
Wednesday, February 1, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 8.2-8.3

CS 106X
Lecture 10: Recursive
Backtracking 2:
Common Problem Types

Today's Topics
•Logistics:
•Due date for Assignment 3 (Recursion): Monday, February 6th, Noon

•Recursive Backtracking:
•Helper Functions

•Common Problem Types
•Clumsy Thumbsy (find all solutions)
•Partitionable (determine whether a solution exists)
•Maze Solving (find a solution)
•Knapsack Problem (find the best solution)

Recursive Backtracking: Templates

There are basically five different problems you might
see that will require recursive backtracking:

• Determine whether a solution exists
• Find a solution
• Find the best solution
• Count the number of solutions
• Print/find all the solutions

Permutations: Modified Function Signature
• If you were asked to write the following permutation function recursively that

returns a set of all permutations of a string that are n characters long, what
could you do?

Set<string> permute(string st, int n);

• Example call:
• permute("abc", 2); // returns ab, ac, ba, bc, ca, cb

• You can't directly make this function recursive, because you need to pass
more information than the one string allows.

• A solution is to create a "helper function" that has the necessary parameters to
pass along the needed information. For example:

void permute(Set<string> &permutations, string soFar, string rest, int n);

Functions with the Same Name
• We now have two functions:

• C++ allows you to have multiple functions with the same name as long as it is
unambiguous which function should get called.

• I.e., the compiler must be able to unambiguously determine which function you
mean to call. You cannot, for instance, have two functions that both take two
strings (even if they return different types), because that would be ambiguous to
the compiler.

• This is called overloading the function name, and it is common.

Set<string> permute(string st, int n);
void permute(Set<string> &permutations, string soFar, string rest, int n);

Permutations with a Helper Function
• The non-recursive permute:
Set<string> permute(string st, int n) {
 Set<string> permutations;
 permute(permutations, "", st, n);
 return permutations;
}

• The recursive permute:
void permute(Set<string> &permutations, string soFar, string rest, int n) {
 if ((int)soFar.length() == n) {
 permutations.add(soFar);
 } else {
 for (int i = 0; i < (int)rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permute(permutations, soFar + rest[i], remaining, n);
 }
 }
}

Permutations with a Helper Function
• The non-recursive permute:
Set<string> permute(string st, int n) {
 Set<string> permutations;
 permute(permutations, "", st, n);
 return permutations;
}

• The recursive permute:
void permute(Set<string> &permutations, string soFar, string rest, int n) {
 if ((int)soFar.length() == n) {
 permutations.add(soFar);
 } else {
 for (int i = 0; i < (int)rest.length(); i++) {
 string remaining = rest.substr(0, i) + rest.substr(i+1);
 permute(permutations, soFar + rest[i], remaining, n);
 }
 }
}

Clumsy Thumbsy: Find All Solutions

You want to write a program that will autocorrect words.

Given a string that represents a single (potentially
misspelled) word, a lexicon of English words, a map that
maps from a character to a string of the characters near it
on a keyboard, and an admissible number of errors, find
the Set of all potential intended words.

(Problem courtesy of Jerry Cain)

Clumsy Thumbsy: Find All Solutions

Set<string> autocorrect(string word,
 Map<char, string> & nearLetters,
 Lexicon & dictionary,
 int maxTypos)

Prototype (note the whitespace -- no need to have this be a giant line!)

First, we have to think of how we will solve this...

Clumsy Thumbsy: Find All Solutions

Set<string> autocorrect(string word,
 Map<char, string> & nearLetters,
 Lexicon & dictionary,
 int maxTypos)

Prototype (note the whitespace -- no need to have this be a giant line!)

Definition: "maxTypos" : how many letters we can have incorrect

Idea:
• Build up new potential words one character at a time until we have a word (or not).
• Replace all letters with their near-letters.
• Can also choose not to replace a letter!
• Base cases: if we have exhausted our max typos, or if the prefix of the word is not

in the dictionary, or if we have built up to a word and it is in the dictionary

Clumsy Thumbsy: Find All Solutions

Set<string> autocorrect(string word,
 Map<char, string> & nearLetters,
 Lexicon & dictionary,
 int maxTypos)

Prototype (note the whitespace -- no need to have this be a giant line!)

