cout << pair[0] << " and " << pair[1] << endl;

}

}

}

4



Name:

// solution 2 - assumes <= 2 people in every conversation

// read a single conversation (until ---) and extract a string

// representing who was in the conversation (e.g. "Bert and Ernie")

string readConversation(ifstream& file);

void chatBuddies(string filename) {

// open file

ifstream file;

if (!openFile(file, filename)) {

throw "File cannot be read!";

}

// read file into map of pair => count (e.g. "Bert and Ernie" => 2)

Map<string, int> counts;

while (!file.eof()) {

string people = readConversation(file); // e.g. "Bert and Ernie"

if (people != "") {

counts[people]++;

}

}

// figure out which pair has the highest count

int largest = 0;

for (string people : counts.keys()) {

if (counts[people] > largest) {

largest = counts[people];

}

}

// print all pairs that have the highest count

for (string people : counts.keys()) {

if (counts[people] == largest) {

cout << people << endl;

}

}

}

string readConversation(ifstream& file) {

Vector<string> people;

string line;

while (getline(file, line)) {

if (line == "---") break;

string name = line.substr(0, line.find(":"));

if (!people.contains(name)) {

people.add(name);

5



Name:

if (people.size() == 2) {

break;

}

}

}

if (people.size() == 2) {

people.sort();

return people[0] + " and " + people[1];

} else {

return "";

}

}

6



Name:

4. Recursion (read)

a. 17 ( [8] , [1] )

b. 31 ( 15 ( [7] , [1] ) , [1] )

c. 62 ( 31 ( 15 ( [7] , [1] ) , [1] ) , [0] )

7



Name:

5. Recursion (write)

int countDuplicates(Stack<int>& stack, int prev = -1) {

if (stack.isEmpty()) {

return 0;

} else {

int dupes = 0;

if (prev >= 0 && stack.peek() == prev) {

dupes++;

}

prev = stack.pop();

dupes += countDuplicates(stack, prev);

stack.push(prev);

return dupes;

}

}

8



Name:

6. Backtracking (write)

bool knightsTourHelper(Grid<int>& board, const Location& loc, int knights) {

if (knights > board.size()) {

// base case: stop if we fill the whole board with knights

printBoard(board);

return true;

} else if (!board.inBounds(loc.row, loc.col) || board[loc.row][loc.col] != 0) {

// base case: don’t go out of bounds or revisit the same square twice

return false;

} else {

// recursive case: mark this square and explore future moves

board[loc.row][loc.col] = knights; // choose

for (Location neighbor : getMoves(loc)) { // explore

if (knightsTourHelper(board, neighbor, knights + 1)) {

return true;

}

}

board[loc.row][loc.col] = 0; // unchoose

return false;

}

}

void knightsTour(Grid<int>& board, Location startLoc) {

knightsTourHelper(board, startLoc, 1);

}

9


