CS 106X

Lecture 13: Trees N &
Wednesday, February 22, 2017 © 7

Programming Abstractions (Accelerated)
Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Section 16.1

Today's Topics

®| Ogistics
e Midterm Tomorrow!
e Midterm will cover up to and including Linked Lists

e|ntroduction to Trees

Trees

We have already seen trees in the class in the form of decision trees!

cart
art cri cat car

Pt DNl D Nl Nl D

nm at ar it ¢t cr at ¢t ca ar cr ca
Y A A N A N AN N A N AV A N AV AV AN

tr ta ra tr tc rc ta tc ac ra rc ac

Trees

You've coded trees for recursive assignments!

<s>

<np> | ‘ <vp>

Y N,

<pn> <tv> <np~>
<dp> <adjp> <n>
A Sa
<adj> <adjp>
v
<adj>
! ! ! \
Fred honored the green wonderful child

Random expansion from sentence. txt grammar for symbol "<s>"

Trees Can Describe Hierarchies

)
=
_l
L
9P,
D
e
P,
Q
m
o
O
-
O
9P,
D
O
C
W
O
P,
D
O
_l

Trees Can Describe Programs

// Example student solution
function run() {

// move then loop run
move(); @
// the condition is fixed move _
while (notFinished()) { ///Z R\\\ while
if (isPathClear()) { @
move(); if/else”) ™\

} else { move
turnLeft(); [:]
} isPathClear -~ ‘\\\\\\
mov Dtur

// redundant
move(): @ nLeft
}

\
€
} H

* This is a figure in an academic paper written by a recent CS106 student!{:

750
s

..........

Trees are inherently recursive

What is a Tree (in Computer Science)?

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, ..., Tk, whose roots are connected by a
directed edge fromr.

A? A is the root

Tree Terminology

What is a Tree (in Computer Science)?

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, ..., Tk, whose roots are connected by a
directed edge fromr.

A? A is the root

Fisa

child of A

and a parent
Bisa
child of A
Note: there are
N nodes and
N-1 edges

Tree Terminology

What is a Tree (in Computer Science)?

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, ..., Tk, whose roots are connected by a
directed edge from r.

% A is the root

Nodes with no
children are
called /leaves

Tree Terminology

What is a Tree (in Computer Science)?

* Atree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, ..., Tk, whose roots are connected by a
directed edge from r.

% A is the root

Nodes with the ! ! I :
same parent are
siblings. 0 °

Tree Terminology

We can define a
path from a parent
to its children.

The path A-E-]-0O
has a length of three
(the number of edges)

Tree Terminology

The depth of a node °
is the length from the

root. The depth of node
J is 2. The depth of the

i ORONENGC

The height of a node
is the longest path

S IOl0IoIeI0I0
leaf. The height of

node F is 1. The height

of all leaves is 0. Q °

Tree Terminology

The height of a tree °
is the height of the

root (in this case,

the height of the tree
® & ©

BIOICIGION0
IO

Tree Terminology

Trees can have only one parent, and cannot have cycles

Tree Terminology

Trees can have only one parent, and cannot have cycles

Tree Terminology

Trees can have only one parent, and cannot have cycles

L

2/ N e parents

- N I/ s’
@\ /® @“\@,/ Node A
®~ / has two

Node A has two parents

Tree Terminology

Trees can have only one parent, and cannot have cycles

Tree Terminology

Trees can have only one parent, and cannot have cycles

not a tree: the red edges make a cycle

How can we build trees programmatically?

How can we build trees programmatically?

Binary Tree:

value

How can we build trees programmatically?

Binary Tree:

value

Linked List

value

How can we build trees programmatically?

Binary Tree:

value

/

\

Linked List

value

o

How can we build trees programmatically?

Binary Tree:

value

7

value

\

\

value

7

Linked List

value

o

How can we build trees programmatically?

