
CS106B: Programming Abstractions
Section #5 Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Pointers and Linked Lists

1. Pointer Trace

Given the following structs:

typedef struct Quidditch {

int quaffle;

int *snitch;

int bludger[2];

} Quidditch;

typedef struct Hogwarts {

int wizard;

Quidditch harry;

Quidditch *potter;

} Hogwarts;

Draw the memory diagram for the following pointer trace.

Quidditch * hufflepuff(Hogwarts * cedric) {

Quidditch *seeker = &(cedric->harry);

seeker->snitch = new int;

*(seeker->snitch) = 2;

cedric = new Hogwarts;

cedric->harry.quaffle = 6;

cedric->potter = seeker;

cedric->potter->quaffle = 8;

cedric->potter->snitch =

&(cedric->potter->bludger[1]);

seeker->bludger[0] = 4;

return seeker;

}

void gryffindor() {

Hogwarts *triwizard = new Hogwarts[3];

triwizard[1].wizard = 3;

triwizard[1].potter = NULL;

triwizard[0] = triwizard[1];

tri

wizard[2].potter =

hufflepuff(triwizard);

triwizard[2].potter->quaffle = 4;

}

2. Mirror (Arrays)

Write a member function named mirror that could be added to the ArrayIntList class. Your func-
tion should double the size of the list of integers by appending the mirror image of the original
sequence to the end of the list. The mirror image is the same sequence of values in reverse order. For
example, suppose a variable named list stores the following values: {1, 3, 2, 7}. If we make the call
of list.mirror(); then it should store the following values after the call: {1, 3, 2, 7, 7, 2, 3, 1}. The
list has been doubled in size by having the original sequence appearing in reverse order at the end
of the list. If the list is empty, it should also be empty after the call. Assume that you are adding this
method to the arrayIntList class as defined below:

class ArrayIntList {

private:

int* elements;

int mysize;

int capacity;

1



public:

...

};

3. Sorted (Linked Lists)

Write a member function named isSorted that accepts a pointer to a ListNode representing the front
of a linked list. Your function should return true if the list is in sorted (non-decreasing) order and
false otherwise. An empty list is considered to be sorted. Assume that you are using the ListNode

structure as defined below:

struct ListNode {

int data; // value stored in each node

ListNode* next; // pointer to next node in list (nullptr if none)

}

4. Stutter (Linked Lists)

Write a function named stutter that accepts as a parameter a reference to a pointer to a ListNode

representing the front of a linked list. Your function should double the size of a list by replacing ev-
ery integer with two consecutive occurrences of that integer. For example, if a variable named front
points to the front of a list containing {1, 8, 19, 4, 17}, after a call of stutter(front);, the list should
store {1, 1, 8, 8, 19, 19, 4, 4, 17, 17}. Assume that you are using the ListNode structure as defined be-
low:

struct ListNode {

int data; // value stored in each node

ListNode* next; // pointer to next node in list (nullptr if none)

}

5. Braid (Linked Lists)

Write a function named braid that accepts as a parameter a reference to a pointer to a ListNode

representing the front of a linked list. Your function should interleave the reverse of the list into the
original, with an element from the reversed list appearing after each element of the original list. For
example, if a variable named front points to the front of a chain containing {10, 20, 30, 40}, then after
a call of braid(front);, it should store {10, 40, 20, 30, 30, 20, 40, 10}. Assume that you are using the
ListNode structure as defined below:

struct ListNode {

int data; // value stored in each node

ListNode* next; // pointer to next node in list (nullptr if none)

}

2


