CS106B: Programming Abstractions
Section #2 Ashley Taylor and Shreya Shankar (Based on
handouts by previous CS106B instructors and
TAs)

File I/O, Stacks, Queues

1. Input Stats (file I/O)

Write a function named inputStats that accepts a string parameter representing a file name, then
opens/reads that file’s contents and prints information to the console about the file’s lines. Report
the length of each line, the number of lines in the file, the length of the longest line, and the average
characters per line. For example, if the input file carroll.txt contains the following data:

Beware the Jabberwock, my son,
the jaws that bite, the claws that catch,
Beware the JubJub bird and shun.

Then the call of inputStats("carroll.txt"); should produce the following console output:

Line 1 has 30 chars
Line 2 has 41 chars
Line 3 has 31 chars
3 lines; longest = 41, average = 34

If the input file does not exist or is not readable, your function should print no output. If the file does
exist, you may assume that the file contains at least 1 line of input. Your solution should read the file
only once, not make multiple passes over the file data.

2. Collections Mystery (Stack and Queue)

Write the output produced by the following function when passed each of the following stacks and
ints.

void collectionMysteryl0(Stack<int>& stack, int n) {
Stack<int> stack?2;
Queue<int> queue;

while (stack.size() > n) {
queue. enqueue (stack.pop());

}

while (!stack.isEmpty()) {
int element = stack.pop();
stack2.push(element) ;
if (element % 2 == 0) {

queue.enqueue (element) ;

}

}

while (!queue.isEmpty()) {

stack.push(queue.dequeue());

}
while (!stack2.isEmpty()) {
stack.push(stack2.pop());

3

cout << stack << endl;
}
1. {1,2,3,4,5,6},n=3
2. {67, 29,115, 84, 33, 71,90}, n=5

3. Reorder (Queue)

Write a function named reorder that accepts as a parameter a queue of integers that are already
sorted by absolute value, and modifies it so that the integers are sorted normally. Only use a single
stack as auxiliary storage. For example, if a queue variable named q stores the following elements:

front {1, -2, 4, 5, -7, -9, -12, 28, -34} back
Then the call of reorder (q) ; should modity it to store the following values:
front {-34, -12, -9, -7, -2, 1, 4, 5, 28} back

4. Check Balance (Stack)

Write a function named checkBalance that accepts a string of source code and uses a Stack to check
whether the braces/parentheses are balanced. Every (or { must be closed by a } or) in the opposite
order. Return the index at which an imbalance occurs, or -1 if the string is balanced. If any (or { are
never closed, return the string’s length.

Here are some example calls:

// index 0123456789012345678901234567890

checkBalance("if (a(4) > 9) { foo(a(2)); ") // returns -1 because balanced
checkBalance("for (i=0;i<a(3};i++) { foo{);)™ // returns 14 because } out of order
checkBalance("while (true) foo(); }H O") // returns 20 because } doesn’t match any {
checkBalance("if (x) {") // returns 8 because { is never closed

5. Big-O

Give a tight bound of the nearest runtime complexity class for the following code fragment in Big-Oh
notation, in terms of the variable N.

Vector<int> v;

for (int i = 0; i < N; i++) {
v.insert (0, i);

3

while (!v.isEmpty()) {
v.remove (0) ;

}

cout << "done!" << endl;

