
Wednesday, February 22, 2017

Programming Abstractions (Accelerated)

Winter 2017

Stanford University

Computer Science Department

Lecturer: Chris Gregg

reading:

Programming Abstractions in C++, Section 16.1

CS 106X
Lecture 18: Trees

Today's Topics

•Logistics
•Midterm Tomorrow!
•Midterm will cover up to and including Linked Lists

•Introduction to Trees

Trees
We have already seen trees in the class in the form of decision trees!

cart

art crt cat car

r a r c a ct a t c a ct r t c r ct r t a r a

rt at ar rt ct cr ctat cacrarca

Trees
You've coded trees for recursive assignments!

world

USA

California

China Honduras

Tegucigalpa

SF LA Kent

Ohio

Hunan Sha
ngh

ai

Changsha

Trees Can Describe Hierarchies

Trees Can Describe Websites (HTML)

*	This	is	a	figure	in	an	academic	paper	written	by	a	recent	CS106	student!

Trees Can Describe Programs

Trees are inherently recursive

A

B C D

O

MKH

F

LI

GE

N

P

J

A is the root

What is a Tree (in Computer Science)?

• A tree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, …, Tk, whose roots are connected by a
directed edge from r.

Tree Terminology

A

B C D

O

MKH

F

LI

GE

N

P

J

A is the root

B is a
child of A

F is a
child of A
and a parent
of K,L,M

Note: there are
N nodes and
N-1 edges

What is a Tree (in Computer Science)?

• A tree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, …, Tk, whose roots are connected by a
directed edge from r.

What is a Tree (in Computer Science)?

• A tree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, …, Tk, whose roots are connected by a
directed edge from r.

A

B C D

O

MKH

F

LI

GE

N

P

J

A is the root

Nodes with no
children are
called leaves

Tree Terminology

What is a Tree (in Computer Science)?

• A tree is a collection of nodes, which can be empty. If it is not empty, there is a “root” node,
r, and zero or more non-empty subtrees, T1, T2, …, Tk, whose roots are connected by a
directed edge from r.

A

B C D

O

MKH

F

LI

GE

N

P

J

A is the root

Nodes with the
same parent are
siblings.

Tree Terminology

Tree Terminology

A

O

MK

F

LI

GE

N

P

J

We can define a
path from a parent
to its children.

The path A-E-J-O
has a length of three
(the number of edges)

Tree Terminology

A

O

MK

F

LI

GE

N

P

J

The depth of a node
is the length from the
root. The depth of node
J is 2. The depth of the
root is 0.

The height of a node
is the longest path
from the node to a
leaf. The height of
node F is 1. The height
of all leaves is 0.

Tree Terminology

A

O

MK

F

LI

GE

N

P

J

The height of a tree
is the height of the
root (in this case,
the height of the tree
is 3.

Tree Terminology

Trees can have only one parent, and cannot have cycles

Tree Terminology

Trees can have only one parent, and cannot have cycles

S

A

N

S

T A

N

F O

Tree Terminology

Trees can have only one parent, and cannot have cycles

S

A

N

S

T A

N

F ONode A has two parents

Node A
has two
parents

Tree Terminology

Trees can have only one parent, and cannot have cycles

S

T A

N

S

T A

N

Tree Terminology

Trees can have only one parent, and cannot have cycles

S

T A

N

S

T A

N

not a tree: the red edges make a cycle

How can we build trees programmatically?

How can we build trees programmatically?

Binary Tree:

value

How can we build trees programmatically?

Binary Tree:

value

Linked List

value

How can we build trees programmatically?

Binary Tree:

value

Linked List

value

How can we build trees programmatically?

Binary Tree:

value

Linked List

value

value value

How can we build trees programmatically?

Binary Tree:

value

Linked List

value

value value

The Most Important Slide

Binary Tree:

value
struct Tree {
 string value;
 Tree *left;
 Tree *right;

};

We Can Have Ternary Trees (or any number, n)

Ternary Tree:

value
struct Tree {
 string value;
 Tree *left;
 Tree *middle;
 Tree *right;

};

We Can Have Ternary Trees (or any number, n)

N-ary Tree:

value

...

struct Tree {
 string value;
 Vector<Tree *> children;

};

Trees can be defined as either structs or classes

class Tree {
private:
 string value;
 Vector<Tree *> children;

};

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

Let's write some code to "traverse" the tree

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4.Level-order

Let's write some code to "traverse" the tree

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4.Level-order

1.Do something
2.Go left
3.Go right

Let's write some code to "traverse" the tree

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4.Level-order

1.Go left
2.Do something
3.Go right

Let's write some code to "traverse" the tree

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4.Level-order

1.Go left
2.Go right
3.Do something

Let's write some code to "traverse" the tree

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4.Level-order

Hmm...can we do this recursively?
We want to print the levels: 0, 1, 2 from left-to-right order

Let's write some code to "traverse" the tree

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

There are multiple ways to traverse
the nodes in a binary tree:

1.Pre-order
2.In-order
3.Post-order
4.Level-order

Not easy recursively...let's use a queue!
1. Enqueue root
2. While queue is not empty:

a. dequeue node
b. do something with node
c. enqueue left child of node if it exists
d. enqueue right child of node if it exists

should look
familiar...word
ladder?

Let's write some code

is written

this

a correctly sentence.

struct Tree {
 string value;
 Tree * left;
 Tree * right;
};

void preOrder(Tree * tree) {
if(tree == NULL) return;
cout<< tree->value <<" ";
preOrder(tree->left);
preOrder(tree->right);

}

void inOrder(Tree * tree) {

if(tree == NULL) return;
inOrder(tree->left);
cout<< tree->value <<" ";
inOrder(tree->right);

}

void postOrder(Tree * tree) {

if(tree == NULL) return;
postOrder(tree->left);
postOrder(tree->right);
cout<< tree->value << " ";

}

void levelOrder(Tree *tree) {
 Queue<Tree *>treeQueue;
 treeQueue.enqueue(tree);
 while (!treeQueue.isEmpty()) {
 Tree *node = treeQueue.dequeue();
 cout << node->value << " ";

 if (node->left != NULL) {
 treeQueue.enqueue(node->left);
 }
 if (node->right != NULL) {
 treeQueue.enqueue(node->right);
 }
 }
}

References and Advanced Reading

•References:
•https://en.wikipedia.org/wiki/Tree_(data_structure)
•http://pages.cs.wisc.edu/~vernon/cs367/notes/8.TREES.html

•Advanced Reading:

•http://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html

•Great set of tree-type questions:
•http://cslibrary.stanford.edu/110/BinaryTrees.html

