
*** CS 106B/X MIDTERM REFERENCE SHEET ***
You can perform a for-each loop over any collection other than Stack and Queue. for (type name : collection) { ... }

* All Big-Oh runtimes listed are average-case; some methods perform differently under various cases.
Vector<T> Members ("vector.h") (5.1)

v.add(val); or v += val; appends to end of vector O(1) *

v.clear(); removes all elements O(1)

v.get(i) or v[i] returns value at given index O(1)

v.insert(i, val); inserts at given index, shifting
subsequent values right

O(N)

v.isEmpty() returns true if there are no elements O(1)

v.remove(i); removes value at given index,
shifting subsequent values left

O(N)

v.set(i, val); or v[i] = val; replaces value at given index O(1)

v.size() returns number of elements O(1)

v.toString() returns string representation of
elements such as "{1, 2, 3}"

O(N)

Grid<T> Members ("grid.h") (5.1)
g.fill(val); set every cell to store a given value O(R*C)

g.get(row, col) or g[row, col] returns value stored at given
row/column

O(1)

g.inBounds(row, col) returns true if given row/column
index is within (0, 0) ... (R, C)

O(1)

g.numCols() // or g.width() returns number of columns C O(1)

g.numRows() // or g.height() returns number of rows R O(1)

g.resize(nCols, nRows); changes grid to have the given
number of rows/columns; wipes all
data

O(R*C)

g.set(row, col, val); or
g[row][col] = val;

changes value stored at given
row/column

O(1)

Stack<T> and Queue<T> Members ("stack.h") (5.2, 5.3)
s.clear(); removes all

elements
 q.clear(); removes all

elements
O(N)

s.push(val); adds given value
on top of the
stack

 q.enqueue(val); adds value to
back of queue

O(1)

s.pop() remove/return
top value from
stack;
pop/peek throw
exception if
empty

 q.dequeue() remove/return
value from front;
dequeue/peek
throw if empty

O(1)

s.peek() return top value
without removing

 q.peek() return front
without removing

O(1)

s.isEmpty() returns true if q.isEmpty() returns true if no O(1)

there are no
elements

elements

s.size() returns number
of elements

 q.size() returns number
of elements

O(1)

s.toString() string
(right=top) such
as "{1, 2, 3}"

 q.toString() (left=front) e.g.
"{1, 2, 3}"

O(N)

Set<T> and HashSet<T> Members ("set.h", "hashset.h") (5.5)
s.add(val); or s += val; adds to set; if a duplicate, no effect set O(log N), hash O(1)

s.clear(); removes all elements O(N)

s.contains(val) returns true if value is found in the
set

set O(log N), hash O(1)

s.first() returns first element from set (does
not remove it)

set O(log N), hash O(1)

s.isEmpty() returns true if there are no elements O(1)

s.isSubsetOf(s2) returns true if s2 contains all
elements of s

O(N)

s.remove(val); or s -= val; removes value from set, if present set O(log N), hash O(1)

s.size() returns number of elements O(1)

s.toString() returns string such as "{1, 2, 3}" O(N)

s1 == s2, s1 != s2 operators for set equality testing O(N)

s1 + s2, s1 += s2; operators for union; adds elements of
s2 to s1

O(N)

s1 * s2, s1 *= s2; intersection; removes all from s1 not
found in s2

O(N)

s1 - s2, s1 -= s2; difference; removes all from s1 that
are found in s2

O(N)

Lexicon Members ("lexicon.h") (5.5)
l.add(word); adds a word; if a duplicate, no

effect
O(log N)

l.clear(); removes all words O(N)

l.contains(word) returns true if the word is found in
the lexicon

O(log N)

l.containsPrefix(text) returns true if any word starts with
this prefix text

O(log N)

l.isEmpty() returns true if there are no words in
the lexicon

O(1)

l.remove(word); removes word from lexicon, if
present

O(log N)

l.size() returns number of words O(1)

s.toString() returns string such as "{a, ball, cat,
zebra}"

O(N log N)

