
Monday, February 6, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Chapter 10

CS 106X
Lecture 12: Memoization
and Structs

Today's Topics

•Logistics

•Assignment four: backtracking!
•Memoization
•More on Structs

Memoization

*	Some	poe(c	license	used	when	transla(ng	quote

Tell me and I forget. Teach me
and I rememoize.*

- Xun Kuang, 300 BCE

Assignment 4: Backtracking

Three Parts:

• Anagrams
• Boggle
• Brute Force Decryption

Assignment 4a: Anagrams

"...recursively find and print all anagrams that can be formed
using all of the letters of the given phrase, and that include at

most max words total, in alphabetical order..."

Assignment 4b: Boggle

A classic board game with letter cubes (dice) that is not dog
friendly: https://www.youtube.com/watch?v=2shOz1ZLw4c

Assignment 4b: Boggle

In Boggle, you can make words starting with any letter and going
to any adjacent letter (diagonals, too), but you cannot repeat a

letter-cube.

Assignment 4c: Brute Force Decryption

• For this problem, you will extend your Assignment 2 transposition cipher code to
attempt a brute-force decryption of a cipher, without the key.

Dance like no one is watching. Encrypt like everyone is.

Demo

Assignment 4c: Brute Force Decryption
• Transposition ciphers (the way we have implemented

them) have an inherent flaw: multiple keys will decrypt
a phrase. If the original key was "secret", all of the
following keys will decrypt: "SECRET", "pedler",
"scales", "teapot", "hedges", "medley", and
"521436".

• All of the above keys have the same alphabetic
ordering.

• You will leverage this fact to determine all possible
permutations for an n-character key, and then you
will simply run the decryption algorithm you wrote for
assignment 2 on each possible key.

Dance like no one is
watching. Encrypt like

everyone is.

Assignment 4c: Brute Force Decryption
• You will need to produce a "Top X" (set at five with a

constant, although we can change this for testing) list
of possible decryptions:

Please enter the text to attempt to decrypt: rsuetoye ss tr merxdteopce pHs t cierete.
Testing keys of length 1
Testing keys of length 2
Testing keys of length 3
Testing keys of length 6
Testing keys of length 7

My best guess for the top 5 decryption possibilities:

Here is some super secret text to decrypt. (100%)

trxy ecrsde re ut te mees tpetosceHrop i.s (62.5%)

re ieHsome supers ecres text to det ypt.rc (50%)

i Hereems sore super sectxt teed to .tcryp (50%)

yrxt ecesdr re ut te seem tpstoeceH opri.s (50%)

only check keys that
would evenly divide into

the ciphertext length!
(another flaw in the

encryption)

Keep a sorted top X list
to return

Beautiful Recursion
• Let's look at one of the most beautiful recursive definitions:

Fn = Fn-1 + Fn-2
where F0=0, F1=1

• This definition leads to this:

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

• And this:

Beautiful Recursion

The Fibonacci Sequence

Fn = Fn-1 + Fn-2
where F0=0, F1=1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

This is particularly easy to code recursively!

long plainRecursiveFib(int n) {
 if(n == 0) {
 // base case
 return 0;
 } else if (n == 1) {
 // base case
 return 1;
 } else {
 // recursive case
 return plainRecursiveFib(n - 1) + plainRecursiveFib(n - 2);
 }
}

Let's play!

The Fibonacci Sequence
What happened??

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence
What happened??

O(an)

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence
What happened??

O(an)

https://www.youtube.com/watch?v=qXNqEURmKtA

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence
What happened??

O(an)

https://www.youtube.com/watch?v=qXNqEURmKtA

y	=	3E-06e0.4852x
R²	=	0.99986

0
5000
10000
15000
20000
25000
30000
35000
40000

38 40 42 44 46 48 50

Ti
m
e	
(m

s)

n

Recursive	Fibonacci

The Fibonacci Sequence

By the way:

3x10-6e0.4852n≅O(1.62n)
O(1.62n) is technically O(2n)

because
O(1.62n) < O(2n)

We call this a "tighter bound," and we like round
numbers, especially ones that are powers of two. :)

Fibonacci: Recursive Call Tree
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0

This is basically the reverse of binary search: we are splitting into two
marginally smaller cases, not splitting into half of the problem size!

Fibonacci: There is hope!
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0
notice! a repeat!

fib(3) is completely calculated twice

Fibonacci: There is hope!
n = 5

n = 4 n = 3

n = 3 n = 2 n = 2 n = 1

n = 2 n = 1 n = 1 n = 0 n = 1 n = 0

n = 1 n = 0
more repeats!

