
	CS106X Handout	
Winter	2017	 Feb	17th,	2017	

Practice	Midterm	#1	

This	 is	 an	 open-note,	 open-reader	 exam.	 	 You	 can	 refer	 to	 any	 course	 handouts,	 textbooks,	
handwritten	lecture	notes,	and	printouts	of	any	code	relevant	to	any	CS106B	assignment.	You	may	
not	 use	 any	 laptops,	 cell	 phones,	 or	 handheld	 devices	 of	 any	 sort.	 	 	 You	 will	 be	 graded	 on	
functionality—but	good	style	helps	graders	understand	what	you	were	attempting.	You	do	not	need	
to	include	any	libraries	and	you	do	not	need	to	forward	declare	any	functions.	You	have	2	hours.	We	
hope	this	exam	is	an	exciting	journey	J.	

Last	Name:	 _____________________	

First	Name:	 	_____________________	

Section	Leader:	 	_____________________	

I	accept	the	letter	and	spirit	of	the	honor	code.		I’ve	neither	given	nor	received	aid	on	this	exam.		I	
pledge	to	write	more	neatly	than	I	ever	have	in	my	entire	life.	

(signed)	__	

	Score	 Grader	

1. Mystery [10]	 ______		______	

2. Smooth	Image [15]	 ______		______	

3. Who	Has	A	Silly	Password? [15]	 ______		______	

4. Mirror	Temple [15]	 ______		______	

Total	 [55]	 ______	

Page	2	of	11	

Problem	1:	Tracing	C++	programs	and	big-O	(10	points)	
Assume	that	the	functions	Mystery	and	Enigma	have	been	defined	as	follows:	
	

int Mystery(int n) {
 if (n == 0) {
 return 0;
 } else {
 return Mystery(n - 1) + Enigma(n/2) + Enigma(n/2);
 }
}

int Enigma(int n) {
 int index = 0;
 int sum = 0;
 while (index < n * 2) {
 sum += index;
 index++;
 }
 return sum;
}

	

	
(a)		[3	points]	What	is	the	value	of	Enigma(2)?	
	
	
	
(b)		[3	points]	What	is	the	value	of	Mystery(4)?	
	
	
	
(c)	 [2	points]	What	is	the	worst	case	computational	complexity	of	the	Enigma	function	

expressed	in	terms	of	big-O	notation,	where	N	is	the	value	of	the	argument	n?		In	this	
problem,	you	may	assume	that	n	is	always	a	nonnegative	integer.	

	
	
	
(d)	[2	points]	What	would	be	the	effect	on	the	worst	case	big-O	of	Enigma	if	the	line:	
	

if(RandomChance(0.5)) break;

	
had	been	added	to	the	beginning	of	the	while	loop	in	Enigma?	
	
	

	
	

Page	3	of	11	

Problem	2:	Grids,	Vectors,	Stacks,	and	Queues	(15	points)	
	
A	common	operation	on	2D	data	(think	images	or	scientific	data)	is	to	smooth	out	the	values	of	
each	cell.	In	images	it	blurs	the	picture,	on	scientific	data	it	reduces	the	effect	of	outliers.	
	
Your	job	is	to	write	a	function smooth that	takes	in	a	Grid<double>	by	reference,	and	
smooths	out	every	cell	in	the	grid.		On	a	single	cell	from	the	data,	the	smoothed	value	is	the	
average	of	its	neighbors	and	its	own	value.	Most	cells	have	eight	neighbors,	except	for	cells	at	
the	edge	of	the	grid.	Consider	the	following	cell	in	blue,	and	its	eight	neighbors:	
	

	
	
The	average	of	the	cell	and	its	eight	neighbors	is	(1 + 1 + 2 + 6 + 5 + 3 + 1 + 2 + 2) / 9 which	
equals	2.56.	Thus	the	new	value	of	the	cell	will	be	2.56.	
	

You	should	apply	such	an	averaging	to	every	cell	in	the	grid	(which	could	have	any	size).	
Importantly,	when	you	compute	the	average	of	a	cell,	it	should	use	the	original	value	of	the	
neighbors,	not	a	smoothed	value.		In	the	example	above,	if	you	were	calculated	the	smoothed	
value	of	one	of	the	blue	cell’s	neighbor	it	should	use	the	old	value	of	the	cell	(5)	instead	of	the	
smoothed	value	(2.56).	
	
	
	
	
	
	
	

	 	 	

	 	

	 	 	

5.0

1.0 2.0 1.0

6.0 3.0

1.0 2.0 2.0

	 5.0

Page	4	of	11	

Answer	to	problem	2:	
void smooth (Grid<double> & values) {

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Page	5	of	11	

Problem	3:	Maps	and	Sets	(15	points)	
In	any	map,	multiple	keys	can	have	the	same	value.	The	Most	Common	Value	is	the	value	in	the	
map	with	the	largest	number	of	associated	keys.		
	
Your	 job	 is	 to	 write	 a	 function	 KeysForMostCommonValue	 that	 takes	 in	 a	 Map<string,
string>,	 finds	 the	Most	Common	Value	and	 returns	 the	 set	of	 keys	 that	map	 to	 the	Most	Common	
Value.			

