
Friday, February 3, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Section 10.2

CS 106X
Lecture 11:
Sorting

Today's Topics
•Logistics
•Tiny Feedback: I had the thought of maybe releasing section questions ahead of
sections so we could try working problems and have a chance to ask about
ones we couldn't figure out or wanted to see worked in section, since there's
never enough time to work all the questions in section. Good idea!

•Sorting
•Insertion Sort
•Selection Sort
•Merge Sort
•Quicksort
•Other sorts you might want to look at:
•Radix Sort
•Shell Sort
•Tim Sort
•Heap Sort (we will cover heaps later in the course)
•Bogosort

Sorting!

• In general, sorting consists of putting elements
into a particular order, most often the order is
numerical or lexicographical (i.e., alphabetic).

• In order for a list to be sorted, it must:
• be in nondecreasing order (each element

must be no smaller than the previous
element)

• be a permutation of the input

Sorting!

• Sorting is a well-researched subject, although
new algorithms do arise (see Timsort, from
2002)

• Fundamentally, comparison sorts at best have
a complexity of O(n log n).

• We also need to consider the space
complexity: some sorts can be done in place,
meaning the sorting does not take extra
memory. This can be an important factor when
choosing a sorting algorithm! (must sort)

Sorting!
• In-place sorting can be “stable”

or “unstable”: a stable sort
retains the order of elements
with the same key, from the
original unsorted list to the final,
sorted, list

• There are some phenomenal
online sorting demonstrations:
see the “Sorting Algorithm
Animations” website:

• http://www.sorting-algorithms.com, or the animation site at: http://
www.cs.usfca.edu/~galles/visualization/ComparisonSort.html or the cool
“15 sorts in 6 minutes” video on YouTube: https://www.youtube.com/
watch?v=kPRA0W1kECg

Sorts

• There are many, many different ways to sort elements in a list.
We will look at the following:

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Insertion Sort

Insertion sort: orders a list of values by repetitively inserting a particular value into a
sorted subset of the list

More specifically:
– consider the first item to be a sorted sublist of length 1
– insert second item into sorted sublist, shifting first item if needed
– insert third item into sorted sublist, shifting items 1-2 as needed
– ...
– repeat until all values have been inserted into their proper positions

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

9 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

5

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 9 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

in place already (i.e., already bigger than 9)

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 9 10 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

8 8 < 10, so 10 moves right. Then 8 < 9, so move 9 right

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

in place already (i.e., already bigger than 10)

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 12 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

11

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 11 12 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

in place already (i.e., already bigger than 12)

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

5 8 9 10 11 12 14 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

2 Lots of shifting!

Insertion Sort

Algorithm:
• iterate through the list (starting with the second element)
• at each element, shuffle the neighbors below that element up until the proper

place is found for the element, and place it there.

2 5 8 9 10 11 12 14 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Okay

Insertion Sort

Complexity:
Worst performance:
Best performance:

2 5 8 9 10 11 12 14 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Okay

O(n2) (why?)
O(n)

–Average performance: O(n2) (but very fast for small arrays!)
–Worst case space complexity: O(n) total (plus one for swapping)

Insertion Sort Code

// Rearranges the elements of v into sorted order.
void insertionSort(Vector<int>& v) {
 for (int i = 1; i < v.size(); i++) {
 int temp = v[i];
 // slide elements right to make room for v[i]
 int j = i;
 while (j >= 1 && v[j - 1] > temp) {
 v[j] = v[j - 1];
 j--;
 }
 v[j] = temp;
 }
}

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Selection Sort

• Selection Sort is another in-place sort that has a simple algorithm:
• Find the smallest item in the list, and exchange it with the left-most

unsorted element.
• Repeat the process from the first unsorted element.

• See animation at: http://www.cs.usfca.edu/~galles/visualization/
ComparisonSort.html

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Selection Sort

• Algorithm
• Find the smallest item in the list, and exchange it with the left-

most unsorted element.
• Repeat the process from the first unsorted element.

• Selection sort is particularly slow, because it needs to go through the
entire list each time to find the smallest item.

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Selection Sort

• Algorithm
• Find the smallest item in the list, and exchange it with the left-

most unsorted element.
• Repeat the process from the first unsorted element.

• Selection sort is particularly slow, because it needs to go through the
entire list each time to find the smallest item.

9 5 10 8 12 11 14 2 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Selection Sort

• Algorithm
• Find the smallest item in the list, and exchange it with the left-

most unsorted element.
• Repeat the process from the first unsorted element.

• Selection sort is particularly slow, because it needs to go through the
entire list each time to find the smallest item.

2 5 10 8 12 11 14 9 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

(no swap necessary)

Selection Sort

• Complexity:
• Worst performance: O(n2)
• Best performance: O(n2)
• Average performance: O(n2)
• Worst case space complexity: O(n) total (plus one for swapping)

2 5 10 8 12 11 14 9 22 43

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

etc.

Selection Sort Code
// Rearranges elements of v into sorted order
// using selection sort algorithm
void selectionSort(Vector<int>& v) {
 for (int i = 0; i < v.size() - 1; i++) {
 // find index of smallest remaining value
 int min = i;
 for (int j = i + 1; j < v.size(); j++) {
 if (v[j] < v[min]) {
 min = j;
 }
 }
 // swap smallest value to proper place, v[i]
 if (i != min) {
 int temp = v[i];
 v[i] = v[min];
 v[min] = temp;
 }
 }
}

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Merge Sort

• Merge Sort is another comparison-based sorting algorithm and it is a
divide-and-conquer sort.

• Merge Sort can be coded recursively
• In essence, you are merging sorted lists, e.g.,
• 	L1 = {3,5,11} L2 = {1,8,10}
• 	merge(L1,L2)={1,3,5,8,10,11}

Merge Sort

• Merging two sorted lists is easy:

3 5 11L1:

Result:

1 8 10L2:

Merge Sort

• Merging two sorted lists is easy:

3 5 11L1:

Result:

8 10L2:

1

Merge Sort

• Merging two sorted lists is easy:

5 11L1:

Result:

8 10L2:

1 3

Merge Sort

• Merging two sorted lists is easy:

11L1:

Result:

8 10L2:

1 3 5

Merge Sort

• Merging two sorted lists is easy:

11L1:

Result:

10L2:

1 3 5 8

Merge Sort

• Merging two sorted lists is easy:

11L1:

Result:

L2:

1 3 5 8 10

Merge Sort

• Merging two sorted lists is easy:

L1:

Result:

L2:

1 3 5 8 10 11

Merge Sort

• Full algorithm:
• Divide the unsorted list into n sublists, each containing

1 element (a list of 1 element is considered sorted).
• Repeatedly merge sublists to produce new sorted

sublists until there is only 1 sublist remaining. This will
be the sorted list.

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 4 086

Merge Sort: Full Example

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

4 0

99 6 86 15 58 35 4 086

Merge Sort: Full Example

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Full Example

6 99 86 15 35 58 0 4 86

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Full Example

6 15 86 99 0 4 35 58 86

6 99 86 15 35 58 0 4 86

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Full Example

0 4 6 15 35 58 86 86 99

6 15 86 99 0 4 35 58 86

6 99 86 15 35 58 0 4 86

4 0

99 6 86 15 58 35 0 486

Merge as you go back up

Merge Sort: Space Complexity

0 4 6 15 35 58 86 86 99

• Merge Sort can be completed in place, but
• It takes more time because elements may have to be

shifted often
• It can also use “double storage” with a temporary array.

• This is fast, because no elements need to be shifted
• It takes double the memory, which makes it inefficient

for in-memory sorts.

Merge Sort: Time Complexity

0 4 6 15 35 58 86 86 99

• The Double Memory merge sort has a worst-case time
complexity of O(n log n) (this is great!)

• Best case is also O(n log n)
• Average case is O(n log n)

• Note: We would like you to understand this analysis (and
know the outcomes above), but it is not something we
will expect you to reinvent on the midterm.

Merge Sort Code (Recursive!)
// Rearranges the elements of v into sorted order using
// the merge sort algorithm.
void mergeSort(Vector<int>& v) {
 if (v.size() >= 2) {
 // split vector into two halves
 Vector<int> left;
 for (int i = 0; i < v.size()/2; i++) {
 left += v[i];
 }
 Vector<int> right;
 for (int i = v.size()/2; i < v.size(); i++) {
 right += v[i];
 }
 // recursively sort the two halves
 mergeSort(left);
 mergeSort(right);
 // merge the sorted halves into a sorted whole
 v.clear();
 merge(v, left, right);
 }
}

Merge Halves Code
// Merges the left/right elements into a sorted result.
// Precondition: left/right are sorted
void merge(Vector<int>& result, Vector<int>& left, Vector<int>& right) {
 int i1 = 0; // index into left side
 int i2 = 0; // index into right side
 for (int i = 0; i < left.size() + right.size(); i++) {
 if (i2 >= right.size()
 || (i1 < left.size()
 && left[i1] <= right[i2])) {
 // take from left
 result += left[i1];
 i1++;
 } else {
 // take from right
 result += right[i2];
 i2++;
 }
 }
}

Sorts

Insertion Sort
Selection Sort

Merge Sort
Quicksort

Quicksort

• Quicksort is a sorting algorithm that is often faster
than most other types of sorts.

