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Big	O	Complexity	
As we discussed in class, computer scientists use a special shorthand called big-O notation to denote 
the computational complexity of algorithms. When using big-O notation, the goal is to provide a 
qualitative insight as to how changes in N affect how many units of computation are performed for large 
amounts of data. Therefore, when computing big-O, we can make the following simplifications:  

1. Eliminate any term whose contribution to the total is insignificant as N becomes large
𝑂(𝑛!  +  𝑛)  =  𝑂(𝑛!) for large n 

2. Eliminate any constant factors
𝑂(3𝑛)  =  𝑂 𝑛  for large n 

To compute big-O, it we think about the number of executions that the code will perform in the worst 
case scenario. The stragegy for computing Big-O depends on whether or not your program is recursive. 
For the case of iterative solutions, we try and count the number of executions that are performed. For the 
case of recursive solutions, we first try and compute the number of recursive calls that are performed.  

Basic Examples 

Code Complexity 

for	(int	x	=	n;	x	>=	0;	x--)	{ 
cout	<<	x	<<	endl; 

}	

𝑂(𝑛) 

The loop executes n times 

for	(int	i	=	0;	i	<	5;	i++)	{ 
		for	(int	j	=	0;	j	<	10;	j++)	{ 
				cout	<<	j	<<	endl; 
		} 
} 

𝑂(1) 

Neither loop depends on the value n 

for	(int	i	=	0;	i	<	n;	i++)	{ 
		for	(int	j	=	0;	j	<	n;	j++)	{ 
				cout	<<	j	<<	endl; 
		} 
} 

𝑂(𝑛!) 

The outer loop executes n times and 
each iteration, the inner loop executes 
n times, totaling in 𝑛! loops 

for	(int	i	=	0;	i	<	5n;	i++)	{ 
		cout	<<	“hello!”	<<	endl; 
} 

𝑂(𝑛) 

The loop executes 5n times and the 
constant 5 is insignificant as n grows 



for	(int	i	=	0;	i	<	n;	i++)	{ 
		for	(int	j	=	0;	j	<	n*n;	j++)	{ 
				cout	<<	“tricky!”	<<	endl; 
		} 
} 

𝑂(𝑛!) 
 
The outer loop executes n times and 
each iteration, the inner loop executes 
𝑛! times, totaling in 𝑛!executions 

 

Gauss Summation 
 
In many situations you have a case where you have a code block which executes 1 time, then 2 times, 
then 3 times until n times. In order to calculate the Big-O for code that follows this format we use the 
solution for the sum of an arithmetic series.  
 

 
 
Which is  

 
 
In class I incorrectly gave credit for this sum to Carl Gauss. Upon further investigation I found out that 
was first discovered in 499 AD by Aryabhata, a prominent mathematician-astronomer from the classical 
age of Indian mathematics and Indian astronomy! 
 

Dividing in half 
 
Binary search worked by dividing a search space of number in half until the algorithm finds the target 
value. In the worst case scenario it must repeat this process until the search space only has one 
element. So the question is, how many times can you divide n in half until you have only 1 element? 
 

𝑛
2! = 1 

𝑥 = log!𝑛 
And thus the big O of  binary search is O(log n)  
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Recursion 
If we ask a question on the midterm where you need to compute the Big O of a recursive function it will 
be of the form where you simply need to calculate the number of calls in the recursion call tree. Often the 
number of calls is big O(bd) where b is the branching factor (worst case number of recursive calls for one 
execution of the function) and d is the depth of the tree (the longest path from the top of the tree to a 
base case). 
 
For example consider the Fibonacci function: 
int fib(int n  ) {
  (n <= 1) { if
     // base case
    1; return 
  } { else 
     // recursive case
    fib(n – 1) + fib(n – 2); return 
  } 

 }
 
 
Here is the call tree of Fib(5); 

 
 
The branching factor is 2. The depth is n where n is the number on which the function is called. Thus the 
big O of this function is: 
 

 
 
 

O(bd) = O(2n)


