
CS106X	 Handout	
Winter	2017 Feb	17th,	2017	

Recursion	
Definition
In order to understand recursion, you first need to understand recursion! By definition, recursion
is any solution technique in which large problems are solved by reducing them to smaller,
virtually identical sub-problems. The structure of recursion follows a common template and you
can apply recursion as long as your problem meets the following conditions:

1. You can identify simple cases for which the answer is easily determined
2. You can identify a recursive decomposition that allows you to break any complex

instance of the problem into simpler problems of the same form

The classic introductory example employing recursion is an implementation of the factorial
function:

int	factorial(int	n)	{	
				if	(n	==	0)	{

return	1;
				}	else	{

return	n	*	factorial(n	-	1);
				}
}

The three “musts” of recursion are that :

In some cases, the problem to be solved is so simple that we can return or terminate execution
without any further recursive calls. The first of the two lines in factorial is an example of such a
base case—factorial(0) is always 1. However, whenever the specified integer n is larger than 0,
it helps to calculate factorial(n - 1) and multiply the result of that computation by n itself. That's

1. Your	code	must	have	a	case	for	all	valid	inputs.

2. You	must	have	a	base	case	(makes	no	recursive	calls).

3. When	you	make	a	recursive	call	it	should	be	to	a	simpler	instance	(forward
progress	towards	base	case)

precisely what the recursive call is doing. Now, we can look at some examples of how recursion
can create spectacular fractals!

Fractals: Boxy Snowflakes
Assume you’re given the following function, which draws a shaded square of the specified
dimension with a solid border, centered at (cx, cy):

void	drawFilledBox(GWindow&	window,	double	cx,	double	cy,	double	side,														
																			const	string&	fillcolor,	const	string&	bordercolor);

Presented below is the recursive implementation of drawBoxyFractal, which is capable
of drawing the following order-0, order-1, order-2, and order-3 fractals:

Note our implementation is sensitive to the way the centered squares are layered—clearly
the sub-fractals drawn in the southwest and northeast corners are drawn before the large
center square, which is drawn before the sub-fractals at 4:30 and 10:30. The same layering
scheme is respected at all recursive levels:

void	drawBoxyFractal(GWindow&	window,	double	cx,	double	cy,
	 double	dimension,	int	order)	{
	 if	(order	>=	0)	{
	 	 drawBoxyFractal(window,	cx	-	dimension/2,	cy	+	dimension/2,		
			 	 	 	 				kScale	*	dimension,	order	-	1);
	 	 drawBoxyFractal(window,	cx	+	dimension/2,	cy	-	dimension/2,	

				kScale	*	dimension,	order	-	1);
	 	 drawFilledBox(window,	cx,	cy,	dimension,	"Gray",	"Black");	

drawBoxyFractal(window,	cx	-	dimension/2,	cy	-	dimension/2,
	 	 	 										kScale	*	dimension,	order	-	1);	

drawBoxyFractal(window,	cx	+	dimension/2,	cy	+	dimension/2,
	 	 	 										kScale	*	dimension,	order	-	1);
	 }
}