• However, although it has an average O(n log n) time
complexity, it also has a worst-case O(n2) time
complexity, though this rarely occurs.

Quicksort

• Quicksort is another divide-and-conquer algorithm.

• The basic idea is to divide a list into two smaller
sub-lists: the low elements and the high
elements. Then, the algorithm can recursively sort
the sub-lists.

Quicksort Algorithm
• Pick an element, called a pivot, from the list
• Reorder the list so that all elements with values less than

the pivot come before the pivot, while all elements with
values greater than the pivot come after it. After this
partitioning, the pivot is in its final position. This is called the
partition operation.

• Recursively apply the above steps to the sub-list of
elements with smaller values and separately to the sub-list
of elements with greater values.

• The base case of the recursion is for lists of 0 or 1
elements, which do not need to be sorted.

Quicksort Algorithm

• We have two ways to perform quicksort:
• The naive algorithm: create new lists for each sub-

sort, leading to an overhead of n additional
memory.

• The in-place algorithm, which swaps elements.

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (6)

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (6)

5 3 4 9 12

< 6 > 6

6

Partition into two new lists -- less than the pivot on
the left, and greater than the pivot on the right.

Even if all elements go into one list, that was just a
poor partition.

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (5)

5 3 4 9 12

< 5 < 9

6

Keep partitioning the sub-lists

3 4

pivot (9)

125 96

> 9> 5

Quicksort Algorithm: Naive

6 5 9 12 3 4

pivot (3)

5 3 4 9 12

< 3

6

3 4 125 96
> 3

43 5 96 12

Quicksort Algorithm: Naive

6 5 9 12 3 4

5 3 4 9 126

3 4 125 96

3 4 5 6 9 12

Quicksort Algorithm: Naive Code
Vector<int> naiveQuickSortHelper(Vector<int> v) { // not passed by reference!
 // base case: list of 0 or 1
 if (v.size() < 2) {
 return v;
 }
 int pivot = v[0]; // choose pivot to be left-most element

 // create two new vectors to partition into
 Vector<int> left, right;

 // put all elements <= pivot into left, and all elements > pivot into right
 for (int i=1; i<v.size(); i++) {
 if (v[i] <= pivot) {
 left.add(v[i]);
 }
 else {
 right.add(v[i]);
 }
 }
 left = naiveQuickSortHelper(left); // recursively handle the left
 right = naiveQuickSortHelper(right); // recursively handle the right

 left.add(pivot); // put the pivot at the end of the left

 return left + right; // return the combination of left and right
}

Quicksort Algorithm: In-Place

In-place, recursive algorithm:
 int quickSort(vector<int> &v, int leftIndex, int rightIndex);
• Pick your pivot, and swap it with the end element.
• Traverse the list from the beginning (left) forwards until the value should be to the

right of the pivot.
• Traverse the list from the end (right) backwards until the value should be to the

left of the pivot.
• Swap the pivot (now at the end) with the element where the left/right cross.
This is best described with a detailed example...

0 1 2 3 4 5

6 5 9 12 3 4

pivot (6)

Quicksort Algorithm: In-Place

0 1 2 3 4 5

6 5 9 12 3 4

pivot (6)

quickSort(vector, 0, 5)

• Pick your pivot, and swap it with the end element.

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 9 12 3 6

pivot (6)

quickSort(vector, 0, 5)

• Pick your pivot, and swap it with the end element.

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 9 12 3 6 pivot (6)

quickSort(vector, 0, 5)

Choose the "left" / "right" indices to be at the start (after the pivot) / end of your vector.

Traverse the list from the beginning (left) forwards until the value should be to the right of
the pivot.

left right

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 9 12 3 6 pivot (6)

quickSort(vector, 0, 5)

Traverse the list from the beginning (left) forwards until the value should be to the right of
the pivot.

left right

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 9 12 3 6 pivot (6)

quickSort(vector, 0, 5)

• Traverse the list from the end (right) backwards until the value should be to the left
of the pivot.

left right
9 should be to the right

of the pivot

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 9 12 3 6 pivot (6)

quickSort(vector, 0, 5)

left right
3 should be to the left

of the pivot

• The left element and the right element are out of order, so we swap them, and
move our left/right indices.