Set<string> KeysForMostCommonValue (Map<string, string> & map)

	

Consider	the	following	map	which	stores	username	password	combinations:	
	

Key Value	
“cpiech” “password”

“mfaulk” “pizza”

“zuckerberg” “12345”

“haxor2000” “password”

“sheen” “12345”

“rebeccablack” “friday”

“neo” “password”

	
The	 Most	 Common	 Value	 in	 the	 map	 is	 “password” and	 the	 keys	 that	 map	 to	 the	 Most	
Common	Value	are	“cpiech”, “haxor2000” and “neo”.	
	
Hint:	This	problem	is	much	easier	to	solve	if	you	populate	internal	set(s)	and/or	map(s)	that	will	
help	you	find	the	Most	Common	Value.	
	

(space	for	the	answer	to	problem	3	appears	on	the	next	page)	
	 	

Page	6	of	11	

Answer	to	problem	3:	
Set<string> KeysForMostCommonValue (Map<string, string> & map) {
	
	 	

Page	7	of	11	

Problem	4:	Recursive	Exploration	(15	points)	
It	has	been	thought	that	Ancient	Egyptians	used	systems	of	mirrors	to	bring	light	into	the	
inner	chambers	of	their	temples!	Light	normally	travels	in	a	straight	line	(think	of	a	laser)	
but	you	can	turn	the	path	of	the	light	using	reflective	surfaces.		

Your	job	is	to	write	a	predicate	function	IsSolvable	that	returns	whether	or	not	there	is	a	
system	of	mirrors	for	a	given	temple	such	that	light	traveling	in	a	specific	direction	from	a	
starting	position	can	be	directed	to	a	goal	position	using	a	limited	number	of	mirrors.		

This	problem	is	constrained	so	that	light	is	always	traveling	north,	south,	east	or	west	and	
mirrors	 turn	 light	 clockwise	 (to	 the	 right	 relative	 to	 the	 previous	 direction)	 or	
counterclockwise	(to	the	left).	The	temple	is	stored	as	a	Grid<bool>	where	true	means	that	
the	 location	 is	blocked—light	 cannot	 travel	 through	 this	 location—and	false	means	 that	
the	location	is	open—light	can	travel	through	this	location.	

As	 an	 example:	 in	 the	 temple	 depicted	 in	 the	 image	 below-on-the-left,	 light	 starts	 in	 the	
bottom	 left	 corner	 traveling	 to	 the	east	and	 the	goal	 is	 to	get	 the	 light	 to	 the	upper	right	
corner.	 In	 this	 example	 there	 is	 no	 solution	with	 three	 or	 fewer	mirrors.	However	using	
four	mirrors	the	system	in	the	image	below-on-the-right	will	direct	light	to	the	goal:	

	

	

Hint:	You	should	think	of	this	problem	step	by	step	from	the	perspective	of	the	light.	At	each	
square	you	can:	move	straight,	 turn	 left	or	 turn	right.	 It	costs	nothing	to	move	straight—in	
the	direction	you	were	already	facing—but	it	costs	a	mirror	to	turn	left	or	to	turn	right..	

Page	8	of	11	

The	problem	uses	the	Point	class	to	represent	a	position	in	the	grid	and	the	Direction	enum	
to	represent	light	direction:	

// Directions that light can travel
enum Direction = {NORTH, EAST, SOUTH, WEST};

// Position in the temple
Point is a class in the cs106b library that stores an x and y position as
ints. The two methods it supports are getX() and getY().

Point myPoint(2, 3);
int x = myPoint.getX();
int y = myPoint.getY();

	
To	 help	 you	 with	 the	 updating	 of	 positions	 and	 directions,	 we	 provide	 you	 with	 the	
following	functions	(you	don’t	have	to	write	them):		

Point move(Point curPos, Direction curDir);
Direction turnLeft(Direction curDir);
Direction turnRight(Direction curDir);

	
Move	 returns	 the	 new	 position	 obtained	 by	 taking	 one	 step	 from	 the	 passed-in-position	
oriented	 in	 the	 passed-in-direction.	 TurnLeft	 and	 TurnRight	 return	 the	 orientation	
obtained	from	rotating	left	and	right	respectively	from	the	passed-in-direction.		

Using	these	predefined	functions	write	a	recursive	predicate	IsSolvable	that	takes	a	grid,	a	
number	of	mirrors,	a	start	configuration	and	a	goal	position	as	arguments	and	returns	true	
if	there	is	a	system	of	mirrors	to	direct	light	to	the	goal	and	false	otherwise.		

(space	for	the	answer	to	problem	4	appears	on	the	next	page)	
	

	 	

Page	9	of	11	

Answer	to	problem	4:	
// predefined helper functions (you can use and don’t have to implement)
Point Move(Point curPos, Direction curDir);
Direction TurnLeft(Direction curDir);
Direction TurnRight(Direction curDir);

	
bool IsSolvable(Grid<bool> templeBlocks, int numMirrors, Position startPos,
 Direction startDir, Position goalPos) {
	 	

Page	10	of	11	

Problem	5:	Optional	Fun	Problem	(0	points)	
Make	your	own	paneled	style	stick	figure	comic	pontificating	or	commenting	about	CS,	computers,	
life,	etc.	Here’s	one	for	reference:	

	

This	problem	isn’t	required	and	there	are	no	points	associated	with	doing	any	work	here,	but	any	
great	gems	will	be	very	much	appreciated	by	the	course	staff	:).	

	

	

	

	

