
Monday, January 9, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

CS 106X
Lecture 1: Welcome!

Today's Topics
• Instructor Introductions
• What is CS 106X?

• Goals for the Course
• Components of CS 106X
• Assignments, Grading scale, Due dates, Late days, Sections, Getting Help
• Is CS 106X the right class?

• C++
• Why C++?
• QT Creator
• Our first program
• Our second program
• The importance of Data Structures

• Assignment 0

Chris Gregg
• Career:
• Johns Hopkins University Bachelor’s of Science in

Electrical and Computer Engineering
• Seven years active duty, U.S. Navy (14+ years reserves)
• Harvard University, Master’s of Education
• Seven years teaching high school physics (Brookline,

MA and Santa Cruz, CA)
• University of Virginia, Ph.D. in Computer Engineering
• Three years teaching computer science at Tufts

University
• Stanford! (arrived, Fall 2016)
• Personal website: http://ecosimulation.com/chrisgregg

CS106X Staff

Head TA: Aaron Broder Section Leaders

What is CS 106X?

CS106X: Learn core ideas in how to
 model and solve complex problems

with computers

CS106X: Learn core ideas in how to
 model and solve complex problems

with computers
accelerated!

accelerated
• Why "accelerated"?

• This class goes more deeply into topics than 106B, and will cover some
different topics.

• Some of the assignments are similar to 106B, but there will be more parts
to the assignments, and they will generally be more difficult.

• You are a self-selected group — we expect a lot from you, but we also
expect that you like to be challenged!

• You may already know some of the things we cover in class — great! Use
the opportunity to go deeper into the knowledge.

• This is a relatively small class, so take advantage of that! Get to know Chris
and Aaron, and your Section Leader!

• You will be proud when you've completed this class.

CS106X: Learn core ideas in how to
 model and solve complex problems

with computers

Stanford’s Stanley Self Driving Car, DARPA Grand Challenge, 2006

Complex Problems: Self Driving Cars

Complex Problems: Instantaneous Directions

Complex Problems: Speech Recognition

How does Stanford get you there?

CS106A

In CS106A is a first course in programming, software development

There is more to learn…

Full disclosure, CS106X is necessary
but not sufficient to make a self driving

car ☺

Learn core ideas in how to model and solve complex
problems with computers.

Explore common abstractions

Harness the power of recursion

Learn and analyze efficient algorithms

To that end:

Goals for CS 106X

Learn core ideas in how to model and solve complex
problems with computers.

To that end:

Explore common abstractions

Harness the power of recursion

Learn and analyze efficient algorithms

Goals for CS 106X

Common Abstractions
• What is the average friend distance between two random Facebook users?

Common Abstractions
• How should Uber direct drivers in San Francisco at 5pm on a Tuesday, when there

are x number of people who want a ride, and y number of drivers?

Common Abstractions
• How does email get from Dallas, Texas to Miami, Florida?

Common Abstractions
• What is the average friend distance between two random Facebook users?
• How should Uber direct drivers in San Francisco at 5pm on a Tuesday, when there

are x number of people who want a ride, and y number of drivers?
• How does email get from Topeka, Kansas to Anchorage Alaska?

• These are all solved with the same abstraction! (using a "graph," which we will learn
about near the end of the course)

• By learning common abstractions, we can use those abstractions to solve many
problems.

• See the course website to see the list of topics we will cover.

Learn core ideas in how to model and solve complex
problems with computers.

To that end:

Explore common abstractions

Harness the power of recursion

Learn and analyze efficient algorithms

Goals for CS 106X

In order to understand recursion, you must understand recursion.

Recursion

Recursion is a powerful tool that we will learn — once you start
"thinking recursively", you will be able to solve many problems
that would be extremely hard to solve without it.

Recursion

Learn core ideas in how to model and solve complex
problems with computers.

To that end:

Explore common abstractions

Harness the power of recursion

Learn and analyze efficient algorithms

Goals for CS 106X

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

Travel Time: 13 + 15 + 17 + 14 + 11 + 9 + 12 = 91

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

Travel Time: 10 + 17 + 7 + 14 + 13 + 4 + 7 = 72

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

In an n × n grid, there are at least 4n / n
possible paths from one corner to another.

If n = 154, this is approximately equal to the
number of atoms in the universe.

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

In an n × n grid, there are at least 4n / n
possible paths from one corner to another.

If n = 50, it would take the lifetime of the
universe to list off all possible paths.

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

In an n × n grid, there are at least 4n / n
possible paths from one corner to another.

If n = 50, it would take the lifetime of the
universe to list off all possible paths.

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

This approach is called  
Dijkstra's Algorithm.

Google Maps uses a slightly modified version of
this algorithm.

For an n × n grid, it requires (roughly speaking)
n log n operations to find the shortest path.

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

This approach is called  
Dijkstra's Algorithm.

Google Maps uses a slightly modified version of
this algorithm.

For an n × n grid, it requires (roughly speaking)
n log n operations to find the shortest path.

0 10

1713

25 32

3822

28 27

4045

29 36

4738

46

42

46

53

10 717 14

6

14

5

5 18 4

11 9 12

8 7 20

13

15

17

7 37 9 13

7

7

9

10 2

14

4

713

from

 to

This approach is called  
Dijkstra's Algorithm.

Google Maps uses a slightly modified version of
this algorithm.

For an grid with n elements, it requires some
multiple of n log n operations to find the

shortest path.

Course Information

https://cs106x.stanford.edu Most im
portant!

Course Information

https://piazza.com/stanford/winter2017/cs106x/home 2nd Most im
portant!

Section Participation
10%

Final
30%

Midterm
20%

Assignments
40%

Final: Monday, March 20th

Components of CS106X

• Due at 12:00P.M.