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 3 12 9 6 pivot (6)

quickSort(vector, 0, 5)

• The left element and the right element are out of order, so we swap them, and
move our left/right indices.

left

right

3 should be to the left
of the pivot

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 3 12 9 6 pivot (6)

quickSort(vector, 0, 5)

When the left and right cross each other, we return the index of the left/right, and then
swap the left and the pivot.

left

right

3 should be to the left
of the pivot

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 3 6 9 12 pivot (6)

When the left and right cross each other, we return the index of the left/right, and then
swap the left and the pivot.
return left;

Notice that we have partitioned correctly: all the elements to the left of the pivot are
less than the pivot, and all the elements to the right are greater than the pivot.

left

right

3 should be to the left
of the pivot

Quicksort Algorithm: In-Place

0 1 2 3 4 5

4 5 3 6 9 12

quickSort(vector, 0, 2)

Recursively call quickSort() on the two new partitions
The original pivot is now in the proper place and does not need to be re-sorted.

quickSort(vector, 4, 5)

Quicksort Algorithm: Choosing the Pivot

0 1 2 3 4 5

4 5 3 6 9 12

• One interesting issue with quicksort is the decision about choosing
the pivot.

• If the left-most element is always chosen as the pivot, already-sorted
arrays will have O(n2) behavior (why?)

• Therefore, choosing a pivot that is random works well, or choosing
the middle item as the pivot.

Quicksort Algorithm: Repeated Elements

0 1 2 3 4 5

5 5 4 6 5 5

• Repeated elements also cause quicksort to slow down.
• If the whole list was the same value, each recursion would cause all

elements to go into one partition, which degrades to O(n2)
• The solution is to separate the values into three groups: values less

than the pivot, values equal to the pivot, and values greater than the
pivot (sometimes called Quick3)

Quicksort Algorithm: Big-O

0 1 2 3 4 5

3 5 4 6 12 9

• Best-case time complexity: O(n log n)
• Worst-case time complexity: O(n2)
• Average time complexity: O(n log n)
• Space complexity: naive: O(n) extra, in-place: O(log n) extra (because

of recursion)

Quicksort In-place Code

/*
 * Rearranges the elements of v into sorted order using
 * a recursive quick sort algorithm.
 */
void quickSort(Vector<int>& v) {
 quickSortHelper(v, 0, v.size() - 1);
}

We need a helper function to pass along left and right.

Quicksort In-place Code: Helper Function
void quickSortHelper(Vector<int>& v, int min, int max) {
 if (min >= max) { // base case; no need to sort
 return;
 }

 // choose pivot; we'll use the first element (might be bad!)
 int pivot = v[min];
 swap(v, min, max); // move pivot to end

 // partition the two sides of the array
 int middle = partition(v, min, max - 1, pivot);

 swap(v, middle, max); // restore pivot to proper location

 // recursively sort the left and right partitions
 quickSortHelper(v, min, middle - 1);
 quickSortHelper(v, middle + 1, max);
}

Quicksort In-place Code: Partition Function
// Partitions a with elements < pivot on left and
// elements > pivot on right;
// returns index of element that should be swapped with pivot
int partition(Vector<int>& v, int left, int right, int pivot) {
 while (left <= right) {
 // move index markers left, right toward center
 // until we find a pair of out-of-order elements
 while (left <= right && v[left] < pivot) {
 left++;
 }
 while (left <= right && v[right] > pivot) {
 right--;
 }

 if (left <= right) {
 swap(v, left++, right--);
 }
 }
 return left;
}

Recap

Sorting Big-O Cheat Sheet

Sort Worst Case Best Case Average Case

Insertion O(n2) O(n) O(n2)

Selection O(n2) O(n2) O(n2)

Merge O(n log n) O(n log n) O(n log n)

Quicksort O(n2) O(n log n) O(n log n)

References and Advanced Reading

•References:
•http://en.wikipedia.org/wiki/Sorting_algorithm (excellent)
•http://www.sorting-algorithms.com (fantastic visualization)
•More online visualizations: http://www.cs.usfca.edu/~galles/visualization/Algorithms.html
(excellent)

•Excellent mergesort video: https://www.youtube.com/watch?v=GCae1WNvnZM
•Excellent quicksort video: https://www.youtube.com/watch?v=XE4VP_8Y0BU
• Full quicksort trace: http://goo.gl/vOgaT5

•Advanced Reading:
• YouTube video, 15 sorts in 6 minutes: https://www.youtube.com/watch?v=kPRA0W1kECg (fun,
with sound!)

• Amazing folk dance sorts: https://www.youtube.com/channel/UCIqiLefbVHsOAXDAxQJH7Xw
•Radix Sort: https://en.wikipedia.org/wiki/Radix_sort
•Good radix animation: https://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
•Shell Sort: https://en.wikipedia.org/wiki/Shellsort
•Bogosort: https://en.wikipedia.org/wiki/Bogosort

Extra Slides

