
CS106X	 Handout	
Winter	2017	 Feb	17th,	2017

Recursion	Exploration	
An especially powerful flavor of recursion is when it is used to explore trees. Trees are a
recursive structure where each state has a set of branches. The state that results from following
a branch is also a tree (though a smaller one). Recursive exploration allows us to explore an
entire tree. It is also called “try everything search” or “recursive depth first search”. Given a start
state, you have numerous braches to choose from. After you choose a branch, you encounter
new options to choose from. Each of these options will provide new next steps and this
continues until you get to a state with no branches.

The tree above represents a file tree. My Documents is the top state of the tree. If you follow the
branch for Teaching, the state you arrive at can also be seen as the top of a tree (right figure).

Recursion on Decision Trees
For many real-world problems, the solution process consists of working your way through a
sequence of decision points in which each choice leads you further along some path. In this
case we call the tree on which we are operating a decision tree.

For a given state:

● If any option is a solution, that's great! We're done.
● If none of the options lead to a solution, this particular problem can't be solved from the

state.

Recursive Backtracking
There is also an important subset of recursive exploration called backtracking. Recursive
backtracking is needed if you are not making a fresh representation of state with each recursive
call and instead are modifying the state that is passed in by reference. If you make the correct
set of choices, you end up at the solution. But if you make a wrong decision, you have to
backtrack to a previous decision point and try a different path. As a rule of thumb, recursive
backtracking requires three key steps:

● choose, where you set up exploring a particular path;
● explore, where you recursively explore that path; and
● un-choose, where you undo whatever you did in the first step.

Example problems
The Periodic Table Alphabet (problem courtesy of Keith Schwarz)
Have you ever wondered what English words can be spelled using just the symbols from the
periodic table? You’re about to find out.

The periodic table lists abbreviations used for all of the known elements—hydrogen, lithium,
oxygen, carbon, molybdenum, uranium, and so forth. Each element has its own one, two, or
three-letter symbol: H for hydrogen, Li for lithium, Mo for molybdenum, Cf for Californium etc.
All in all, there are 118 elements, so there are 118 abbreviations.

For this problem, we’re pretending that these symbols are the 'letters' of a new alphabet. Your
task here is, given a Vector<string> storing all element symbols and a Lexicon of all English
words, to print out all those English words that can be constructed using just the symbols from
the periodic table. You should only print out words of length 11 or more, and you should retain
the capitalization scheme of the atomic symbols when printing out the words.Here’s a small
window of the words that should be printed out:

...

IrReSOLuTiON	
IrReSOLuTeNEsS	
IrReSOLuTeNeSS	
IrReSPONSiBILiTiEs	
IrReSPONSiBiLiTiEs	
IrReSPONSIBILiTiEs
IrReSPONSIBiLiTiEs
...

Ir is iridium, Re is rhenium, S is sulfur, O is oxygen, Lu is lutetium, etc.: Trust that every
capitalized substring identifies some element from the periodic table. Our solution builds on a
working prefix up from the empty string by recursively exploring every single symbol in the
periodic table as a possible extension. If you construct a string that isn’t even a prefix of a
word, then you prune that search, recognize your dead end, and back off. But if you notice that
the working string is actually a word, then as a side effect you print the string out and dig even
further for a longer word beyond what you already have.

const	int	kMinWordLength	=	11;

void	printAllWords(const	Lexicon&	english,	const	Vector<string>&	elements,	

	const	string&	prefix)	{
				if	(!english.containsPrefix(prefix))	return;
				if	(english.contains(prefix)	&&	prefix.length()	>=	kMinWordLength)	{	
								cout			<<	prefix	<<	endl;
				}
				foreach	(string	element	in	elements)	{	
								printAllWords(english,	elements,	prefix	+	element);
				}
}

void	printAllWords(const	Lexicon&	english,	const	Vector<string>&	elements)	{
				printAllWords(english,	elements,	"");
}

Periodic Table as Alphabet: Take II
In a previous example, we presented code to list all of those English words that can be spelled
out using the symbols of the periodic table and nothing else. Here’s a related problem that
asks specifically whether or not the provided word can be spelled out using just the periodic
table symbols. We’ll assume that all of the symbols are 1, 2, or 3 letters long, that the symbols
come via a Set<string>, and that all of the Lexicon methods we’re familiar with are case-
insensitive.

The idea is to see if the first 1, 2, or 3 letters match some symbol, and if so, to recur on all of
the remaining length – 1, length – 2, or length – 3 letters to see if they can also be subdivided
into periodic table elements. Here’s the solution:

static	string	elementize(string	str)	{	
		if	(!str.empty())	{
				str	=	toLowerCase(str);	//	->	"he"
				str[0]	=	toupper(str[0]);	//	->	"He"
		}
		return	str;
}

static	bool	canSpell(string	word,	Set<string>&	symbols)	{	
		if	(word.empty())	return	true;
		int	length	=	word.size();
		for	(int	i	=	1;	i	<=	min(3,	length);	i++)	{
				if	(symbols.contains(elementize(word.substr(0,	i)))	&&						
								canSpell(word.substr(i),	symbols))	{
	 return	true;
				}
		}	
		return	false;
}

If we want visual proof the word can be spelled, then we can accumulate the relevant
symbols in a Stack as the successful search unwinds, and then print the serialization
of the Stack from the call site.

static	bool	canSpell(string	word,	Set<string>&	symbols,	
																					Stack<string>&	footprint)	{	
		if	(word.empty())	return	true;
		int	length	=	word.size();
		for	(int	i	=	1;	i	<=	min(3,	length);	i++)	{	
				string	symbol	=	elementize(word.substr(0,	i));	
				if	(symbols.contains(symbol)	&&
	 		canSpell(word.substr(i),	symbols,	footprint))	{				
						footprint.push(symbol);
	 return	true;
				}
		}
		return	false;
}

Here’s a main function that exercises the second version of canSpell, and illustrates
how the footprint can be drained and printed to standard out, knowing that the last
symbol used to spell the word is buried at the bottom, and the first symbol used is at the
top:

int	main()	{	
		Set<string>	symbols;
		addPeriodicTableElements(symbols);	//	assume	this	just	works	as	implied				
		while	(true)	{
				string	word	=	getLine("Enter	a	word:	");	
				if	(word.empty())	break;
				Stack<string>	footprint;
				if	(canSpell(word,	symbols,	footprint))	{	
						cout	<<	"That	can	be	spelled	as	\"";	
						while	(!footprint.isEmpty())	{
								cout	<<	footprint.pop();
						}
	 cout	<<	"\"."	<<	endl;
				}	else	{
	 cout	<<	"That's	just	not	possible."	<<	endl;
				}
		}
		return	0;
}

Finally, here’s a test run of the above program to illustrate the output is as excepted (or at least
believable).

Enter	a	word:	hen
That	can	be	spelled	as	
"HeN".	Enter	a	word:	
foolishness
That	can	be	spelled	as	"FOOLiSHNEsS".	Enter	a	word:	partial
That	can	be	spelled	as	
"PArTiAl".	Enter	a	word:	
hooligan
That	can	be	spelled	as	"HOOLiGaN".	Enter	a	word:	hooliganism
That	can	be	spelled	as	"HOOLiGaNISm".	Enter	a	word:	indefatigable
That's	just	not	possible.
Enter	a	word:	antidisestablishmentarianism
That's	just	not	possible.	Enter	a	word:

