
CS106B: Programming Abstractions
Section #5 Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Pointers and Linked Lists: Solutions

1. Pointer Trace

2. Mirror (Arrays)

void ArrayIntList::mirror() {

if (mysize * 2 > capacity) {

// grow array to fit

int* bigger = new int[2 * capacity];

for (int i = 0; i < mysize; i++) {

bigger[i] = elements[i];

}

delete[] elements;

elements = bigger;

capacity *= 2;

}

for (int i = 0; i < mysize; i++) {

elements[2 * mysize - 1 - i] = elements[i];

}

mysize *= 2;

}

1



3. Sorted (Linked Lists)

bool isSorted(ListNode* front) {

if (front != nullptr) {

ListNode* current = front;

while (current->next != nullptr) {

if (current->data > current->next->data) {

return false;

}

current = current->next;

}

}

return true;

}

4. Stutter (Linked Lists)

void stutter(ListNode*& front) {

ListNode* current = front;

while (current != nullptr) {

current->next = new ListNode(current->data, current->next);

current = current->next->next;

}

}

5. Braid (Linked Lists)

void braid(ListNode*& front) {

// build reversed list

ListNode* reverse = nullptr;

for (ListNode* curr = front; curr != nullptr; curr = curr->next) {

ListNode* newNode = new ListNode(curr->data);

newNode->next = reverse;

reverse = newNode;

}

ListNode* rest = reverse; // part that has yet to be braided in

for (ListNode* curr = front; curr != nullptr; curr = curr->next->next) {

ListNode* next = rest->next;

rest->next = curr->next;

curr->next = rest;

rest = next;

}

}

2


