
CS106B: Programming Abstractions
Section #4: Solutions Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Recursion and Recursive Backtracking: Solutions

1. Digit Sum (Recursion)

int digitSum(int n) {

if (n < 0) {

return -digitSum(-n);

} else if (n < 10) {

return n;

} else {

return n % 10 + digitSum(n / 10);

}

}

2. Edit Distance (Exhaustive Search)

int editDistance(const string& s1, const string& s2) {

if (s1 == "") {

return s2.length();

} else if (s2 == "") {

return s1.length();

}t

// try three possibilities for the "zeroth" character:

int add = 1 + editDistance(s1, s2.substr(1, s2.length()));

int del = 1 + editDistance(s1.substr(1, s1.length()), s2);

int sub = editDistance(s1.substr(1, s1.length()), s2.substr(1, s2.length()));

if (s1[0] != s2[0]) {

sub += 1;

}

return min(add, min(del, sub));

}

3. List Twiddles (Backtracking)

void listTwiddles(const string& str, const Lexicon& lex) {

listTwiddlesHelper("", str, /* index */ 0, lex);

}

void listTwiddlesHelper(const string& prefix, const string& str, int index,

1

const Lexicon& lex) {

if (!lex.containsPrefix(prefix)) return;

if (index >= str.size()) {

if (lex.contains(prefix)) cout << prefix << endl;

return;

}

for (char ch = str[index] - 2; ch <= str[index] + 2; ch++) {

if (isalpha(ch)) {

listTwiddlesHelper(prefix + ch, str, index + 1, lex);

}

}

}

4. Longest Common Subsequence (Backtracking)

string longestCommonSubsequence(string s1, string s2) {

if (s1.length() == 0 || s2.length() == 0) {

return "";

} else if (s1[0] == s2[0]) {

return s1[0] + longestCommonSubsequence(s1.substr(1), s2.substr(1));

} else {

string choice1 = longestCommonSubsequence(s1, s2.substr(1));

string choice2 = longestCommonSubsequence(s1.substr(1), s2);

if (choice1.length() >= choice2.length()) {

return choice1;

} else {

return choice2;

}

}

}

5. Spellable (Backtracking)

bool isElementSpellable(string text, Lexicon& symbols) {

if (text == "") {

return true;

} else {

for (int i = 1; i <= text.length() && i <= 3; i++) {

if (symbols.contains(text.substr(0, i)) &&

isElementSpellable(text.substr(i), symbols)) {

return true;

}

}

return false;

}

}

2

