CS106B: Programming Abstractions

Section #6 Ashley Taylor and Shreya Shankar (Based on
handouts by previous CS106B instructors and
TAs)
Trees
1. Size

int size(BinaryTreeNode* node) {
if (node == nullptr) {
return O;
} else {
return 1 + size(node->left) + size(node->right);

2. Is Balanced
int height(BinaryTreeNode* node) ;
bool isBalanced(BinaryTreeNode* node) {

if (node == nullptr) {
return true,;

} else if (!isBalanced(node->left) || !isBalanced(node->right)) {
return false;
} else {

int leftHeight = height(node->left);
int rightHeight = height(node->right);
return abs(leftHeight - rightHeight) <= 1;

int height(BinaryTreeNode* node) {
if (node == nullptr) {
return O;
} else {
return 1 + max(height(node->left), height(node->right));

3. Is Binary Search Tree?

bool isBSTHelper (BinaryTreeNode* node, BinaryTreeNode*& prev) {
if (node == nullptr) {

return true;
} else if (!isBSTHelper(node->left, prev) || (prev && node->data <= prev->data)) {
return false;
} else {
prev = node;
return isBSTHelper(node->right, prev);

bool isBST(BinaryTreeNode* node) {
BinaryTreeNode* prev = nullptr;
return isBSTHelper(node, prev);

4. Follows Min Property?

bool followsMinProperty(TreeNode *root) {
if (root == NULL) {
return true,;

}
if (root->left != NULL && root->left->data < root->data) {
return false;

}
if (root->right != NULL && root->right->data < root->data) {
return false;

}
return followsMinProperty(root->left) && followsMinProperty(root->right);

6. Heap Add/Remove

aﬁerzﬂlenqueues:{e:Q, h:16, £:34, c:40, j:22, a:68, g:94, b:77, 1:47, d:70, 1:77}
after two dequeues: {j:22, c:40, £:34, i1:47, d:70, a:68, g:94, b:77, 1:77}