Binary Tree:

value

S

value value

/l/ / I/ value

Linked List

The Most Important Slide

Binary Tree:

struct Tree {

string value;
Tree *left;

Tree *right; u{/
}; \

value

We Can Have Ternary Trees (or any number, n)

struct Tree {

Ternary Tree:

string value;

value

Tree *left;
Tree *middle;

Tree *right;

Z

We Can Have Ternary Trees (or any number, n)

N-ary Tree:

struct Tree {
string value;
Vector<Tree *> children;

y LT

value

Trees can be defined as elther structs or classes

struct Tree {
string value;
Tree * left;
Tree * right;

}i

class Tree {
private:
string value;
Vector<Tree *>

children;

Let's write some code to "traverse” the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4. evel-order

this
17‘
7S

written

./.\

/

sente%

Let's write some code to "traverse” the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4. evel-order

1.Do something
2.Go left

3.Go right

this
17‘
7S

written

./.\

/

sente%

Let's write some code to "traverse” the tree

struct Tree {

string value; this

Tree * left;

T * right;
,, ree * rig -:?‘ l\~

. IS written
There are multiple ways to traverse L—
the nodes in a binary tree: 7S ~
a | corrclectl/vl sente%

1.Pre-order 1 Co left L— L —1 = —
2.In-order

2.Do something
3.Post-order 3.Go right

4. evel-order

Let's write some code to "traverse” the tree

struct Tree {

string value; this

Tree * left;

Tree * right;
}i ’ 7l .\

. IS written
There are multiple ways to traverse L—
the nodes in a binary tree: 7 N ~
a | corrclectl/vl sente%

1.Pre-order 1 Go left —1—1 = =
2.In-order 2 Go I’Ight
3.Post-order 3.Do something

4. evel-order

Let's write some code to "traverse” the tree

struct Tree {
string value;
Tree * left;
Tree * right;

}i

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order

this
17‘
7S

written

./.\

/

sente%

3.Post-order
4. evel-order

Hmm...can we do this recursively?
We want to print the levels: 0, 1, 2 from left-to-right order

Let's write some code to "traverse” the tree

struct Tree {

string value; this
Tree * left;
ree * right;
}i : o 7l .\
. IS written
There are multiple ways to traverse L—
the nodes in a binary tree: 7S ~
a | corrclectl/vl sente%
1.Pre-order =1l = L=
2.In-order N — '
3 Post-order 1 otEer?sz/erLngurgscl)\;e y...let's use a queue! fsho#.kj look ;
- ' __— Tamiiar...wor

4.Level-order 2. While queue is not empty:] ladder?

a. dequeue node
do something with node

b.
C. enqgueue left child of node if it exists
d. enqueue right child of node if it exists

| et's write some code

struct Tree {
string value; this
Tree * left;

Tree * right; 7l .\

}i
void preOrder (Tree * tree) { = written
if (tree == NULL) return; :””’—
cout<< tree->value <" "; ;? .\‘ .\‘
preOrder (tree->left) ;
preOrder (tree->right) ; a correctly sentence.
} =”,——'L”’,—— =”,——' E””,—
void inOrder (Tree * tree) { void levelOrder (Tree *tree) {
if (tree == NULL) return; Queue<Tree *>treeQueue;
inOrder (tree->left) ; treeQueue.enqueue (tree) ;
cout<< tree->value <<" ": while (!treeQueue.isEmpty()) {
. i Tree *node = treeQueue.dequeue() ;
inOrder (tree->right) ; cout << node->value << " ";

}

if (node->left '= NULL) {

void postOrder (Tree * tree) { , treeQueue.enqueue (node->left) ;

if (tree == NULL) retu]_’n" if (node->right != NULL) {
postOrder (tree->left); treeQueue.enqueue (node->right) ;
postOrder (tree->right) ; }

cout<< tree->value << " "; }

References and Advanced Reading

* References:
ehttps://en.wikipedia.org/wiki/Tree (data structure)
ehttp://pages.cs.wisc.edu/~vernon/cs367/notes/8. TREES.hitml

+ Advanced Reading:
ehttp://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html

e(Great set of tree-type questions:
ehttp://cslibrary.stanford.edu/110/BinaryTrees.html