• Three free “late days”

• Extensions approved by Chris or Aaron.

• Graded by your section leader

• Interactive, one-on-one grading session.

• Graded on Style and Functionality.

Assignments in CS106X

Functionality and style grades for the assignments use the following
scale:

Satisfies all requirements of the assignment.
Meets most requirements, but with some problems.

Has more serious problems.
Is even worse than that.

Better than nothing.

Exceeds requirements.
A submission so good it “makes you weep.”

Grading Scale

50

• Weekly 50-min section led by
awesome section leaders (the
backbone of the class!)

• Signups begin Thursday at 5:00pm

• Signups close Sunday at 5:00pm 

Sections

You need to ask questions if you are
confused

You are here only to learn. Your intelligence is unquestioned.

52

1

2

Getting Help

3

4

Go to the LaIR / OH

Review Piazza Contact your Section Leader

Email Chris or Aaron

Is CS106X The Right Class?
CS106A

CS106X

CS107

CS106B
CS106L
CS106S

One last detail…

C++

Although there are
hundreds of
computer
languages, in CS
106X we will be
using the C++
language, which is
not the easiest
language to learn,
but it is powerful
and popular (and will
help you get an
internship!)

What is the most
used language in
programming? Profanity!

C++

The 106/107
languages:

106A : Java (1995)
106X : C++ (1983)
107 : C (1972!)

All three languages
have their syntax
based on C (the
good news).

All three are
different enough
that it does take
time to learn them
(the not-as-good
news).

CS 106/107 Languages

As you'll find out, learning a new language when you already know a
language is not really that hard, especially for "imperative" languages
like Java, C++, and C (and Javascript, Python, and Ruby, etc.)

Non-imperative languages —"functional" languages — (LISP, Haskell,
ML, etc.) take a completely different mentality to learn, and you'll get to
those in later CS classes, like Programming Languages.

Let's write our "Hello, World!" program in C++.

Your First C++ Program!

Steps:
1. Install QT Creator (see Assignment 0!)
2. Download the example "simple-project": http://web.stanford.edu/
class/cs106x/qtcreator/simple-project.zip

3. Rename the .pro file hello-world.pro
4. Open the src folder, delete hello.h and rename hello.cpp to
hello-world.cpp

5. Open hello-world.pro
6. Click "Configure Project"
7. Open Sources->src->hello-world.cpp
8. Delete everything!
9. Now we're ready to code…

Your First C++ Program!

Your First C++ Program!
// Our first C++ program!

// headers:
#include <iostream>
#include "console.h" // Stanford library

using namespace std;

// main
int main()
{
 cout << "Hello, World!" << endl;
 return 0;
}

To compile: Select
Build->Build Project
"hello-world" (or ⌘-B
or Alt-B)

To run in "Debug"
mode: Select Debug-
>Start Debugging-
>Start Debugging (or
⌘-Y or Alt-Y)

You should see a
console window pop
up that says, "Hello,
World!"

Your Second C++ Program!
Because this is 106X, let's write a more
advanced program, one that creates a list,
and populates the list with 100,000 even
integers from 0 to 198,998.

You'll see that this looks strikingly familiar to
Java, with a few C++ differences.

The list object we will use is called a
"Vector," which is very similar to a Java
ArrayList.

For time reasons, we'll just write it in the
same hello-world.cpp file.

Your Second C++ Program!
// Populate a Vector

// headers:
#include <iostream>
#include "console.h" // Stanford library
#include "vector.h" // Stanford library

using namespace std;

const int NUM_ELEMENTS = 100000;

// main
int main()
{
 Vector<int> myList;
 cout << "Populating a Vector with
even integers less than "
 << (NUM_ELEMENTS * 2) << endl;

 for (int i=0; i < NUM_ELEMENTS; i++){
 myList.add(i*2);
 }

 for (int i : myList) {
 cout << i << endl;
 }
 return 0;
}

(continued!)

The Importance of Data Structures

Why Data Structures are Important

One reason we care about data structures is, quite simply, time. Let’s say we
have a program that does the following (and times the results):

- Creates four “list-like” containers for data.
- Adds 100,000 elements to each container – specifically, the even integers

between 0 and 198,998 (sound familiar?).
- Searches for 100,000 elements (all integers 0-100,000)
- Attempts to delete 100,000 elements (integers from 0-100,000)

What are the results?

The Importance of Data Structures
Results:

Structure Overall(s)
Unsorted Vector 15.057

Linked List 92.202
Hash Table 0.145
Binary Tree 0.164

Sorted Vector 1.563

Processor: 2.8GHz Intel Core i7
(Macbook Pro)

Compiler: clang++

A factor of 103x

A factor of 636x!

Note: In general, for this test, we
used optimized library data
structures (from the "standard
template library") where appropriate.
The Stanford libraries are not
optimized.

Overall, the Hash Table "won" — but
(as we shall see!) while this is
generally a great data structure, there
are trade-offs to using it.

Full Results:

Structure Overall(s) Insert(s) Search(s) Delete(s)
Unsorted Vector 15.057 0.007 10.307 4.740

Linked List 92.202 0.025 46.436 45.729
Hash Table 0.145 0.135 0.002 0.008
Binary Tree 0.164 0.133 0.010 0.0208

Sorted Vector 1.563 0.024 0.006 1.534

Why are there such discrepancies??

Bottom line:
• Some structures carry more information simply because of their design.
• Manipulating structures takes time

Logistics

•Signing up for section: you must put your available times by Sunday January
15th at 5pm (opens Thursday at 5pm).

•Go to cs198.stanford.edu to sign up.

•Qt Creator installation help: Thursday at 8pm, in Tressider (eating area).
Please attempt to install Qt Creator before you arrive (see the course website
for details).

•Remember, Assignment 0 is due Friday at Noon