Fibonacci: There is hope!
6

5 4

4 3 3 2

3 2 2 1 2 1 1 0

2 1 1 0 1 0 1 0
1 0

let's leverage all the repeats!

Fibonacci: There is hope!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0
If we store the result of the first time we

calculate a particular fib(n), we don't have to
re-do it!

n = 3

n = 2 n = 1

n = 1 n = 0

Memoization: Don't re-do unnecessary work!

Memoization: Store previous results so that in future
executions, you don’t have to recalculate them.

aka
 

Remember what you have already done!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: <empty>

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1 n = 1 n = 0

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2
Don't recurse! Use the cache!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

n = 2 n = 1

n = 1 n = 0

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Don't recurse! Use the cache!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3

Don't recurse! Use the cache!

Memoization: Don't re-do unnecessary work!
n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

Memoization: Don't re-do unnecessary work!

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

Cache: fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5

done!

Memoization: Don't re-do unnecessary work!
long memoizationFib(int n) {
 Map<int, long> cache;
 return memoizationFib(cache, n);
}

setup for helper function

Memoization: Don't re-do unnecessary work!
long memoizationFib(int n) {
 Map<int, long> cache;
 return memoizationFib(cache, n);
}

long memoizationFib(Map<int, long>&cache, int n) {
 if(n == 0) {
 // base case #1
 return 0;
 } else if (n == 1) {
 // base case #2
 return 1;
 } else if(cache.containsKey(n)) {
 // base case #3
 return cache[n];
 }
 // recursive case
 long result = memoizationFib(cache, n-1) + memoizationFib(cache, n-2);
 cache[n] = result;
 return result;
}

Memoization: Don't re-do unnecessary work!

Complexity?

n = 5

n = 4

n = 3 n = 2

n = 2 n = 1

n = 1 n = 0

n = 3

The recursive path only happens on the left...
O(n log n) if using a map for the cache
O(n) if using a hashmap for the cache

Fibonacci: the bigger picture
There are actually many ways to write a fibonacci function.

This is a case where the plain old iterative function works fine:
long iterativeFib(int n) {
 if(n == 0) {
 return 0;
 }
 long prev0 = 0;
 long prev1 = 1;
 for (int i=n; i >= 2; i--) {
 long temp = prev0 + prev1;
 prev0 = prev1;
 prev1 = temp;
 }
 return prev1;
}

Recursion is used often,
but not always.

Fibonacci: Okay, one more...
Another way to keep track of previously-computed values
in fibonacci is through the use of a different helper
function that simply passes along the previous values:

long passValuesRecursiveFib(int n) {
 if (n == 0) {
 return 0;
 }
 return passValuesRecursiveFib(n, 0, 1);
}

long passValuesRecursiveFib(int n, long p0, long p1) {
 if (n == 1) {
 // base case
 return p1;
 }
 return passValuesRecursiveFib(n-1, p1, p0 + p1);
}

More on Structs
We have mentioned structs already -- they are useful for
keeping track of related data as one type, which can get
used like any other type. You can think of a struct as the
Lunchable of the C++ world.

struct Lunchable {
 string meat;
 string dessert;
 int numCrackers;
 bool hasCheese;
};

// Vector of Lunchables
Vector<Lunchable> lunchableOrder;

A Real Problem

Your cool picture from that trip to Europe doesn't fit on Instagram!

Bad Option #1: Crop

You got cropped out!

Bad Option #2: Resize

Stretchy castles look weird...

New Algorithm: Seam Carving!

New Algorithm: Seam Carving!

How can you change an image without changing its aspect ration,
but while retaining the important information?

New Algorithm: Seam Carving!

We could delete an entire column of pixels, but we could also
weave our way through a path of 1-pixel wide image that removes

the least amount of stuff.

How to represent the path

struct Coord {
 int row;
 int col;
};

A struct!

A path is just a Vector of coordinates:

int main() {
 Coord myCord;
 myCoord.row = 5;
 myCoord.col = 7;
 cout << myCord.row << endl;
 Vector<Coord> path;
 return 0;
}

New Algorithm: Seam Carving!

Important pixels are ones that are considerably different from their
neighbors.

New Algorithm: Seam Carving!

Let's write a recursive algorithm that can find the seam that
minimizes the sum of all the importances of the pixels.

New Algorithm: Seam Carving!
Vector<Coord> getSeam(Grid<double> &weight, Coord curr);

References and Advanced Reading

•References:
• https://en.wikipedia.org/wiki/Fibonacci_number
• https://en.wikipedia.org/wiki/Seam_carving

Extra Slides

