CS106B: Programming Abstractions
Section #7 Ashley Taylor and Shreya Shankar (Based on
handouts by previous CS106B instructors and
TAs)

Graphs: Solutions

1. Graph Properties

Directed

Weighted

Connected

Cyclic

A:(12)B:22)C:(02)E:(12)FF40)G:(12)H: 11D L:(12)]: (20)
A,B,FEH,I

{AE, H, 1}

B,G A FEJ,E H

{C,B, A E, H}

O ® N 9w N =

2. Task Orderings

Note that there may be more than one valid ordering for each list. The following are example solu-
tions.

1. [¢, D, B, A1
2. [4,5,2,3,1, 01
3.[A,B,F, C, D, E]

3. kth Level Friends

Set<string> kthLevelFriends(Map<string, Set<string>>& adjacencylList, string v, int k) {
Set<string> result;
HashMap<string, int> distances;
Queue<string> q;

// initialize BFS
string curr = v;
q.enqueue (curr) ;
distances([curr] = 0;

while(!q.isEmpty()) {
curr = q.dequeue();
if (distances[curr] == k) {
result.add(curr);
}

if (distances[curr] > k) {

break;

}

for (string buddy : adjacencyList[curr]) {
if (!distances.containsKey(buddy)) {
distances[buddy] = distances[curr] + 1;
q.enqueue (buddy) ;

3

return result;

4. Minimum Vertex Cover

void coverHelper (Map<string, Set<string>>& graph, Set<string>& allEdges, Set<string>& chosen,
Set<Edge>& coveredEdges, Vector<string>& allVertexes, int index, Set<string>& best) {
if (chosen.size() >= best.size()) return; // base case: current cover too large
else if (coveredEdges.size() == allEdges.size()) {
// base case: found a new smaller cover that uses all edges; remember it
best = chosen; return;
} else if (index == graph.keys().size()) return; // base case: exhausted all vertices to explore
else {
// choose not to include this vertex; explore
coverHelper(graph, allEdges, chosen, coveredEdges, allVertexes, index + 1, best);

// choose to include this vertex; explore
chosen += allVertexes[index];

// remember which new edges are added here (so that we can un-choose later)
Set<Edge> newEdges;
for (string neighbor : graph[allVertexes[index]]) {
Edge e = new Edge(allVertexes[index], neighbor);
if (!coveredEdges.contains(e)) {
// must add this edge and its inverse (A -> B and B -> A)
Edge inverse = new Edge(neighbor, allVertexes[index]) ;
newEdges += e, inverse;
coveredEdges += e, inverse;
}
}

coverHelper(graph, allEdges, chosen, coveredEdges, allVertexes, index + 1, best);

// unchoose
chosen -= allVertexes[index]; coveredEdges -= newEdges;

}

Set<string> findMinimumVertexCover(Map<string, Set<string>>& graph, Set<string>& allEdges) {
Set<string> best = graph.keys(); // worst case solution
Set<string> chosen; Set<Edge*> coveredEdges; Vector<Vertex*> allVertexes;
for (Vertexx v : graph.keys()) {
allVertexes += v;
3
CoverHelper(graph, allEdges, chosen, coveredEdges, allVertexes, O, best) ;
return best;

