CS106B: Programming Abstractions

Section #5 Ashley Taylor and Shreya Shankar (Based on
handouts by previous CS106B instructors and
TAs)

Pointers and Linked Lists: Solutions

1. Pointer Trace

Stack (gryffindor): Heap:

int = 2
Hogwarts +* ; ; _
triwizard int wizard = int wizard = | int wizard = | int wizard =
: 3 3 ?

Quidditch harry

Quidditch harry | Quidditch harry | Quidditch harry

iné quaffle int quaffle int quaffle int quaffle
= 4 = 7 =2
Eng *snitch int *snitch int *snitch int *snitch
= ! - / =7 =7
int bludger int blujgé? int bludger int bludger
77 / 4 |7 7?17 ?707?
f A

Quidditch * /| "g idditch * |Quidditch * | Quidditch *
potter = potter = NULL | potter = NULL | potter =,
I

N—

2. Mirror (Arrays)

void ArrayIntList::mirror() {
if (mysize * 2 > capacity) {
// grow array to fit
int* bigger = new int[2 * capacity];
for (int i = 0; i < mysize; i++) {
bigger[i] = elements[i];
}
delete[] elements;
elements = bigger;
capacity *= 2;
¥
for (int i = 0; i < mysize; i++) {
elements[2 * mysize - 1 - i] = elements[i];
}

mysize *= 2;

3. Sorted (Linked Lists)

bool isSorted(ListNode* front) {
if (front != nullptr) {
ListNode* current = front;

while (current->next != nullptr) {
if (current->data > current->next->data) {

return false;

}

current = current->next;

¥

return true;

4. Stutter (Linked Lists)

void stutter(ListNodex& front) {
ListNode* current = front;
while (current != nullptr) {

current->next = new ListNode(current->data, current->next);

current = current->next->next;

5. Braid (Linked Lists)

void braid(ListNode*& front) {
// build reversed list
ListNode* reverse = nullptr;

for (ListNode* curr = front; curr !'= nullptr; curr
ListNode* newNode = new ListNode(curr->data);

newNode->next = reverse;
reverse = newNode;

curr->next) {

ListNode* rest = reverse; // part that has yet to be braided in

for (ListNode* curr = front; curr !'= nullptr; curr

ListNode* next = rest->next;
rest->next = curr->next;
curr->next = rest;

rest = next;

curr->next->next)