We are going to need a helper function to keep track of the remaining letters, the
built-up string, the other reference parameters, and the maxTypos.
Set<string> autocorrect(string remaining,
 Map<char, string> &nearLetters,
 Lexicon & dictionary,
 int allowableTypos,
 string builtUp)

Clumsy Thumbsy: Base Cases

 Set<string> result;
 if (allowableTypos < 0 || !dictionary.containsPrefix(builtUp)) {
 // too many typos, or no potential to build word
 return result; //empty set
 } else if (remaining == "") {
 if (dictionary.contains(builtUp)) {
 // if word, add it to set
 result.add(builtUp);
 }
 return result;
 }

Clumsy Thumbsy: Recursive Cases

 char curr = remaining[0];
 string rest = remaining.substr(1);
 for (int i = 0; i < (int)nearLetters[curr].length(); i++) {
 result += autocorrect(rest, nearLetters,dictionary,
 allowableTypos - 1, builtUp + nearLetters[curr][i]);
 }

 //can also choose not to change character
 result += autocorrect(rest, nearLetters, dictionary,
 allowableTypos, builtUp + curr);
 return result;

Partitionable: determine whether a solution exists
Write a function named partionable that takes a vector of ints and
returns true if it is possible to divide the ints into two groups such that each
group has the same sum. For example, the Vector {1,1,2,3,5} can be
split into {1,5} and {1,2,3}. However, the vector {1,4,5,6} can’t be
split into two.

bool partitionable(Vector<int>& nums) { ...

Partitionable: determine whether a solution exists
bool partitionable(Vector<int>& nums) { ...

This is our first example of recursive backtracking where we make a change
and must restore some data before we can move on; otherwise, the solution
degrades.

Basic idea:
• Keep track of the two sums! Must use helper function.
• Keep removing values from the Vector until we have no more values left

(base case)
• Search each possible path

bool partitionable(Vector<int>& rest, int sum1, int sum2);

Partitionable: determine whether a solution exists
bool partitionable(Vector<int>& nums) {
 return partitionable(nums, 0, 0); // no sums yet
}

bool partitionable(Vector<int>& rest, int sum1, int sum2) {

}

Partitionable: determine whether a solution exists
bool partitionable(Vector<int>& nums) {
 return partitionable(nums, 0, 0); // no sums yet
}

bool partitionable(Vector<int>& rest, int sum1, int sum2) {
 if (rest.isEmpty()) {
 return sum1 == sum2;
 } else {
 int n = rest[0];
 rest.remove(0);
 bool answer = helper(rest, sum1 + n, sum2) ||
 helper(rest, sum1, sum2 + n);
 rest.insert(0, n);
 return answer;
 }
}

base case: note the return value

adjust rest (must restore!!!)

here is the restoration

Maze Solving: Find a Solution

Billy Mays Maize Maze

• A classic example of backtracking is solving a
maze: if you go down one path and it isn't the
correct path, then you backtrack to your last
decision point to try an alternate path.

• If you are using an object passed by reference
you need to either undo (or "un-choose") paths
that fail, or somehow mark them in your object.

• For a maze, you don't want to try and traverse
the same path twice, so you need to mark
whether you have been down that path before.

Maze Solving

• The code for today's class includes a text-based
recursive maze creator and solver.

• The mazes look like the one to the right
• There is a Start (marked with an "S") and a

Finish (marked with an "F").
• The Xs represent walls, and the spaces

represent paths to walk through the maze.

XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

Maze Solving

• Let's make it a bit easier to see on the screen:

XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

Maze Solving

• The solution to the maze is shown here (video):

Maze Solving
XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
XS..X.........X
XXX.X.XXXXXXX.X
X X.X...X.....X
X X.XXX.X.XXXXX
X X.....X.X...X
X XXXXXXX.X.X.X
X X... X...X.X
X X.X.XXXXXXX.X
X...X.......X.X
X.XXXXXXXXX.X.X
X.........X...X
XXXXXXXXX.XXXXX
X FX
XXXXXXXXXXXXXXX

• The program will put
dots in the correct
positions.

Maze Solving
XXXXXXXXXXXXXXX
XS X X
XXX X XXXXXXX X
X X X X X
X X XXX X XXXXX
X X X X X
X XXXXXXX X X X
X X X X X
X X X XXXXXXX X
X X X X
X XXXXXXXXX X X
X X X
XXXXXXXXX XXXXX
X FX
XXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX
XS..X.........X
XXX.X.XXXXXXX.X
XbX.X...X.....X
XbX.XXX.X.XXXXX
XbX.....X.X...X
XbXXXXXXX.X.X.X
XbX...bbX...X.X
XbX.X.XXXXXXX.X
X...X.......X.X
X.XXXXXXXXX.X.X
X.........X...X
XXXXXXXXX.XXXXX
X FX
XXXXXXXXXXXXXXX

• The program will put
dots in the correct
positions.

