
CS106B: Programming Abstractions
Section #3 Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Sets, Maps, and Recursion

1. Remove Duplicates (Sets)

Write a function named removeDuplicates that accepts as a parameter a reference to a Vector of
integers, and modifies it by removing any duplicates. Note that the elements of the vector are
not in any particular order, so the duplicates might not occur consecutively. You should retain the
original relative order of the elements. Use a Set as auxiliary storage to help you solve this prob-
lem. For example, if a vector named v stores {4, 0, 2, 9, 4, 7, 2, 0, 0, 9, 6, 6}, the call of
removeDuplicates(v); should modify it to store 4, 0, 2, 9, 7, 6.

2. Friend List (Maps)

Write a function named friendList that accepts a file name as a parameter and reads friend rela-
tionships from a file and stores them into a compound collection that is returned. You should create
a map where each key is a person’s name from the file, and the value associated with that key is a set
of all friends of that person. Friendships are bi-directional: if Ashley is friends with Shreya, Shreya
is friends with Ashley.

The file contains one friend relationship per line, consisting of two names. The names are separated
by a single space. You may assume that the file exists and is in a valid proper format. If a file named
buddies.txt looks like this:

Ashley Colin

Shreya Ashley

Then the call of friendList("buddies.txt") should return a map with the following contents:

{"Colin":{"Ashley"}, "Shreya":{"Ashley"}, "Ashley":{"Colin", "Shreya"}}

Constraints:

• You may open and read the file only once. Do not re-open it or rewind the stream.

• You should choose an efficient solution. Choose data structures intelligently and use them
properly.

• You may create one collection (stack, queue, set, map, etc.) or nested/compound structure as
auxiliary storage. A nested structure, such as a set of vectors, counts as one collection. (You
can have as many simple variables as you like, such as ints or strings.)

1

3. Recursion Mystery

int recursionMysteryDivMod(int n) {

if (n < 0) {

return recursionMysteryDivMod(-n);

} else if (n < 10) {

return n;

} else {

return n % 10 + recursionMysteryDivMod(n / 10);

}

}

What is the output of recursionMysteryDivMod(8)?

4. Print Stars (Recursion)

Write a recursive function named printStars that accepts an integer parameter n and prints n occur-
rences of the * character to the console. For example, the call of printStars(5); should print *****.
Do not use loops or auxiliary data structures; solve the problem recursively. You may assume that
the value passed is non-negative.

5. Star String (Recursion)

Write a recursive function named starString that accepts an integer parameter n and returns a
string of stars (asterisks) 2n long (i.e.., 2 to the nth power). For example, starString(0) returns *;
starString(1) returns **; starString(2) returns ****; starString(3) returns ********.

6. Sum of Squares (Recursion)

Write a recursive function named sumOfSquares that accepts an integer parameter n and returns the
sum of squares from 1 to n. For example, the call of sumOfSquares(3) should return 12 + 22 + 32 =
14. If your function is passed 0, return 0. If passed a negative number, your function should throw
an int as an exception.

7. Subsequence (Recursion)

Write a recursive function named isSubsequence that accepts two string parameters, and returns
if the second string is a subsequence of the first string. A string is a subsequence of another if it
contains the same letters in the same order, but not necessary consecutively. You can assume both
strings are already lowercased.

2

