CS 106B, Lecture 24
Dijkstra’s and Kruskal’s
Plan for Today

• Real-world graph algorithms (with coding examples!)
 – Dijkstra's Algorithm for finding the least-cost path (like Google Maps)
 – Kruskal's Algorithm for finding the minimum spanning tree
 • Applications in civil engineering and biology
Shortest Paths

• Recall: BFS allows us to find the shortest path

• Sometimes, you want to find the least-cost path
 – Only applies to graphs with weighted edges

• Examples:
 – cheapest flight(s) from here to New York
 – fastest driving route (Google Maps)
 – the internet: fastest path to send information through the network of routers
Least-Cost Paths

• BFS uses a **queue** to keep track of which nodes to use next

• BFS pseudocode:

 bfs from v_1:

 - add v_1 to the queue.
 - while queue is not empty:
 - dequeue a node n
 - enqueue n's unseen neighbors

• How could we modify this pseudocode to dequeue the **least-cost** nodes instead of the **closest nodes**?
Least-Cost Paths

• BFS uses a **queue** to keep track of which nodes to use next

• BFS pseudocode:
  ```python
def bfs from v₁:
    add v₁ to the queue.
    while queue is not empty:
      dequeue a node n
      enqueue n's unseen neighbors
  ```

• How could we modify this pseudocode to dequeue the **least-cost** nodes instead of the **closest nodes**?
 – Use a **priority queue** instead of a queue
Edsger Dijkstra (1930-2002)

• famous Dutch computer scientist and prof. at UT Austin
 – Turing Award winner (1972)

• Noteworthy algorithms and software:
 – THE multiprogramming system (OS)
 • layers of abstraction
 – Compiler for a language that can do recursion
 – Dijkstra's algorithm
 – Dining Philosophers Problem: resource contention, deadlock

• famous papers:
 – "Go To considered harmful"
 – "On the cruelty of really teaching computer science"
Dijkstra pseudocode

\[\text{dijkstra}(v_1, v_2): \]

1. consider every vertex to have a cost of infinity, except \(v_1 \) which has a cost of 0.
2. create a priority queue of vertexes, ordered by cost, storing only \(v_1 \).

while the \(pqueue \) is not empty:
 1. dequeue a vertex \(v \) from the \(pqueue \), and mark it as visited.
 2. for each unvisited neighbor, \(n \), of \(v \), we can reach \(n \) with a total cost of (\(v \)'s cost + the weight of the edge from \(v \) to \(n \)).
 - if this cost is cheaper than \(n \)'s current cost,
 - we should enqueue the neighbor \(n \) to the \(pqueue \) with this new cost,
 - and remember \(v \) was its previous vertex.

when we are done, we can reconstruct the path from \(v_2 \) back to \(v_1 \) by following the path of previous vertices.
Dijkstra example

dijkstra(A, F);

• color key
 – white: unexamined
 – yellow: enqueued
 – green: visited

\(v_i \)'s distance := 0.
all other distances := \(\infty \).
Dijkstra example

dijkstra(A, F);

pqueue = {D:1, B:2}
dijkstra(A, F);

pq = {B: 2, C: 3, E: 3, G: 5, F: 9}
dijkstra(A, F);

pqueue = {C:3, E:3, G:5, F:9}
dijkstra(A, F);

pq = {E: 3, G: 5, F: 8, H: 16}
Dijkstra example

dijkstra(A, F);

pq = {G:5, F:8, H:16}
Dijkstra example

dijkstra(A, F);

pqueue = {F:6, H:16}
Dijkstra example

dijkstra(A, F);

pq = {H:16}
Dijkstra example

dijkstra(A, F);
Algorithm properties

• Dijkstra's algorithm is a *greedy algorithm*:
 – Make choices that currently seem best

• It is correct because it maintains the following two properties:
 – 1) for every marked vertex, the current recorded cost is the lowest cost to that vertex from the source vertex.
 – 2) for every unmarked vertex v, its recorded distance is shortest path distance to v from source vertex, considering only currently known vertices and v.
Dijkstra's runtime

• For sparse graphs, (i.e. graphs with much less than V^2 edges) Dijkstra's is implemented most efficiently with a priority queue.

 – initialization: $O(V)$
 – while loop: $O(V)$ times
 • remove min-cost vertex from pq: $O(\log V)$
 • potentially perform E updates on cost/previous
 • update costs in pq: $O(\log V)$
 – reconstruct path: $O(E)$

 – Total runtime: $O(V \log V + E \log V)$
Announcements

• Assn. 6 due today

• Assn. 7 (the last one!) comes out today
Minimum Spanning Trees

- Sometimes, you want to find a way to connect every node in a graph in the least-cost way possible
 - Utility (road, water, or power) connectivity
 - Tracing virus evolution

A **spanning tree** of a graph is a set of edges that connects all vertices in the graph with no cycles.

- What is a spanning tree for the graph below?
Minimum spanning tree

- **minimum spanning tree (MST)**: A spanning tree that has the lowest combined edge weight (cost).
• **Q:** How many minimum spanning trees does this graph have?