• But, it will also put
lowercase b's when
it goes in the wrong
direction and has to
backtrack.

Maze Solving

XXXXXXXXX
XS X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• What are some actual methods for solving a maze?
• "Hand on a wall" -- put one hand on a wall at the start and keep

following. Eventually you will reach the finish (circular paths may
disrupt this method).

• Break through walls (best for Corn Mazes)
• Backtracking! Keep track of where you've been, and

systematically test all solutions. Pick compass directions in
order (e.g., N/E/S/W), returning to check other paths when you
hit dead ends and have tried all combinations.

• Let's use the backtracking method to solve the maze to the right
-- we will go N/E/S/W, from the Start.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• We will mark positions we have seen with a period ('.'), and mark
backtracking with 'b'.

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we

can't go that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we

can't go that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X.. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X.. X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)
• Trying north, row=0 and col=3, Hit wall! Back at row=1 and col=3,
• Trying east, row=1 and col=4, Hit wall! Back at row=1 and col=3,
• Trying south, row=2 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving
• We will mark positions we have seen with a period ('.'), and mark

backtracking with 'b'.
• Start: row=1 and col=1, Marking with period (.)
• We have to try all paths, N/E/S/W, and if we hit a wall ('X'), we can't go

that direction.
• Trying north, row=0 and col=1, Hit wall! Back at row=1 and col=1,
• Trying east, row=1 and col=2, Marking with period (.)
• Trying north, row=0 and col=2, Hit wall! Back at row=1 and col=2,
• Trying east, row=1 and col=3, Marking with period (.)
• Trying north, row=0 and col=3, Hit wall! Back at row=1 and col=3,
• Trying east, row=1 and col=4, Hit wall! Back at row=1 and col=3,
• Trying south, row=2 and col=3, Marking with period (.)

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X.XXX X
X X X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

...
(continues)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X.XXX X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

...
(continues)

What happens here?

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X X
XXX.X X X
X X.X X X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=1 and col=3, We came from here! Back at row=2 and col=3,
• Trying east, row=2 and col=4, Hit wall! Back at row=2 and col=3,
• Trying south, row=3 and col=3, Marking with period (.)
• Trying north, row=2 and col=3, We came from here! Back at row=3 and col=3,
• Trying east, row=3 and col=4, Hit wall! Back at row=3 and col=3,
• Trying south, row=4 and col=3, Marking with period (.)

...
(continues)

What happens here?
Bummer. We check North first, so we start going up.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.X.X.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

Now what?

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.X.X.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.X.X.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.XbX.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...X...X
XXX.XbX.X
X X.XbX.X
X X.XXX.X
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Now, we are "remembering" where we have been because we've been keeping
track of our positions and what we last checked at a given position -- we will use
recursion to do this!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying north, row=2 and col=5, We came from here! Back at row=3 and col=5,
• Trying east, row=3 and col=6, Hit wall! Back at row=3 and col=5,
• Trying south, row=4 and col=5, Hit wall! Back at row=3 and col=5,
• Trying west, row=3 and col=4, Hit wall! Back at row=3 and col=5,
• Failed. Marking bad path with b. Back at row=2 and col=5,

What is next?
How did we get here? From the North, meaning we checked South to get here.
So, we now check West (remember, we are checking N/E/S/W)

Trying west, row=2 and col=4, Hit wall! Back at row=2 and col=5,
Failed. Marking bad path with b. Back at row=1 and col=5,

Now, we are "remembering" where we have been because we've been keeping
track of our positions and what we last checked at a given position -- we will use
recursion to do this!

We will arrive back at row=5, col=7 quickly.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
X...XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)
• Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
• Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
• Trying south, row=7 and col=7, Found the Finish!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)
• Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
• Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
• Trying south, row=7 and col=7, Found the Finish!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Trying east, row=5 and col=8, Hit wall! Back at row=5 and col=7,
• Trying south, row=6 and col=7, Marking with period (.)
• Trying north, row=5 and col=7, We came from here! Back at row=6 and col=7,
• Trying east, row=6 and col=8, Hit wall! Back at row=6 and col=7,
• Trying south, row=7 and col=7, Found the Finish!