*** CS 106B/X MIDTERM REFERENCE SHEET ***

Map<K, V> and HashMap<K, V> Members ("map.h", "hashmap.h") (5.4)
m.clear(); removes all key/value pairs O(N)

m.containsKey(key) returns true if map contains a pair
for the given key

map O(log N), hash O(1)

m.get(key) or
m[key]

returns value paired with the given
key
(or a default value such as 0, false,
"" if key is not present)

map O(log N), hash O(1)

m.isEmpty() returns true if there are no key/value
pairs

O(1)

m.keys() returns a Vector copy of all keys in
the map

O(N)

m.put(key, val); or
m[key] = val;

adds a pairing of the given key to
the given value

map O(log N), hash O(1)

m.remove(key); removes any existing pairing for the
given key

map O(log N), hash O(1)

m.size() returns number of key/value pairs O(1)

m.toString() returns string representation such as
"{a:90, d:60, c:70}"

O(N)

m.values() returns a Vector copy of all values in
the map

O(N)

A for-each loop on a map iterates over the keys, not the values.
String Members and Utility Functions (<string>, "strlib.h") (3.2)

str.at(i) or s[i] character at a given 0-based index in the string

str.append(str); add text to the end of a string (in-place)
str.c_str() returns the equivalent C string

str.compare(str) return -1, 0, or 1 depending on relative ordering

str.erase(i, length); delete text from a string starting at given index (in-
place)

str.find(str)
str.rfind(str)

returns the first or last index where the start of the
given string or character appears in this string (or
string::npos if not found)

str.insert(i, str); add text into a string at a given index (in-place)
str.length() or str.size() number of characters in this string

str.replace(i, len, str); replaces len chars at given index with new text (in-
place)

str.substr(start, length) or
str.substr(start)

returns the next length characters beginning at index
start (inclusive);
if length is omitted, grabs from start to the end of the
string

endsWith(str, suffix)
startsWith(str, prefix)

returns true if the string begins or ends with the given
prefix/suffix

integerToString(int), stringToInteger(str) returns a conversion between numbers and strings

realToString(double), stringToReal(str)
equalsIgnoreCase(str1, str2) true if s1 and s2 have same chars, ignoring casing
stringSplit(str, separator) breaks apart a string into a vector of smaller strings

based on a separator

toLowerCase(str), toUpperCase(str) returns an upper/lowercase version of a string

trim(str) returns string with any surrounding whitespace
removed

char Utility Functions (<cctype>) (3.3)
isalpha(c), isdigit(c), isspace(c),
isupper(c), ispunct(c), islower(c)

returns true if the given character is an alphabetic
character from a-z or A-Z, a digit from 0-9, an
alphanumeric character (a-z, A-Z, or 0-9), an
uppercase letter (A-Z), a space character (space, \t,
\n, etc.), respectively

tolower(c), toupper(c) returns lower/uppercase equivalent of a character

istream Members (<iostream>) (Ch. 4)
f.fail() returns true if the last read or open call failed (e.g.

EOF, or file-not-found)
f.open(filename); opens file represented by given string

f.close(); stops reading file

f.get() reads and returns 1 character

getline(f&, str&) reads line of input into a string by reference;
returns a true/false indicator of success

f >> variable reads a whitespace-separated token of data from input
into a variable

Random Numbers ("random.h")
randomBool() returns a random bool of true/false with 50/50%

probability
randomChance(probability) returns a random bool of true/false with the given

probability of true from 0..1
randomInteger(min, max) returns a random integer in the range [min-max],

inclusive
randomReal(low, high) returns a random real number in the range [low-high),

up to but not including high

File Utility Functions ("filelib.h")
fileExists(name) whether this file exists on the disk

getHead(name), getTail(name) separate a file path into the directory and file part; for
"a/b/c/d.txt", head is "a/b/c", tail is "d.txt"

isDirectory(name) returns whether this file name represents a directory

isFile(name) returns whether this file name represents a regular file

listDirectory(name) returns a Vector with the tails of all the file names
contained in the given directory

