
CS106B: Programming Abstractions
Section #6 Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Trees

1. Size

int size(BinaryTreeNode* node) {

if (node == nullptr) {

return 0;

} else {

return 1 + size(node->left) + size(node->right);

}

}

2. Is Balanced

int height(BinaryTreeNode* node);

bool isBalanced(BinaryTreeNode* node) {

if (node == nullptr) {

return true;

} else if (!isBalanced(node->left) || !isBalanced(node->right)) {

return false;

} else {

int leftHeight = height(node->left);

int rightHeight = height(node->right);

return abs(leftHeight - rightHeight) <= 1;

}

}

int height(BinaryTreeNode* node) {

if (node == nullptr) {

return 0;

} else {

return 1 + max(height(node->left), height(node->right));

}

}

3. Is Binary Search Tree?

bool isBSTHelper(BinaryTreeNode* node, BinaryTreeNode*& prev) {

if (node == nullptr) {

1

return true;

} else if (!isBSTHelper(node->left, prev) || (prev && node->data <= prev->data)) {

return false;

} else {

prev = node;

return isBSTHelper(node->right, prev);

}

}

bool isBST(BinaryTreeNode* node) {

BinaryTreeNode* prev = nullptr;

return isBSTHelper(node, prev);

}

4. Follows Min Property?

bool followsMinProperty(TreeNode *root) {

if (root == NULL) {

return true;

}

if (root->left != NULL && root->left->data < root->data) {

return false;

}

if (root->right != NULL && root->right->data < root->data) {

return false;

}

return followsMinProperty(root->left) && followsMinProperty(root->right);

}

6. Heap Add/Remove

after all enqueues: {e:9, h:16, f:34, c:40, j:22, a:68, g:94, b:77, i:47, d:70, l:77}
after two dequeues: {j:22, c:40, f:34, i:47, d:70, a:68, g:94, b:77, l:77}

2