The total number of steps: 71!

That seems like a lot of steps to solve such a small maze, but remember, we are
going through a methodical process that must check all paths.

(see extra slides for all steps for this maze)

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

• Our recursive backtracking method for solving mazes must follow the same rules
for all recursion:
(1) have a case for all valid inputs,
(2) must have base cases,
(3) make forward progress towards the base case.

Let's start with the base cases. How many are there?

(1) If we go out of the bounds of the maze (the grid bounds).
• This actually won't happen for our mazes, because we have surrounded all

paths with walls.
(2) If we hit a backtracked position ('b')
•Also won't happen, because once we mark as backtracked, we'll never get
there again.

(3) If we hit a wall ('X')
(4) If we hit a position we have seen before ('.')
(5) If we find the finish ('F')

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {

if (maze[row][col] == 'X') {
 return false;
}

if (maze[row][col] == '.') {
 return false;
}

if (maze[row][col] == 'F') {
 return true;
}

}

Base cases:
Returning true means we have solved the maze!
Returning false means that this path does not solve the maze.

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {

if (maze[row][col] == 'X') {
 return false;
}

if (maze[row][col] == '.') {
 return false;
}

if (maze[row][col] == 'F') {
 return true;
}

maze[row][col] = '.';
}

Once we take care of our base cases, we'd better mark the
position we are at!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {

...

maze[row][col] = '.';

 // Recursively call solveMazeRecursivePrint(row,col)
 // for north, east, south, and west
 // If one of the positions returns true, then return true

 // north
 if (solveMazeRecursivePrint(row-1,col,maze) == true) {
 return true;
 }

...
}

Now we can recurse -- we have to check all directions!

Maze Solving

 012345678
0
1
2
3
4
5
6
7
8

XXXXXXXXX
XS..XbbbX
XXX.XbXbX
X X.XbXbX
X X.XXXbX
X X.....X
X XXXXX.X
X FX
XXXXXXXXX

bool solveMazeRecursive(int row, int col, Grid<int> &maze) {
 ...
 // north
 if (solveMazeRecursive(row-1,col,maze) == true) {
 return true;
 }

 // east
 if (solveMazeRecursive(row,col+1,maze) == true) {
 return true;
 }

 // south
 if (solveMazeRecursive(row+1,col,maze) == true) {
 return true;
 }

 // west
 if (solveMazeRecursive(row,col-1,maze) == true) {
 return true;
 }

 maze[row][col] = 'b';
 return false;
}

All four recursions. If all four return, we have to backtrack!

The Knapsack Problem: Find the best solution

One famous problem in theoretical
computer science is the so-called
knapsack problem. Given a target weight
and a set of objects in which each object
has a value and a weight, determine a
subset of objects such that the sum of
their weights is less than or equal to the
target weight and the sum of their values is
maximized.

image courtesy of wikipedia.org

The Knapsack Problem: Find the best solution

For this problem we will represent an object with the following struct:

struct objectT {
 int weight; //You may assume this is greater than or equal to 0
 int value; //You may assume this is greater than or equal to 0
};

Let's write the function:

int FillKnapsack(Vector<objectT> &objects, int targetWeight)

that considers all possible combinations of objectT from objects (such that the
sum of their weights is less than or equal to targetWeight) and returns the maximum
possible sum of object values.

The Knapsack Problem: Find the best solution

int FillKnapsack(Vector<objectT> &objects, int targetWeight)

Basic idea:
• Keep track of the weight and keep track of the

best total value ("score").
• Loop over all items, adding value to the

knapsack, and subtracting the weight of items
from the total weight allowed.

• If the weight goes below zero, we have too
many items.