A. 0-1
B. 2-3
C. 4-5
D. 6-7
E. > 7

(question courtesy Cynthia Lee)
• **Kruskal's algorithm**: Finds a MST in a given graph.

 function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue
 based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

• **Runtime**: $O(E \log E) = O(E \log V)$
Kruskal example

• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:
 Start with an empty structure for the MST
 Place all edges into a **priority queue** based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal` (graph):
 Start with an empty structure for the MST
 Place all edges into a **priority queue** based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- `pq = {b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}`
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:

- Start with an empty structure for the MST.
- Place all edges into a priority queue based on their weight (cost).
- While the priority queue is not empty:
 - Dequeue an edge \(e \) from the priority queue.
 - If \(e \)'s endpoints aren't already connected, add that edge into the MST.
 - Otherwise, skip the edge.

- \(pq = \{ b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18 \} \)
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge \(e \) from the priority queue.
 If \(e \)'s endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue
 based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- pq = {c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected, add that edge into the MST.
        Otherwise, skip the edge.
```

- \(pq = \{d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}\)
function **kruskal**(graph):
Start with an empty structure for the MST
Place all edges into a **priority queue** based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:

 Start with an empty structure for the MST

 Place all edges into a **priority queue** based on their weight (cost).

 While the priority queue is not empty:

 Dequeue an edge `e` from the priority queue.

 If `e`'s endpoints aren't already connected, add that edge into the MST.

 Otherwise, skip the edge.

- `pq = {f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}`
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal** (graph):
 Start with an empty structure for the MST
 Place all edges into a **priority queue** based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- pq = {f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}
Kruskal example

• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue
 based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

 \[pq = \{ g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18 \} \]
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function \texttt{kruskal}(graph):
 Start with an empty structure for the MST
 Place all edges into a \texttt{priority queue} based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal**(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e’s endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue
 based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge $e$ from the priority queue.
        If $e$'s endpoints aren't already connected, add that edge into the MST.
        Otherwise, skip the edge.
```

- $pq = \{h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:
Start with an empty structure for the MST
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):`

Start with an empty structure for the MST
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge \(e \) from the priority queue.
 If \(e \)'s endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal**(graph):
 Start with an empty structure for the MST
 Place all edges into a **priority queue** based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected, add that edge into the MST.
        Otherwise, skip the edge.
```

- \(pq = \{ j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18 \} \)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):`
 Start with an empty structure for the MST
 Place all edges into a **priority queue** based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

 - $pq = \{k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
Kruskal example

• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected, add that edge into the MST.
        Otherwise, skip the edge.
```

- `pq = {k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}`
Kruskal example

• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):`
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

− pq = {k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:
Start with an empty structure for the MST
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge \(e\) from the priority queue.
 If \(e\)'s endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- \(pq = \{l:12, m:13, n:14, o:15, p:16, q:17, r:18\}\)
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected, add that edge into the MST.
        Otherwise, skip the edge.
```

- `pq = {l:12, m:13, n:14, o:15, p:16, q:17, r:18}`
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge \( e \) from the priority queue.
        If \( e \)'s endpoints aren't already connected, add that edge into the MST.
        Otherwise, skip the edge.
    --
    pq = \{m:13, n:14, o:15, p:16, q:17, r:18\}
```
Kruskal example

- In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal**(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal`(graph):
 Start with an empty structure for the MST
 Place all edges into a **priority queue**
 based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge `e` from the priority queue.
 If `e`'s endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

- `pq = {n:14, o:15, p:16, q:17, r:18}`
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:
 Start with an empty structure for the MST
 Place all edges into a **priority queue** based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{o:15, p:16, q:17, r:18\}$
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal`(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

 \[pq = \{ o:15, p:16, q:17, r:18 \} \]
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
def kruskal(graph):
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge \( e \) from the priority queue.
        If \( e \)'s endpoints aren't already connected,
            add that edge into the MST.
        Otherwise, skip the edge.
```

- \(pq = \{ p:16, q:17, r:18 \} \)
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function \texttt{kruskal}(\text{graph}):
 Start with an empty structure for the MST
 Place all edges into a \texttt{priority queue} based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph)`:
Start with an empty structure for the MST
Place all edges into a priority queue
based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{q:17, r:18\}$
Kruskal example

In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

- pq = {q:17, r:18}

function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):

Start with an empty structure for the MST
Place all edges into a priority queue
 based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    # Start with an empty structure for the MST
    # Place all edges into a priority queue based on their weight (cost).
    # While the priority queue is not empty:
    #     Dequeue an edge e from the priority queue.
    #     If e's endpoints aren't already connected, add that edge into the MST.
    # Otherwise, skip the edge.
    pq = {r:18}
```

- pq = {r:18}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal` (graph):
Start with an empty structure for the MST
Place all edges into a **priority queue** based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.

- $pq = \{ \}$
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    pq = {}
    Start with an empty structure for the MST
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected,
            add that edge into the MST.
        Otherwise, skip the edge.
```

- pq = { }
Kruskal example

• Kruskal's algorithm would output the following MST:
 – \{a, b, c, d, f, h, i, k, p\}

• The MST's total cost is:
 1+2+3+4+6+8+9+11+16 = 60
 – Can you find any spanning trees of lower cost? Of equal cost?
function kruskal(graph):
 Start with an empty structure for the MST
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the MST.
 Otherwise, skip the edge.
Vertex clusters

• Need some way to identify which vertexes are "connected" to which other ones
 – we call these "clusters" of vertices

• Also need an efficient way to figure out which cluster a given vertex is in.

• Also need to **merge clusters** when adding an edge.
Kruskal's Code

- How would we code Kruskal's algorithm to find a minimum spanning tree?
- What type of graph (adjacency list, adjacency matrix, or edge list) should we use?