CS106B: Programming Abstractions

Section #4: Solutions Ashley Taylor and Shreya Shankar (Based on
handouts by previous CS106B instructors and
TAs)

Recursion and Recursive Backtracking: Solutions

1. Digit Sum (Recursion)

int digitSum(int n) {
if (n < 0) {
return -digitSum(-n);
} else if (n < 10) {
return n;
} else {
return n % 10 + digitSum(n / 10);
}

2. Edit Distance (Exhaustive Search)

int editDistance(const string& sl, const string& s2) {

if (s =="") {
return s2.length();
} else if (s2 == "") {

return sl.length();
Tt
// try three possibilities for the "zeroth" character:
int add = 1 + editDistance(sl, s2.substr(l, s2.length()));
int del 1 + editDistance(sl.substr(l, sl.length()), s2);
int sub = editDistance(sl.substr(1l, sl.length()), s2.substr(l, s2.length()));
if (s1[0] '= s2[0]) {
sub += 1;

}

return min(add, min(del, sub));

3. List Twiddles (Backtracking)

void listTwiddles(const string& str, const Lexicon& lex) {
listTwiddlesHelper("", str, /* index */ 0, lex);
}

void listTwiddlesHelper(const string& prefix, const string& str, int index,

const Lexicon& lex) {

if (!lex.containsPrefix(prefix)) return;

if (index >= str.size()) {
if (lex.contains(prefix)) cout << prefix << endl;
return;

}
for (char ch = strlindex] - 2; ch <= strlindex] + 2; ch++) {
if (isalpha(ch)) {
listTwiddlesHelper(prefix + ch, str, index + 1, lex);
}

4. Longest Common Subsequence (Backtracking)

string longestCommonSubsequence(string s1, string s2) {
if (sl.length() == 0 || s2.length() == 0) {
return "";
} else if (s1[0] == s2[0]) {
return s1[0] + longestCommonSubsequence(sl.substr(1l), s2.substr(1));
} else {
string choicel = longestCommonSubsequence(sl, s2.substr(1));
string choice2 = longestCommonSubsequence(sl.substr(1), s2);
if (choicel.length() >= choice2.length()) {
return choicel;
} else {
return choice?2;

5. Spellable (Backtracking)

bool isElementSpellable(string text, Lexicon& symbols) {

if (text == "") {
return true;
} else {

for (int i = 1; i <= text.length() && i <= 3; i++) {
if (symbols.contains(text.substr(0, i)) &&
isElementSpellable(text.substr(i), symbols)) {
return true,

return false;