• Must have a helper function!

image courtesy of wikipedia.org

int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore);

The Knapsack Problem: Solution

int FillKnapsack(Vector<objectT> &objects, int targetWeight) {
 return FillKnapsack(objects,targetWeight,0);
}

struct objectT {
 int weight; //You may assume this is greater than or equal to 0
 int value; //You may assume this is greater than or equal to 0
};

Setup struct and call to recursive function:

The Knapsack Problem: Solution
int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore) {
 if (weight < 0) return 0; // we tried too much weight!
 int localBestScore = bestScore;
 int obSize = objects.size();
 for (int i = 0; i < obSize; i++) {
 objectT originalObject = objects[i];
 int currValue = bestScore + originalObject.value;
 int currWeight = weight - originalObject.weight;
 // remove object for recursion
 objects.remove(i);
 currValue = FillKnapsack(objects,currWeight,currValue);
 if (localBestScore < currValue) {
 localBestScore = currValue;
 }
 // replace
 objects.insert(i,originalObject);
 }
 return localBestScore;
}

The Knapsack Problem: Solution
int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore) {
 if (weight < 0) return 0; // we tried too much weight!
 int localBestScore = bestScore;
 int obSize = objects.size();
 for (int i = 0; i < obSize; i++) {
 objectT originalObject = objects[i];
 int currValue = bestScore + originalObject.value;
 int currWeight = weight - originalObject.weight;
 // remove object for recursion
 objects.remove(i);
 currValue = FillKnapsack(objects,currWeight,currValue);
 if (localBestScore < currValue) {
 localBestScore = currValue;
 }
 // replace
 objects.insert(i,originalObject);
 }
 return localBestScore;
}

base case

The Knapsack Problem: Solution
int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore) {
 if (weight < 0) return 0; // we tried too much weight!
 int localBestScore = bestScore;
 int obSize = objects.size();
 for (int i = 0; i < obSize; i++) {
 objectT originalObject = objects[i];
 int currValue = bestScore + originalObject.value;
 int currWeight = weight - originalObject.weight;
 // remove object for recursion
 objects.remove(i);
 currValue = FillKnapsack(objects,currWeight,currValue);
 if (localBestScore < currValue) {
 localBestScore = currValue;
 }
 // replace
 objects.insert(i,originalObject);
 }
 return localBestScore;
}

local variable to keep
track of score

The Knapsack Problem: Solution
int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore) {
 if (weight < 0) return 0; // we tried too much weight!
 int localBestScore = bestScore;
 int obSize = objects.size();
 for (int i = 0; i < obSize; i++) {
 objectT originalObject = objects[i];
 int currValue = bestScore + originalObject.value;
 int currWeight = weight - originalObject.weight;
 // remove object for recursion
 objects.remove(i);
 currValue = FillKnapsack(objects,currWeight,currValue);
 if (localBestScore < currValue) {
 localBestScore = currValue;
 }
 // replace
 objects.insert(i,originalObject);
 }
 return localBestScore;
}

loop over all objects,
updating the local
value and weight

The Knapsack Problem: Solution
int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore) {
 if (weight < 0) return 0; // we tried too much weight!
 int localBestScore = bestScore;
 int obSize = objects.size();
 for (int i = 0; i < obSize; i++) {
 objectT originalObject = objects[i];
 int currValue = bestScore + originalObject.value;
 int currWeight = weight - originalObject.weight;
 // remove object for recursion
 objects.remove(i);
 currValue = FillKnapsack(objects,currWeight,currValue);
 if (localBestScore < currValue) {
 localBestScore = currValue;
 }
 // replace
 objects.insert(i,originalObject);
 }
 return localBestScore;
}

remove the object we
are looking at so we
can recurse. Must

remember to replace it!

The Knapsack Problem: Solution
int FillKnapsack(Vector<objectT> &objects, int weight, int bestScore) {
 if (weight < 0) return 0; // we tried too much weight!
 int localBestScore = bestScore;
 int obSize = objects.size();
 for (int i = 0; i < obSize; i++) {
 objectT originalObject = objects[i];
 int currValue = bestScore + originalObject.value;
 int currWeight = weight - originalObject.weight;
 // remove object for recursion
 objects.remove(i);
 currValue = FillKnapsack(objects,currWeight,currValue);
 if (localBestScore < currValue) {
 localBestScore = currValue;
 }
 // replace
 objects.insert(i,originalObject);
 }
 return localBestScore;
}

we return the local best score

References and Advanced Reading

•References:
• Understanding permutations: http://stackoverflow.com/questions/7537791/
understanding-recursion-to-generate-permutations

• Maze algorithms: https://en.wikipedia.org/wiki/Maze_solving_algorithm

•Advanced Reading:
• Exhaustive recursive backtracking: https://see.stanford.edu/materials/icspacs106b/
h19-recbacktrackexamples.pdf

• Backtracking: https://en.wikipedia.org/wiki/Backtracking

Extra Slides

