
CS106B: Programming Abstractions
Section #7 Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Graphs: Solutions

1. Graph Properties

1. Directed

2. Weighted

3. Connected

4. Cyclic

5. A: (1 2) B: (2 2) C: (0 2) E: (1 2) F: (4 0) G: (1 2) H: (1 1) I: (1 2) J: (2 0)

6. A, B, F, E, H, I

7. {A, E, H, I}

8. B, G, A, F, J, E, H

9. {C, B, A, E, H}

2. Task Orderings

Note that there may be more than one valid ordering for each list. The following are example solu-
tions.

1. [C, D, B, A]

2. [4, 5, 2, 3, 1, 0]

3. [A, B, F, C, D, E]

3. kth Level Friends

Set<string> kthLevelFriends(Map<string, Set<string>>& adjacencyList, string v, int k) {

Set<string> result;

HashMap<string, int> distances;

Queue<string> q;

// initialize BFS

string curr = v;

q.enqueue(curr);

distances[curr] = 0;

while(!q.isEmpty()) {

curr = q.dequeue();

if (distances[curr] == k) {

result.add(curr);

}

if (distances[curr] > k) {

1

break;

}

for (string buddy : adjacencyList[curr]) {

if (!distances.containsKey(buddy)) {

distances[buddy] = distances[curr] + 1;

q.enqueue(buddy);

}

}

}

return result;

}

4. Minimum Vertex Cover

void coverHelper(Map<string, Set<string>>& graph, Set<string>& allEdges, Set<string>& chosen,

Set<Edge>& coveredEdges, Vector<string>& allVertexes, int index, Set<string>& best) {

if (chosen.size() >= best.size()) return; // base case: current cover too large

else if (coveredEdges.size() == allEdges.size()) {

// base case: found a new smaller cover that uses all edges; remember it

best = chosen; return;

} else if (index == graph.keys().size()) return; // base case: exhausted all vertices to explore

else {

// choose not to include this vertex; explore

coverHelper(graph, allEdges, chosen, coveredEdges, allVertexes, index + 1, best);

// choose to include this vertex; explore

chosen += allVertexes[index];

// remember which new edges are added here (so that we can un-choose later)

Set<Edge> newEdges;

for (string neighbor : graph[allVertexes[index]]) {

Edge e = new Edge(allVertexes[index], neighbor);

if (!coveredEdges.contains(e)) {

// must add this edge and its inverse (A -> B and B -> A)

Edge inverse = new Edge(neighbor, allVertexes[index]);

newEdges += e, inverse;

coveredEdges += e, inverse;

}

}

coverHelper(graph, allEdges, chosen, coveredEdges, allVertexes, index + 1, best);

// unchoose

chosen -= allVertexes[index]; coveredEdges -= newEdges;

}

}

Set<string> findMinimumVertexCover(Map<string, Set<string>>& graph, Set<string>& allEdges) {

Set<string> best = graph.keys(); // worst case solution

Set<string> chosen; Set<Edge*> coveredEdges; Vector<Vertex*> allVertexes;

for (Vertex* v : graph.keys()) {

allVertexes += v;

}

coverHelper(graph, allEdges, chosen, coveredEdges, allVertexes, 0, best);

return best;

}

2

