
CS106B: Programming Abstractions
Section #7 Ashley Taylor and Shreya Shankar (Based on

handouts by previous CS106B instructors and
TAs)

Graphs

1. Graph Properties

Consider the following crudely-drawn graph, and answer the following questions about it:

6 2

A <---> B <---- C

| | |

2| |1 |1

| | |

V 8 V 2 V

E ----> F <---- G

| ^ |

3| |2 |5

| | |

V 1 | 1 V

H ----> I ----> J

1. Is the graph directed or undirected?

2. Is the graph weighted or unweighted?

3. Is the graph connected?

4. Is the graph cyclic?

5. What are the in-degrees and out-degrees of each vertex?

6. Write the order that a depth-first search (DFS) would visit vertexes if it were looking for a path from vertex A to
vertex I. Assume that any ”for-each” loop over neighbors returns them in ABC order. Write the vertex names in
order, separated by commas.

7. What is the path that such a DFS would return?

8. Write the order that a breadth-first search (BFS) would visit vertexes if it were looking for a path from vertex C to
vertex H. Assume that any ”for-each” loop over neighbors returns them in ABC order. Write the vertex names in
order, separated by commas.

9. What is the path that such a BFS would return?

2. Task Ordering

Suppose you have a list of tasks which need to be executed. Some of these tasks have dependencies
which must be executed before they are. Given several lists of tasks, provide a valid ordering for
each one.

1. Input: [A, B, C, D]

A <- B, C

B <- C, D

D <- C

1

2. Input: [0, 1, 2, 3, 4, 5]

0 <- 4, 5

1 <- 3, 4

2 <- 5

3 <- 2

3. Input: [A, B, C, D, E, F]

B <- A

C <- B

D <- C, A

E <- C, D

3. kth Level Friends

Imagine a graph of friends on social media, where users are vertexes and friendships are edges.
Write a function named kthLevelFriends that accepts three parameters: a reference to an adjacency
list (Map), the string name of a vertex to start from, and an integer K. Your function should return a
set of strings representing the set of people who are exactly K hops away from the given vertex (and
not fewer). For example, if K = 1, those are the person’s direct friends; if K = 2, they are the person’s
friends-of-friends. If K = 0, return a set containing only the given vertex. You may assume that the
parameter values passed are valid.

4. Minimum Vertex Cover

Write a function named findMinimumVertexCover that accepts two parameters: a reference to an
adjacency list (Map), and a reference to a Set of edges. Your function should return a set of strings
representing names of vertexes identifying a minimum vertex cover. A vertex cover is a subset of
an undirected graph’s vertexes such that each and every edge in the graph is incident to at least one
vertex in the subset. A minimum vertex cover is a vertex cover of the smallest possible size.

For example, in the graph below, all of the following would be vertex covers: {”A”, ”C”, ”D”, ”E”,
”F”}; {”A”, ”B”, ”D”}; {”B”, ”D”}; {”A”, ”B”}. Each one is a vertex cover because each edge touches
at least one vertex in the cover. The last two vertex covers, {”B”, ”D”} and {”A”, ”B”}, are minimum
vertex covers, because there is no vertex cover with fewer vertexes.

A-----B-----C

| /|\

| / | \

D__/ E __F

Understand that because the graph is undirected, that means for every edge that leads from some
vertex v1 to v2, there will be an edge that leads from v2 to v1. If there are two or more minimum
vertex covers, then you can return any one of them. Think of this as a backtracking problem. The
implementation of this function should consider every possible vertex subset, keeping track of the
smallest one that covers the entire graph. Try all possible vertex combinations using a ”choose-
explore-unchoose” pattern and keep track of state along the way.

You may assume that the parameter values passed are valid.

2

